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Abstract 

Motivated by an Arens regularity problem, we introduce the concepts of matrix 
Banach space and matrix Banach algebra. The notion of matrix normed space in 
the sense of Ruan is a special case of our matrix normed system. A matrix Banach 
algebra is a matrix Banach space with a completely contractive multiplication. We 
study the structure of matrix Banach spaces and matrix Banach algebras. Then we 
investigate Arens regularity and weak amenability of certain matrix algebras 
which are built on matrix Banach algebras. In particular we show that for such 
algebras both of Arens regularity and weak amenability problems can be reduced 
to the same problem for a considerably smaller algebra. 
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1. Introduction 

Since Arens’ original paper [1], Arens products have 
been used as an important tool in the study of Banach 
algebras and their duals. This subject is now well 
developed and there is a vast literature on it. A result of 
Civin and Yood [6, Theorem 6.1] implies that every 
operator algebras are Arens regular. Unital operator 
algebras are indeed complete operator spaces with a 
completely contractive multiplication [5]. On the other 
hand there are Arens regular Banach algebras which are 
not operator algebras; for example see [8,9]. These facts 
suggest the following question. 

Which properties of operator algebras imply their 
Arens regularity? 

The notion of weak amenability was introduced by 
Bade, Curtis and Dales [2]. Since then weak amenability 
of various known Banach algebras has been examined. 
In particular every C*-algebra is weakly amenable [11]. 

Again one might ask, which properties of a C*-algebra 
force it to be weakly amenable? 

The above questions motivated us to consider matrix 
algebras over Banach algebras, which roughly speaking, 
look like operator algebras. Our approach is based on 
appropriate weakening of matrix norm conditions of 
operator spaces. Our conditions are strong enough so 
that the class of matrix Banach algebras behave nicely 
and weak enough to include algebras with non-operator 
norm such as l1, in this class. Indeed we drop the 
assumption of contractivity of Mn module actions from 
the definition of matrix normed space in the sense of 
Ruan. 

Although the abstract operator space theory starts 
with the notion of matrix normed space, but due to the 
quantization goal, it moves quickly to the special case of 
operator spaces; consequently less attention has been 
paid to general matrix normed spaces. Here we consider 
a class of matrix normed systems which contain the 
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class of matrix normed spaces as a proper subclass. 
This paper is organized as follows. In Section 2 we 

introduce our terminology. In Section 3, we introduce 
matrix Banach spaces and investigate their structure. 
Various examples are also provided in this section. In 
the Section 4 we investigate weak amenability of the 
algebra of approximable matrices over commutative 
matrix Banach algebras. In Section 5, we identify the 
topological centers of the algebra of approximable 
matrices over a matrix Banach algebra. 

2. Notations 

Throughout all vector spaces and algebras are over 
, A is a Banach algebra, A-module means Banach A-

bimodule and dual A-module means the dual X* of an A-
module X with its natural A-module structure. 

�

Let X be a vector space. We denote the vector space 
of all m×n matrices on X by Mm×n(X) and Mn×n(X) by 
Mn(X). In particular we denote Mn( ) by Mn. Let 1 ≤ i, 
j ≤ n and 

�
x X∈ . We denote the n×n [resp. ×� � ] 

matrix on X whose ij-th entry is x and all other entries 
are zero, by n

ijx E⊗  [resp. ijx E ∞⊗ ]. If X is a unital 

algebra, then we denote 1  [resp. 1 ] by  

[resp. ]. Given  and , 
the direct sum  is defined by 

. Let . By a submatrix 

of E we mean a k×l block F in E where 1 ≤ k ≤ m and 
1 ≤ l ≤ n. We denote the set of all matrices  
which contain F as a submatrix and zero elsewhere by 
EF. 

n
ijE⊗ ijE ∞⊗ n

ijE

ijE ∞ ( )m nB M X×∈ ( )k lC M X×∈

( ) ( ) ( )m k n lB C M X+ × +⊕ ∈

0

0

B
B C

C

⎡ ⎤
⊕ = ⎢

⎢ ⎥⎣ ⎦
⎥ ( )m nE M X×∈

( )nE M X∈

Let X be a normed space, , n ∈� ( )nf M X ∗∈  and 
1 ≤ i, j ≤ n. Define ijf< , x f>=< ,  n

ijx E⊗ > x X∈ . 

Then ijf X ∗∈ . Conversely every ( ) ( )ij nf M X ∗∈  can 

be considered as an element of ( )nM X ∗  whose actions 
defined by 

, 1
( ), ( ) , , ( ) ( )

n

ij ij ij ij ij n
i j

f x f x x M
=

< >= < > ∈∑ X

)

. 

Therefore we can identify (nM X ∗  with ( )nM X ∗ . 
Henceforth we consider (n )M X ∗  with the norm which 
inherits from ( )nM X ∗ . 

The first and second Arens multiplications on A** that 
we denote by “.” and “Δ”, respectively, are defined in 
three steps. For , ,a b A∈ f A ∗∈  and ,m n A ∗∗∈ , the 
elements f.a, aΔf, m.f, fΔm of A* and m.n, mΔn of A** 

are defined in the following way: 

f a b f ab< . , >=< , >     ,a f b f ba< Δ >=< , >

m f b m f b< . , >=< , . >    f m a m a f< Δ , >=< , Δ >  

m n f m n f< . , >=< , . >     , ,m n f n f m< Δ >=< Δ >

When we refer to A** without explicit reference to 
any of Arens products, we mean A** with the first Arens 
product. 

For fixed n A ∗∗∈  the map m m n.a  [resp. 
m n mΔa ] is weak weak∗ ∗−  continuous, but the map 
m n m.a  [ m m nΔa ] is not necessarily 
weak weak∗ ∗−  continuous, unless n is in A. The first 
topological center Z1(A**) is defined by 

1( ) { The map is

weak -weak continuous}
{ for all

Z A n A m n m

n A n m n m m A

∗∗ ∗∗

∗ ∗

∗∗ ∗∗

= ∈ : .

}= ∈ : . = Δ ∈ .

a

 

The second topological center Z2(A**) is defined 
similarly. If Z1(A**) = A**, then A is called Arens 
regular. In this case Z2(A**) = A** as well. 

3. Structure of Matrix Banach Spaces and 
Matrix Banach Algebras 

In this section we introduce matrix Banach spaces 
and matrix Banach algebras. Then we study their basic 
properties. 
 
Definition.  Let X be a complex vector space, and 
n ∈� . We say that a norm .  on ( )nM X  is 

(i)  free-position, if for every x X∈  and positive 
integers  ≤ 1 i j k l n≤ , , , ≤  the equality n

ijx E⊗  
n
klx E= ⊗  holds. 

(ii)  monotone, if for every  and every 
submatrix  of , we have 

( )nB M X∈

F B B B′ ≤  for all 

FB E′∈ . 
(iii)  permutation invariant, if for every 

( )nB B M X′, ∈ , where  is obtained by inter-
changing two rows or two columns of , the equality 

B ′
B

B B ′=  holds. 
(iv)  unitary invariant, if for every unitary matrix 

nU M∈  and ( )nB M X∈  the equalities UB =  

BU B=  hold. 
Clearly every unitary invariant norm is permutation 

invariant and every permutation invariant norm is a 
free-position norm. 
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Definition.  Let  be a vector space and for every 
, let 

X
n ∈� .

n
 be a norm on ( )nM X . We say that 

( { . })
n

X ,  is a matrix normed system if for every 

positive integer , n .
n

 is a free-position and monotone 
norm on ( )nM X  and for every  where 

, the inclusion 
m n, ∈�

m n> : ( ) (n m n m )M X M Xφ , ⎯→ , 
( ) 0A Aφ = ⊕ , is an isometry. As in [14] we say that a 

matrix normed system ( { . }
n

X , )  satisfies the L∞  
condition if for all positive integers  and for all 

,  the equality 
m n,

( )nB M X∈ ( )mC M X∈
m n

B C
+

⊕  

{
n m

max B C= , }  holds. We say that a matrix 

normed system ( { . })
n

X ,  is a permutation invariant 
matrix normed system, if for every positive integer , n
.

n
 is a permutation invariant norm on ( )nM X . 

Unitary invariant matrix normed system is defined 
similarly. 
 
Remark 3.1.  Suppose ( { . })

n
X ,  is a matrix normed 

system. Then 
(i)  For every ( ) ( )ij nx M X∈  we have, 

1 1
( )kl ij ij

ij
x x x≤ ≤∑ . 

(ii)  ( { . })
n

X ,  is complete for some , if and 
only if it is complete for every . 

n ∈�
n ∈�

(iii)  It is easy to check that the concepts of matrix 
normed space [14] and unitary invariant matrix normed 
system coincide. To see this let ( { . }

n
X , )  be a matrix 

normed space,  be a positive integer, u  be a unitary 
matrix and 

n
x  be an element of ( )nM X . We have 

n nn n
x u ux u ux ux∗ ∗= ≤ = . 

Also 
n n

ux u x x≤ =
n

. Conversely let 

( { . })
n

X ,  be a unitary invariant matrix normed system. 
Let  be a positive integer, n α  be an element of nM  
with the operator norm 1 and x  be an element of 

( )nM X . Using singular value decomposition, we 
conclude that there exist two unitary matrices u  and v  
such that ( )u v 2α = + / . Now we have 

2 2 2 2 2x ux vx ux ux vxα = / + / ≤ / + / + / x= . 

Similarly x xα ≤ . 
 
Definition.  Let ( { . })

n
X ,  be a matrix normed system. 

If .
n

 is complete for some  (and hence all n ∈�

n ∈� ), then ( { . })
n

X ,  is called a matrix Banach 
space (MBS). 
 
Definition.  Let  be an algebra and A ( { . })

n
A ,  be a 

MBS. For every n ∈� , consider ( )nM A  with the 
usual matrix product. If .

n
 is an algebra norm on 

( )nM A  for every , that is n

( )nn n n
BC B C B C M A n≤ , , ∈ , ∈ �  

then ( { . })
n

A ,  is called a matrix Banach algebra 

(MBA). We say that a MBA ( { . })
n

A ,  is unital if  is 
unital and for every positive integer  the equality 

A
n

1n n
I =  holds. 

 
Remark 3.2.  In our definition of "matrix normed 
system" we do not assume contractivity of nM -module 
actions on ( )nM X . Indeed by Remark 3.1(iii) and 
Ruan’s Theorem [7] [respectively Blecher’s Theorem] a 
MBS [respectively MBA] is an operator space 
[respectively operator algebra] only if it is unitary 
invariant and satisfies L∞ -condition. 
 
Examples 3.3.  (i)  Let  be a Banach space. If we 
equip every 

X
( )nM X  with the  norm, then  turns 

into a permutation invariant MBS. But  is not a 
unitary invariant MBS. This is the greatest MBS 
structure on . We denote this MBS with 

1l X
X

X maxX . Also 
if  is a Banach space, then we can equip every X

( )nM X  with the l ∞  norm. With this structure X  
turns into a permutation invariant MBS which is not 
unitary invariant. This is the least MBS structure on . 
We denote this MBS with 

X
minX . Clearly minX  satisfies 

 condition. A
(ii)  Let [1 )p ∈ ,∞  and L∞ . We can equip  with 

the operator norm which inherits from . With this 
structure 

A
A

a A∈  turns into a permutation invariant 
MBA. 

(iii)  Let  be a reflexive Banach space with a 
Schauder basis {

X
}nx  whose unconditional constant 

equals to one. For every positive integer , we can 
endow 

n
n�  with the norm it inherits from , by taking X

1 2 1 1 2 2[ ]
( , , , )n nn
c c c c x c x c x= + + +K K n  

We can equip nM  with the operator norm .
n

 of 
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( )nB � , where  is equipped with the above norm. 
With the order induced by the { }

n�

nx ,  is a Banach 
lattice. So with this structure, 

X
�  is a MBA. 

 
Definition.  Let  be a MBS and X ( )M X∞  be the 
linear space {( ) }ij ijx i j x X| , ∈ , ∈� . For 

 let  be the truncation of  to ( )B M X∞∈ n B B
( )nM X  (i.e.  is  matrix in the top left corner 

of ) and  be the element  of 
n B n n×

B n B 0n B ⊕ ( )M X∞ . 
Define 

{ }n nn n
B Sup B n lim B B M X∞= | ∈ = , ∈� ( ) . 

We call every  for which ( )B M X∞∈ B < ∞ , a 
bounded matrix. We denote the space of all bounded 
matrices on  with above norm by X ( )bM X∞ . An 
element in the closure of the inductive limit 

lim ( )nM X⎯⎯→  in ( )bM X∞  is called an approximable 
matrix. We denote the set of all approximable matrices 
in ( )bM X∞  by ( )K X∞ . 

Let  be a MBA and A ( )A B K A∞, ∈ . It is easy to 
see that sequence { }n nA B  is a norm convergent 
sequence in ( )K A∞ . We define 

limn nAB A B A B= , A∈ .  

It is easy to see that for ( )ijA a=  and  in ( )ijB b=

( )K A∞  the equality 
1

( )ik kjk
AB a∞

=
= ∑ b  holds. 

 
Remark.  Let  be a MBS and Y  be a Banach space. 
By identifying 

X
( ( ))nM B X Y,  with ( ( )nB M X Y ),  in 

the usual way, we can equip  with a MBS 
structure. In particular we can equip 

( )Y,B X
X ∗  with a MBS 

structure. 
Proofs of the following lemmas are not complicated, 

but for convenience of readers we present their proofs in 
Section 6. 

 
Lemma 3.4.  If  is a MBS, then X ( )bM X∞  is a 
Banach space. 

 
Lemma 3.5.  Let  be a MBS and ( )X ( )ijx M X∞∈ . 

Then ( ) ( )ijx K X∞∈  if and only if lim ( ) ( )n
n ij ijx x→∞ = . 

 
Lemma 3.6.  If  is a MBA, then A ( )K A∞  is a Banach 
algebra. 

 

Lemma 3.7.  Let  be a MBS and Y  is a Banach 
space. Then 

X
( ( ))bM B X Y∞ ,  is isometrically isomorphic 

with ( ( ) )B K X Y∞ , . In particular  ( ) ( )bM X K X∗ ∗
∞ ∞= .

4. Weak Amenability of Approximable Matrices 

In this section we study the weak amenability of 
( )K A∞ . We show that for every permutation invariant 

MBA  which satisfies A L∞  condition and constructed 
on a unital commutative weak amenable Banach algebra 

, A ( )K A∞  is weakly amenable. 
Theorem 4.1.  Let  be a permutation invariant MBA 
which satisfies the 

A
L∞  condition. If  is unital 

commutative and weakly amenable, then 
A

( )K A∞  is 
weakly amenable. 
Proof.  Let  be weakly amenable, aA A∈ , 
( ) ( )ijf K A ∗

∞∈  and ( ) ( )ija K A∞∈ . Then we have 

( )( ) ( ) ( )[ ] ( )ij ij kl ij ij kl ijf a a E f a a E f∞ ∞< , ⊗ >=< , ⊗ >=< , 

1
1 1

[ ]sk sl sl sk sl sks
s s

a a E f a a f a a
∞ ∞

∞ ∞
=

= =

⊗ >= < , >=< , >∑ ∑ ∑ . 

Thus the following equality holds 

1

[( )( )]
n

ij ij kl n sl sk
s

f a weak lim f
=

= ∗− ∑ a . (1) 

Similarly we have 

1

[( )( )]
n

ij ij kl n ls ks
s

a f weak lim a f
=

= ∗− ∑ . (2) 

Suppose ( ) ( )D K A K A ∗
∞ ∞: ⎯→  is a bounded 

derivation. Now for positive integers i j  we can 
define  by 

k l, , ,
kl
ijD

( ) [ ( )]kl kl
ij ij ij klD A A D a D a E∗ ∞: ⎯→ = ⊗ .  

Using (1) and (2) we can conclude that for every 
a b A, ∈  and for every positive integers  the 
following identity holds 

i j k l m, , , ,

( ) ([ ][ ])

[ ( )[ ]] [[ ]

( )] ( )

kl
ij im mj kl

im mj kl im

ml km
mj kl im jk il mj

D ab D a E b E

D a E b E a E

D b E D a b a D bδ δ

∞ ∞

∞ ∞ ∞

∞

= ⊗ ⊗

= ⊗ ⊗ + ⊗

+ ⊗ = + ( )

 (3) 

Where δ  is the Kronecker’s delta. Thus for every 
positive integer ,  is a bounded derivation which 
is zero by assumption. On the other hand we have the 
following identity 

m mm
mmD
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1

1

[ (( ))] [ ( ( ))]

( ).

n

rs ij n rs rs ij
r s

n
ij

n rs rs
r s

D a D lim a E

lim D a

∞

, =

, =

= ⊗

=

∑

∑
 (4) 

From (3) we conclude that for all positive integers 
 and , i j, m

( ) (1) (1) ( )ji mi mj mm
ij im jm mmD a D a aD D a= − + .  

Since every bounded derivation from  into A A ∗  is 
zero, then 

( ) (1) (1)ji mi mj
ij im jmD a D a aD= − . (5) 

Also we have 

1 1

0 [ ( )] (1) (1)

(1) (1)

sk is
kk ii ik kk si ks ii

s s

ik ik
kk ii

D E E D D

D D

δ δ
∞ ∞

∞ ∞

= =

= = +

= +

∑ ∑
 

and hence 

(1) (1)ik ik
kk iiD D= − . (6) 

From (4) and (6) we conclude that 

k l 1

k 1 1

k 1

1

[D((a ))] lim ( )

lim [ (1) (1)

(1) (1) ( )]

lim [ (1)

(1)] ( ).

n

n

n

ij
rs ij n kl kl

nij ij
n ki ki jl jll

ij ij ij
ji ji ji ji ji ji

kj
n kk ki

n ik ji
jk kk ij jik

D a

D a a D

D a a D D a

D a

a D D a

, =

= =

=

=

=

= +

− − +

=

+ +

∑
∑ ∑

∑
∑

 (7) 

If for every positive integer we define 
D , then from (7) we conclude that 

,i j
kj

kj kkD=

[( ( ))] [( (1))( )

( )( (1))] ( ).

rs ij rs rs

ji
rs rs ij ij ji

D a D a

a D D a

=

− +
 (8) 

On the other hand for every positive integer  we 
can consider 

n
nM  as a subalgebra of ( )nM A  and equip 

it with the norm which inherits from ( )nM A . Let 
 be the set of elements of 1{ n nmS u u= ,..., } nM  with 

exactly one nonzero entry which is 1 or -1, in every row 
and column. Since  is permutation invariant and 
satisfies 

A
L∞  condition, the following identity holds. 

1 1t
nk nk nn

u u k= = ≤ ≤

Also we have  for every 1t
nk nk nu u I= k m≤ ≤ .  

Clearly  spans S nM . Now set 

1

1 (
m

t
n nk

k
g m u D u

=

)nk= − / .∑  

By (9) we have ng D≤  and for 1 , i j m≤ , ≤

( [ ]) ( ) ( )n n n n n
ni nj ni nj ni njD u u u D u D u u= + .  

Thus 

( ) ( )

( [ ]) ( [ ]).

n n t n n
nj ni ni nj

n t nn
nj ni nj ni nj

D u u D u u

u u D u uu

+

=
 

Divide both sides of the above identity by m  and 
sum over i  while keeping  fixed to obtain 

. Since {
j

( ) [ ng ] [ ]n n n
nj nj nj nD u u u g− = − 1}m

ni nj iu u =  is 
another listing of the elements of S  and S  spans nM , 
then 

( ) [ ]n n
n n nD u g u ug u M= − ∈ .

)

 

Let (n nklg g= , then for 1  we have i j n≤ , ≤

( ) ( ) ( )n n
ij nkl ij ij nklD E g E E g∞ ∞ ∞= −  (10) 

Also from (8) we have 

1

[ (( ))] [ (1)

(1)] ( ).

n

ij rs n ks kr
k

sr
sk rk rs sr

D E lim D

D D

δ

δ δ

∞

=

=

− +

∑
 (11) 

From (10) and (11) the following equalities hold for 
every 1 i j n≤ , ≤  

(1) 1

(1) 1

ij nij

ji
ij nii njj

D g i j

D g g i j n

n= ≤ ≠ ≤⎧⎪
⎨

= − ≤ , ≤⎪⎩ .
 (12) 

From (12) we can conclude that for all positive 
integers  where  the following equality 
holds 

,m n m n>

1nij mijg g i j n= , ≤ ≠ ≤ .  

We set ij nijg g=  for i j  and n, , ∈ � i j≠ . Since 
the sequence n11{ ( 0 0 )nnndiag g g

m . (9) 

}, ..., , , ,...  is a bounded 
sequence with the bound D , then it has a 
subsequence that converges to an element 

11{ ( )nndiag g g }, ..., , ...  in ( )K A ∗
∞  in the weak* 
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topology. Thus ( ij )g g=  is an element of ( )K A ∗
∞ . 

From (8) and (12) we conclude that the equality 
 holds. Therefore ( ) ( )D a ga ag a K A∞= − , ∈ ( )K A∞  is 

weakly amenable. □ 
Using the argument of the above Theorem we can 

prove the following Lemma. 
 
Lemma 4.2.  Let  be a unital, commutative and 
permutation invariant MBA which satisfies the equality 

A

1( )n n
diag λ λ,... = 1 for every positive integer  and 

every 
n

1 { 1 1}nλ λ,..., ∈ − , . If  is weakly amenable, then A
( )K A∞  is weakly amenable. 

Let  be a reflexive Banach space with a Schauder 
basis 

X
{ }nx  whose unconditional constant is equal to 

one. If we equip  with the MBS structure of Example 
3.2(III), then  and  are isometrically 
isomorphic as Banach spaces and  and 

�

( )bM ∞ � ( )B X
( )K ∞ � ( )K X  

are isometrically isomorphic as Banach algebras. 
The following result follows immediately from [10, 

Theorem 4.5] but still it is worth to be mentioned here, 
because our approach is totally different. 
 
Theorem 4.3.  Let  be a reflexive Banach space with 
a Schauder basis whose unconditional constant is equal 
to one. Then 

X

( )K X  is weakly amenable. 
Proof. We equip �  with the MBS structure of the 
Example 3.3(III). Clearly ( . )

n
,�  satisfies the 

conditions of the Lemma 4.2 and hence the weak 
amenability of  can be earned from the weak 
amenability of . But by the above statement, 

 and hence 

( )K ∞ �

�
( ) ( )K X K ∞= � ( )K X  is weakly 

amenable. □ 

5. Topological Center of Approximable 
Matrices 

In this section we study the topological centers of the 
algebra of approximable matrices. Recall that a MBS  
is approximable if 

A
( ) ( )bK A M A∞ ∞= . The dual of an 

operator space is an example of an approximable MBS. 
 
Theorem 5.1.  Let  be a MBA with approximable 
dual. Then , . 

A
( ( ) ) ( ( ))b

i iZ K A M Z A∗∗ ∗∗
∞ ∞= 1 2i = ,

proof. Since A ∗  is approximable then we have 

( ) ( ) ( )bK A M A K A∗ ∗
∞ ∞ ∞= = ∗ .  

Hence 

( ) ( )bK A M A∗∗ ∗∗
∞ ∞= .  

Now Let a A∈ , f A ∗∈ , ( ) ( )ija K A∞∈ , 

( ) ( )ijb K A∗ ∗
∞∈  and ( ) ( ) ( )ij ijm n K A∗∗ ∗∗ ∗

∞, ∈ ∗

∗

. Then we 
have 

<(b )( )

( ) ( )[ ] ( ),

ij ij kl

ij ij kl ij

a a E

b a a E b

∗ ∞

∗ ∞

, ⊗ >

=< , ⊗ >=<
 

1 1

1

[ ]

.

sk sl sl sks s

sl sks

a a E b a a

b a a

∞ ∞∞ ∗
= =

∞ ∗
=

⊗ >= < , >

=< , >

∑ ∑

∑
 

Thus 

[(b . (1) 
1

)( )] weak lim n
ij ij kl n sl sks

a∗ ∗
=

= ∗− ∑ b a

Also we have 

( )( )

( ) ( )[ ] ( )

ij ij kl

ij ij kl ij

m b a E

m b a E m

∗∗ ∗ ∞

∗∗ ∗ ∞ ∗∗

< , ⊗ >

=< , ⊗ >=< ,
 

1 1

1

[ ]ks ls ls sks s

ls kss

b a E m b a

m b a

∞ ∞∗ ∞ ∗∗ ∗
= =

∞ ∗∗ ∗
=

⊗ >= < , >

=< , > .

∑ ∑

∑
 

Thus 

1
[( )( )] weak lim n

ij ij kl n ls kss
m b m b∗∗ ∗ ∗∗ ∗

=
= ∗− ∑ . (2) 

Therefore 

1 1

1

( )( )

( ) ( )[ ] ( )

[ ]

ij ij kl

ij ij ks ij

sl ks ks sls s

ks sls

m n f E

m n a E m

n f E m n f

m n f

∗∗ ∗∗ ∞

∗∗ ∗∗ ∞ ∗∗

∞ ∞∗∗ ∞ ∗∗ ∗∗
= =

∞ ∗∗ ∗∗
=

< , ⊗ >

=< , ⊗ >=< ,

⊗ >= < , >

=< , > .

∑ ∑

∑

 

So the first Arens product on ( )nM A ∗∗  can be 
expressed by the following identity. 

1

[( )( )] weak lim
n

ij ij kl n ks sl
s

m n m n∗∗ ∗∗ ∗∗ ∗∗

=

= ∗− ∑ . (3) 

Similarly we have 
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1

1

1

( )[( ) ( )] weak lim

( )[( ) ( )] weak lim

( )[( ) ( )] weak lim

n
ij ij kl n ls kss

n
ij ij kl n sl sks

n
ij ij kl n ks sls

i a b a b

ii b m b m

iii m n m n

∗
=

∗ ∗∗ ∗ ∗∗
=

∗∗ ∗∗ ∗∗ ∗∗
=

⎧ Δ = ∗− Δ
⎪
⎪⎪ Δ = ∗− Δ⎨
⎪
⎪ Δ = ∗− Δ⎪⎩

∑

∑

∑

∗

.

 (4) 

From (3) and (iii) of (4) we conclude that 
. □ Z ( ( ) ) ( ( ))b

i iK A M Z A∗∗ ∗∗
∞ ∞=

 
Corollary 5.2.  Let  be a unital MBA with 
approximable dual. Then  is Arens regular if and only 
if 

A
A

( )K A∞  is Arens regular. 
 
Theorem 5.3.  Let  be a unital MBA with A L∞  
condition. If ( )K A∞  is Arens regular then A ∗  is 
approximable. 
Proof. Suppose A ∗  is not approximable. Then there 
exist an element of ( fij ) in ( )bM A ∗

∞  such that the 
sequence  is not Cauchy. Therefore there exist { ( )}n

ijf
0ε >  and positive integers 

 such that 1 2 1n nk k k k +< < ... < < < ...

1 ( ) ( )n nk k
ij ijf f ε+ − ≥  

for every . Now for every positive integer  there 
exist ( )  with 

n n
Ball( ( ))ijna K ∞∈ A

1

1 1

( ) ( )

( ) 0

( ) ( ), ( ) / 2 ( ) ( )

n

n

n n n n

k
ijn ijn

k ijn

k k k k
ij ij ijn ij ij

a a

a

f f a f fε

+

+ +

⎧ =⎪
⎪

=⎨
⎪
⎪ < − > + > −⎩ .

=

 

we have 

1
lim lim ( ), ( )[ ] 0m

m n ij ijn iii
f a E ∞

=
< >∑  

and 

1
lim lim ( ), ( )[ ]

lim ( ), ( ) .

m
n m ij ijn iii

n ij ijn

f a E

f a

∞
=

< >

= < >

∑
 

Since for every n we have 
1( ) ( ) ( ) ( ) ( ) 2n nk k

ij ijn ij ij ijnf a f f a ε+|< , >|=|< − , >|> /  

then . Hence by 1.5.11(f) of [13] lim ( ) ( ) 0n ij ijnf a< , >≠

( )K A∞  is not Arens regular. □ 
 
Corollary 5.4.  Let  be a unital Arens regular MBA 

with 

A

L∞  condition. Then ( )K A∞  is Arens regular if and 
only if A ∗  is approximable. 
 
Corollary 5.5.  For every unital operator algebra , the 
Banach algebra 

A
( )K A∞  is Arens regular. 

6. Proofs of Lemmas 3.4 to 3.7 

Proof of Lemma 3.4.  Let  be a Cauchy 
sequence in 

1{ }n nB ∞
=

( )bM X∞  and set . Then by 
Remark 3.1(i) for arbitrary positive integers 

( )ijn n ijx B=

i j, , the 
sequence { ijn }x  is Cauchy and hence there is a 

( ) ( )ijB x M X∞= ∈  such that limn ijn ijx x= . Now fix 

 and choose  such that 0n > 0m > 2

1
1ij ijmx x n− < /  

for 1 i j n≤ , ≤ . Then 

1
1

( ) ( )

1

n n m n mn n n

n

ij ijm m
i j

B B B B

x x B
, =

≤ − +

≤ − + ≤ +∑ M
 

where M  is a upper bound for { nB } . Therefore 

( ) ( )b
ijx M X∞∈ . Let 0ε >  and consider  such 

that for every  the inequality 
1 0N >

1m N≥
1

4m NB B ε− < /  

holds and choose  such that 2N N> 1

1 2 1
2

( )N N N N
B B B B 4ε− < − + / . Also choose 

 such that 2N N> 2

1 1
4N

i j ij ijNx x ε
, =

< /−∑ . Now 

for m  we have N≥

1 1

2 1 2

2 2 12 2

2

11 1

( ) 4 4

( ) ( )

2

4 4 2

m N N m

N N N

N N N N NN N

N
N Ni j

B B B B B B

B B

B B B B

B Bij ijNx x

ε ε

2ε

ε

ε ε ε ε
, =

− ≤ − + −

< − + / + /

< − + − + /

< + − + /

< / + / + / = .

−∑

Therefore M ( )b A∞  is a Banach space. □ 

 
Proof of Lemma 3.5.  Let ( ) ( )ijx K X∞∈  and  be a 

sequence in 
nT

lim ( )nM X⎯⎯→  such that lim ( )n ijT x= . 
For every positive integer , let  be the least 

positive integer that [ ]
n nk

0n ijT =  for all . Now let ni j k, >
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0ε >  and choose  such that N ∈ � ( ) 2ij Nx T ε− < / . 

For all  we have Nm n k≥ ≥

1 1

1 1

( ) ( ) [ ]

[ ]

m m
m n

ij ij ij ij
i n j

n m

ij ij
i j n

x x x E

x E

∞

= + =

∞

= = +

− = ⊗

+ ⊗

∑ ∑

∑ ∑ .
 

But 
1 1

[ ]m m
ij iji n j

x E ∞
= + =

⊗∑ ∑  and 
1 1

[ ]n m
ij iji j n

x E ∞
= = +

⊗∑ ∑  

are submatrices of [( ) ]m
ij Nx T− . So 

( ) ( ) 2 ( )m n
ij ij ij Nx x x T ε− ≤ − <  

and hence lim ( ) ( )n
n ij ijx x→∞ = . The converse statement 

is clear. □ 
 
Proof of Lemma 3.6.  Let ( ) ( ) ( )rs rsE a F b K A∞= , = ∈ , 

0ε >  be given and . For 1 , choose 

 such that 

n ∈� i j n≤ , ≤

ijm 2

1
ik kjk s

a b nε∞

=
< /∑ , for every ijs m≥ . 

Setting , we have { 1ijm max m i j n= | ≤ , }≤

1 1

1

11
1

2
1

[( )( )] [ ( ) ( )]

( ) ( )

( )

m m
n ij ij n ij ij n

m
n ik kj n ik kjk k n

n ik kjk m n

n
ik kjk mi j

n

i j

a b a b

a b a b

a b

a b

nε ε

∞

= =

∞

= +

∞

= +, =

, =

−

= −

=

≤

< / = .

∑ ∑

∑

∑∑

∑

 

Hence EF is an element of K∞(A). Therefore with this 
multiplication K∞(A) turns into a Banach algebra. �  
 
Proof of Lemma 3.7.  Let . 
Define, 

( ) ( ( )b
ijf M B X Y∞∈ , )

1
(( )) lim ( ) ( ) ( )

n

ij n ij ij ij
i j

f x f x x K ∞
, =

= , ∈∑ X .  

It is easy to see that ( ( ))bM B X Y∞ ,  is isomertically 

isomorphic with the  via the following 
map 

( ( ) )B K X Y∞ ,

( ( )) ( ( ) ) ( )b
ijM B X Y B K X Y f fφ ∞ ∞: , → , , a . □ 
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