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Abstract 

A model for missing data in mixed binary and continuous responses, which can 
be used on cross-sectional data, is presented. In this model response indicator for 
the binary response can be dependent on the continuous response. A closed form 
for the likelihood is found. For data with a complicated pattern of missing 
responses some new residuals are also proposed. The model of multiplicative 
heteroscedasticity is used to consider the problem of heteroscedasticity of the 
continuous response. The model is illustrated on the data of an observational study 
where the effect of psychological disorder of parents on both the verbal 
comprehension score and the presence of adverse symptoms in their children are 
modeled in the presence of missing responses. 
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1. Introduction 

Some biomedical, psychological and health sciences 
data include both discrete and continuous outcomes. 
One example is the analysis of development toxicity 
endpoints when the relationship between fetal weight 
and malformation in live fetus is an important statistical 
issue [1]. Another example is, in the study of the 
maternal smoking effect on respiratory illness in 
children where we have a continuous measure of 
pulmonary function and a binary measure of chronic 
symptoms in children. 

For the first example, separate analyses of the 
categorical or the continuous responses cannot properly 

assess the effect of dose on fetal weight and 
malformations simultaneously. For the second example, 
separate analyses cannot assess the effect of maternal 
smoking on all the responses simultaneously. 
Furthermore, separate analyses give biased estimates for 
the parameters and misleading inference [9]. 
Consequently, we need to consider a method in which 
these variables can be modeled jointly. 

For joint modeling of responses, one method is to use 
the general location model of Olkin and Tate [4], where 
the joint distribution of the continuous and categorical 
variables is decomposed into a marginal multinomial 
distribution for the categorical variables and a 
conditional Multivariate normal distribution for the 
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continuous variables, given the categorical variables. 
Another method is to consider the conditional 
distribution of discrete variables, given the continuous 
variables and a marginal distribution for continuous 
variables. Cox and Wermuth [2] empirically examined 
the choice between these two methods. The third 
method which is developed here is to use simultaneous 
modeling of categorical and continuous variables to take 
into account the association and dependence between 
the responses by the correlation between the errors in 
the models for responses. For more details of this 
approach see, for example, Heckman [6] in which a 
general model for simultaneously analyzing two mixed 
correlated responses is introduced and Catalano and 
Ryan [1] who extend and used the model for a cluster of 
discrete and continuous outcomes. 

Little and Rubin [10] made an important distinction 
between the various types of missing mechanism. They 
defined the missing mechanism as missing completely 
at random (MCAR) if missingness is dependent neither 
on the observed responses nor on the missing responses, 
and as random (MAR) if it is dependent on the observed 
responses, but not on the missing responses. 
Missingness is defined as non-random if it depends on 
the unobserved responses. From a likelihood point of 
view MCAR and MAR are ignorable but missing not at 
random (MNAR) is non-ignorable. 

For mixed data with missing outcomes, Little and 
Schluchter [11] and Fitzmaurice and Laird [3] used the 
general location model of Olkin and Tate [14] with the 
assumption of missingness at random (MAR) to justify 
ignoring the missing data mechanism [10]. This means 
that they used all available responses, without a model 
for missing mechanism, to obtain parameter estimates 
using the EM (Expectation Maximization) algorithm. 
For a good discussion of mixed normal and non-normal 
data with missing responses under the assumption of 
MAR, see [10] and [16]. 

In this paper a general latent variable model for 
simultaneously handling response and non-response in 
mixed discrete and continuous data with potentially 
nonrandom missing values in both types of responses is 
presented. With this model, the dependence between 
responses can be taken into account by the correlation 
between errors of the response models. The aim is to 
use the general model of Heckman [6] for the joint 
modeling of the discrete and continuous responses. It is 
shown how we can incorporate a model for a 
complicated pattern of missing responses. 

In Section 2, the model is described and some new 
residuals are introduced. In Section 3, this model is used 
on a subset of data available in Little and Schluchter 
[11] about the effects of parental psychological 

disorders on various aspects of the development of their 
children. The results of fitting this model are also 
presented. In Section 4, the paper concludes with some 
remarks. 

2. Model and Residuals for Mixed Data with 
Missing Responses 

2.1. The Model 

Suppose y is a binary discrete variable and z is a 
continuous variable. Variables y and z are correlated 
and must be modeled simultaneously. Let y*, R*

y and 
R*

z denote the underlying latent variables of the binary 
response, the non-response mechanism for the binary 
variable and the non-response for the continuous 
variable, respectively, and define 

Ry =  
⎩
⎨
⎧ 〉

,0
01 *

Otherwise
Rif y

as the response indicator for y, 

Rz =  
⎩
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⎧ 〉

,0
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Rif z

as the response indicator for z and 

y =  
⎩
⎨
⎧ 〉

,0
01 *

Otherwise
yif

as the binary response. The model takes the form: 

,111
* εβ +′= Xy  (1a) 

,222 σεβ +′= Xz  (1b) 

,331
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442
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The vector parameters 2121 ,,, ααββ  and the 
correlation parameters jj ′ρ  for ,  and jj ′< 4,3,2,1=j
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4,...,2=′j  should be estimated. In this model any 
multivariate distribution can be assumed for the errors 
in the model. Here a multivariate normal distribution is 
assumed. 

To consider the problem of heteroscedasticity of the 
continuous response we can use multiplicative model of 
heteroscedasticity [5] for σ which is 

( Xexp 0 )γγσ ′+=  (1e) 

where γ0 and the vector of parameter γ should be 
estimated and X is the vector of explanatory variables. 

The non-response of y (Ry) in this model depends on 
both responses, the non-response for z (Rz) also depends 
on both responses and z depends on y. If, one of the 
correlation parameters jj ′ρ  for j=1,2 and j′=3,4 is found 

to be significant, then we have a nonrandom missing 
process. Parameter 14ρ  ( 23ρ ) can tell us whether or not 
non-response in the continuous variable (binary 
variable) is dependent on response in the discrete 
variable (continuous variable). Parameter 34ρ  can tell 
us whether or not non-response in the continuous 
variable is dependent on the non-response in the discrete 
variable. 

The likelihood for this model, which has been given 
in appendix, shows the simplification obtained by using 
the assumption of normality in the models for non-
response. The simplification arises from the fact that, 
instead of resorting to a numerical approximation of the 
integral needed to integrate out the missing values of the 
continuous response, we just need to invoke a point on 
the cumulative three-variate normal distribution, which 
although approximate, can be computed in many 
standard statistical packages with sufficiently high 
precision. 

The NAG [13] routine EO4UCF is used in this paper 
to minimize the mines logarithm of the likelihood given 
in the appendix. EO4UCF is a Fortran routine to 
minimize a smooth function subject to constraints (for 
example simple bounds on the variables) using a 
sequential quadratic programming (SQP, [4]) method. 
In this routine all unspecified derivatives are 
approximated by finite differences. 

2.2. Residuals 

The missing values of responses create problems for 
the usual residual diagnostics, see e.g. Hirano et al. [8]. 
For example usual Pearson residuals of the z variable 
are of the form 

)var(
)(

Z
zEzrz

−
=  

i.e. they assume MCAR. These unconditional residuals 
will be misleading if missingness is MAR or MNAR as 
in these cases the z's are from a conditional or truncated 
conditional distribution. We can examine the residuals 
of the responses conditional on being observed. Let start 
with using theoretical form, involving )1( =zRZE , 

)1( =yRYE  and )1var( =zRZ  rather than their 

predicted values. The Pearson residuals for continuous 
response can take the form 
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and for the discrete response can take the form 
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where Φ  and 12Φ  are respectively the cumulative 
univariate and bivariate normal distributions. 

The estimated Pearson residuals  can be 

found by using the maximum likelihood estimates of the 
parameters in System (1). As residuals in (2a) and (2b) 
are defined by conditioning on observing the responses, 
they differ from those of Ten Have et al. [15]. Ten Have 
et al. [15] found the expectation and variances of 
responses, and consequently the residuals, unconditional 
on the fact that responses should be observed. Then, to 
calculate the residuals they assumed no link between 

)ˆ,ˆ( yz rr
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response and nonresponse. This gives biased estimates 
of the means and variances of responses if missingness 
is not at random [10]. 

3. Application: The Effect of Psychological 
Disorders on the Verbal Comprehension Score 

3.1. Psychological Disorders Data 

The data set extracted from Little and Schluchter [11] 
has been used also by Fitzmaurice and Laird [3]. These 
authors assumed a mechanism by which observations 
were MAR and then used the general model of Olkin 
and Tate [14] to decompose the joint distribution of the 
continuous and discrete variables. In these data, school-
age children are classified according to the risk of their 
parents to psychological disorders (normal, moderate 
risk and high risk). Little and Schluchter [11] and 
Fitzmaurice and Laird [3] used two continuous 
responses, a standardized reading score and a 
standardized verbal comprehension score, and a single 
binary response, indicating the presence of adverse 
symptoms, which was obtained for each child. Here, 
only the standardized verbal comprehension score and 
the binary response for the first child in family are used. 
The data include 69 families with a general pattern of 
missing responses. Table 1 gives the different patterns 
of missing response for each child. 

For example, 15 first-born children responded for 
both variables and the observed value of their binary 
response is 0. 

Since a preliminary analysis indicated that there was 
no significant difference between moderate and high 
risk groups of psychological disorders [3], in this paper, 
the moderate and high risk groups are combined into a 
single group. 

 
Table 1.  Different patterns of missing 
responses for psychological disorders data 

Ry Rz y No. 
1 1 0 15 
1 1 1 12 
0 1 - 12 
1 0 0 6 
1 0 1 8 
0 0 - 16 

 
Table 2.  Descriptive statistics for psychological disorders 
observed data 

  Score   Ad.  Sym  
Low 
Risk No mean S.D. 0 1 Total 

0 22 105.455 30.764 10** (24.4) 11(26.8) 21(51.2)
1 17 146.118 19.647 16(39) 4(9.8) 20(48.8)
Total 39 123.176* 33.210* 26(63.4) 15(36.6) 41 
* Calculated ignoring low risk, ** Count(%) 

Table 2 presents summary statistics for presence of 
the adverse symptoms (Ad. Sym. in Table 2) and the 
standardized verbal comprehension score using only 
observed data. In this table the value of 0 for ‘Low 
Risk’ means that we have an individual from moderate 
or high risk group and the value of 1 means that 
individual is from low risk group. 

Table 2 shows that the mean (standard deviation) 
score of children from a family with a low risk of 
psychological disorders (Low Risk=1 in Table 2) is 
more (lower) than families with moderate or high risk of 
psychological disorders. It also shows that the 
occurrence of adverse symptoms is less in family with a 
low risk of psychological disorders. 

As the variance of scores is less for a family with a 
low risk of psychological disorders, the problem of 
heteroscedasticity should be taken into account. 

A Kolmogorov Smirnov test of the assumption of 
normality for scores of the children of a low family of 
psychological disorders is not rejected (p-value=0.200). 
The same test does not reject the assumption of the 
normality for scores of the children from a moderate or 
high risk of psychological disorders (p-value=0.200). 
The Pearson correlation between two responses is 
r=−0.449. This emphasizes that two responses should be 
modeled simultaneously. 

3.2. Models for Psychological Disorders Data 

For comparative purposes, three models are 
considered. The first model (model I) uses only 
complete cases and does not consider the correlation 
between two responses. This model is 

,11101
* εββ ++= Ly  (5a) 

,21202 σεββ ++= Lz  (5b) 

( )L10exp γγσ +=  (5c) 

where there is no correlation between 1ε  and 2ε . The 
second model (model II) uses model I and takes into 
account the correlation between two responses. The 
third model (model III) considers the full model, model 
with missing mechanism, with the following form 

,11101
* εββ ++= Ly  (6a) 

,21202 σεββ ++= Lz  (6b) 
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,3211101
* εααα +++= MLR y  (6c) 

,4221202
* εααα +++= MLRz  (6d) 

( L10exp )γγσ += . (6e) 

In these models 

⎩
⎨
⎧=

Otherwise0
grouprisk  low a from is child if1

L  

and 

⎩
⎨
⎧=

Otherwise0
grouprisk  Moderate a from is child if1

M  

In model (III) non-response models (R*
y and R*

z) let 
have one more explanatory variable [6]. 

3.3. Results for Psychological Disorders Data 

For the standardized verbal comprehension score and 
the binary response for the first born child in family, 
model (III) finds no connection between missing 
mechanism and responses with a change of deviance of 
2.4116 on 4 d.f. (p-value=0.661). Consequently, using 
only the complete data, without considering the missing 
mechanism, can give unbiased estimates of the 
parameters. Results of using three models are given in 
table 3. For model (III) as the correlation parameters 

jj ′ρ  for j=1,2 and j′=3,4 are not significant (as 

mentioned above) results with removing these 
parameters are given. 

These results show that there is a negative correlation 
(a change in deviance of 4.742 with 1 df) between two 
responses (the more the score the less likely the 
presence of adverse symptoms) and separate analysis of 
the responses gives biased estimates of the standard 
errors of the parameters. For example, under model (I), 
the standard errors of the estimates of β02 and β12, in 
comparison with the results of the model (II), are 
overestimated and the standard errors of the estimates of 
β01 and β11 are underestimated. Results also show that 
children from a low risk family can obtain a better 
standardized verbal comprehension score and the 
variance of their scores is less than that of the family 
with a high or moderate risk (γ1=−0.786 for model II). 

The estimate of the parameter by model (III) shows a 
positive correlation between two underling variables for 
missing mechanisms. This means that children who do 
not respond their score are more likely to not to respond 
their discrete response. 

Table 4 shows values of residuals calculated using 

(2b) and model (II) for the discrete response. 
Residuals for continuous response calculated using 

(2a) do not include any value larger than 3 (in absolute 
value) and with the residual values in Table 4, model 
(II) can be considered as a good fit for the psychological 
disorders data. 
Table 3.  Results using three models for the psychological 
disorders data 

Parameter Model(III) Model(II) Model(I) 

 Estimate S.E. Estimate S.E. Estimate S.E. 

01β  0.288 0.251 0.173 0.335 0.180 0.337

11β  -0.786 0.434 -0.671 0.495 -0.682 0.496

02β  104.783 6.338 105.214 9.300 105.214 9.297

12β  41.870 7.782 45.786 10.341 45.786 10.315

01α  0.141 0.300 - - - - 

11α  0.002 0.387 - - - - 

21α  0.271 0.394 - - - - 

02α  0.141 0.304 - - - - 

12α  0.201 0.393 - - - - 

22α  -0.137 0.398 - - - - 

0γ  3.410 0.151 3.556 0.187 3.549 0.189

1γ  -0.475 0.224 -0.786 0.263 -0.770 0.278

12ρ  -0.474 0.205 -0.512 0.194 - - 

34ρ  0.373 0.173 - - - - 

-loglik 295.218  139.322  141.693  

 
 

Table 4.  Residuals for discrete response using model (II) for 
psychological disorders data 

 Y=0 Y=1 
L=0 -0.871 1.149 
L=1 -1.494 0.670 

 

4. Discussion 

In this paper a latent variable model is presented for 
simultaneously modelling of binary and continuous 
correlated responses. The model is formulated in such a 
way that can handle the possibility of missing 
responses. The latent variable model in system (1) can 
also be used for a mixture of ordinal and continuous 
data (with usual changes for ordinality of the discrete 
response). It can also be used for more than two 
variables with missing responses. In this case the more 
variables with missing values we have the more 
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response indicators should be defined and the more 
parameters coming to the estimation procedure. 

The selection models in systems (1) can be sensitive 
to the assumption of normality for error distributions 
[10]. However, the residuals introduced in this paper 
can be used to practically examine this assumption. 
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Appendix: Likelihood for Mixed Data with 
Missing Mechanism 

For individuals who observe neither y nor z the 
likelihood is 

( )0,0Pr === zy RRL  

( )34423112 ;, ραα XX ′−′−Φ= , (7) 

where 12Φ  is the cumulative bivariate normal 
distribution. 

For individuals who observe only y and the value of 
y is 0 the likelihood is 

( )0,1,0Pr ==== zy RRyL  

    ( ) ( )0,0,0Pr0,0Pr ===−=== zyz RRyRy  

    ( )14421112 ;,, ραβ XX ′−′−Φ=  

        ( )134423111123 ;,, ∑′−′−′−Φ− XXX ααβ , (8) 

where 
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and 123Φ  is cumulative three-variate normal 
distribution. 

For individuals who observe only y and the value of 
y is 1 the likelihood is 

)0,1,1Pr( ==== zy RRyL  

   )0,0Pr()0Pr( ==−== zz RyR  

      )0,0Pr( ==− zy RR  

      )0,0,0Pr( ===+ zy RRy  

   );,()( 1442111242 ραβα XXX ′−′−Φ−′−Φ=  

      +′−′−Φ− );,( 34423112 ραα XX  

      ).;,,( 134423111123 Σ′−′−′−Φ XXX ααβ  (9) 

For individuals who observe only z the likelihood is 

)1,0Pr()( zRRzfL zy ===  

   ])0,0Pr()0)[Pr(( zRRzRzf zyy ==−==  
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For individuals with both z and y observed and the 
value of y equal to 0 the likelihood is 
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For individuals with both z and y observed and the 
value of y equal to 1 the likelihood is 
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