MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

H.A. Azarnoosh*

Department of Statistics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran

Abstract

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let \(\{X_{ij}\} \) be a double sequence of pairwise negatively dependent random variables. If \(P(\{X_{ij}\} \geq t) \leq P(\{X\} \geq t) \) for all non-negative real numbers \(t \) and \(E|X|^p \log^+|X| < \infty \), for \(1 < p < 2 \), then we prove that

\[
\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{(X_{ij} - EX_{ij})}{(mn)^{1/p}} \to 0 \quad \text{a.e. as} \quad m \vee n \to \infty \quad (1).
\]

In addition, it also converges to 0 in \(L^1 \). The results can be generalized to an \(r \)-dimensional array of random variables under condition \(E|X|^p \left(\log^+|X| \right)^{-1} < \infty \), thus, extending Choi and Sung’s result [7] of one dimensional case for negatively dependent random variables.

Keywords: Strong law of large numbers; Negatively dependent

Introduction

The history and literature on laws of large numbers is vast and rich as this concept is crucial in probability and statistical theory. The literature on concepts of negative dependence is much more limited but still very interesting. Lehmann (1966) provides an extensive introductory overview of various concepts of positive and negative dependence in the bivariate case [12]. Negative dependence has been particularly useful in obtaining laws of large numbers [1,3-5,13]. We have extended, a novel argument of Etemadi (1981) for pairwise negatively dependent random variables [2], i.e., if \(\{X_n\} \) is a sequence of pairwise negatively dependent identically distributed random variables with \(E|X| < \infty \), then

AMS: (1996) Subject Classification: 60F15

*E-mail: azarnush@math.um.ac.ir

\[255\]
Also for a double sequence \(\{X_{ij}\} \) of pairwise negatively dependent random variables we have proved that if \(E|X_{11}||\log^+|X_{11}||<\infty \), then
\[
\sum_{i=1}^\infty \sum_{j=1}^\infty \frac{(X_{ij} - EX_{ij})}{mn} \to 0 \quad \text{a.e. as } m \vee n \to \infty.
\] (3)

In 1985 Choi and Sung [7] have shown that if \(\{X_n\} \) are pairwise independent and dominated in distribution by a random variable \(X \) with \(EX < \infty \), then
\[
\sum_{i=1}^\infty \sum_{j=1}^\infty (X_{ij} - EX_{ij}) \to 0 \quad \text{a.e. as } m \vee n \to \infty.
\] (2)

In 1999 Hong and Hwang [11] extended the Choi and Sung’s result of the one-dimensional case to a multi-dimensional array of pairwise independent random variables. They have proved (1) under the strong condition \(E|X|^p|\log^+|X||<\infty \) for \(1 < p < 2 \), then
\[
\sum_{i=1}^\infty \sum_{j=1}^\infty (X_{ij} - EX_{ij}) \to 0 \quad \text{a.e. in addition, if } E|X|^p < \infty, \text{ then it converges to } 0 \text{ in } L^1.
\]

Main Results

Let \(\{X_{ij}\} \) be a double sequence of pairwise negatively dependent random variables and \(Y_{ij} = X_{ij} - Y_{ij} \), where \(I \) is an indicator function. Then \(\{Y_{ij}\} \) is a sequence of ND random variables.

Lemma 2. If \(\{X_{n}; n \geq 1\} \) is a sequence of ND random variables, and \(\{f_n\} \) is a sequence of monotone increasing, (or monotone decreasing) Borel functions, then \(\{f_n(X_{n})\} \) is a sequence of ND random variables.

Corollary 1. Let \(\{X_{n}; n \geq 1\} \) be a sequence of ND random variables then \(\{X_{n}^+; n \geq 1\} \) and \(\{X_{n}^-; n \geq 1\} \) are.

Corollary 2. Let \(\{X_{n}; n \geq 1\} \) be a sequence of ND random variables and \(Y_{ij} = X_{ij} - I_{\{X_{ij} \leq 0\}} + I_{\{X_{ij} > 0\}} \), where \(I \) is a sequence of ND random variables.

Lemma 3. Let \(\{X_{ij}\} \) be a double sequence of pairwise negatively dependent random variables. If \(P(\{|X_{ij}| \geq t\}) \leq P(\{|X| \geq t\}) \) for all non-negative real numbers \(t \), then
\[
\sum_{i=1}^\infty \sum_{j=1}^\infty E\left|\frac{Y_{ij}}{(ij)^{1/p}}\right|^2 \leq cE|X|^p \log^+|X|,
\]
\[
\sum_{i=1}^\infty \sum_{j=1}^\infty E\left|\frac{Z_{ij}}{(ij)^{1/p}}\right| \leq cE|X|^p \log^+|X| \quad \text{for } 1 < p < 2
\]

Proof. By Corollary 1 \(\{X_{ij}^+\} \) and \(\{X_{ij}^-\} \) are sequences of PND random variables so they satisfy the assumption of the lemma and \(X_{ij} = X_{ij}^+ - X_{ij}^- \). Thus without loss of
generality we can assume that $X_{ij} \geq 0$. The estimation of EY_{ij}^2 is given by

$$EY_{ij}^2 \leq \int_0^{(ij)^{1/p}} x^2 dF(x) + \int_{(ij)^{1/p}}^\infty dF(x)$$

$$= \int_0^{(ij)^{1/p}} x^2 dF(x) + (ij)^{2/p} P[X > (ij)^{1/p}]. \quad (6)$$

Where $F(x)$ is the distribution of X. If we use the fact that

$$\int_0^\infty \log t \frac{dt}{t} = -\gamma,$$

we obtain

$$\sum_{i,j} \sum_{k=1}^\infty \sum_{n=1}^\infty \frac{d_k}{k^{2/p}} \int_0^{(ij)^{1/p}} x^2 dF(x)$$

$$\leq c \sum_{i,j} \sum_{k=1}^\infty \sum_{n=1}^\infty \frac{d_k}{(i+1)^{2/p}} \int_0^{(ij)^{1/p}} x^2 dF(x)$$

$$\leq c \sum_{i,j} \sum_{k=1}^\infty \frac{\log i}{(i+1)^{2/p}} \int_0^{(ij)^{1/p}} x^2 dF(x)$$

$$\leq c \sum_{i,j} \int_0^{(ij)^{1/p}} x^2 dF(x)$$

$$\leq c E[X]^p \log^+ |X| < \infty, \quad (7)$$

and

$$\sum_{i=1}^\infty \sum_{j=1}^\infty P[(ij)^{1/p} < X^p] \sum_{k=1}^\infty d_k P[k < X^p]$$

$$= \sum_{k=1}^\infty d_k \sum_{i=1}^\infty \sum_{j=1}^\infty P[i < X^p < i+1]$$

$$= \sum_{i=1}^\infty \sum_{k=1}^\infty d_k P[i < X^p < i+1]$$

where we use the fact that $\sum_{k=1}^n d_k = O(n \log n)$. It follows that

$$\sum_{i,j} \sum_{k=1}^\infty \sum_{n=1}^\infty \frac{d_k}{(ij)^{2/p}} \int_0^{(ij)^{1/p}} x^2 dF(x)$$

$$\leq c E[X]^p \log^+ |X| < \infty, \quad (9)$$

which proves (a), since $|X_{ij}| = X_{ij}^+ + X_{ij}^-$

Now, the estimation of EZ_{ij} is given by

$$EZ_{ij} = E(X_{ij} - Y_{ij})$$

$$\leq \sum_{i,j} \int_0^{(ij)^{1/p}} x dF(x) - \int_{(ij)^{1/p}}^\infty dF(x)$$

$$\leq \int_0^{(ij)^{1/p}} x dF(x)$$

By the fact that $\sum_{i=1}^n d_k / k^{1/p} = O(n^{1-(1/p)} \log n)$, we can obtain (b) as follows

$$\sum_{i=1}^\infty \sum_{j=1}^\infty \frac{d_k}{(ij)^{1/p}} \int_0^{(ij)^{1/p}} x dF(x)$$

$$= \sum_{i=1}^\infty \sum_{j=1}^\infty \frac{d_k}{k^{1/p}} \sum_{n=1}^\infty \int_{(ij)^{1/p}}^\infty x dF(x)$$

$$= \sum_{i=1}^\infty \sum_{j=1}^\infty \frac{d_k}{k^{1/p}} \int_{(ij)^{1/p}}^\infty x dF(x)$$

$$= \sum_{i=1}^\infty \sum_{j=1}^\infty \frac{d_k}{k^{1/p}} \int_{(ij)^{1/p}}^\infty x dF(x)$$

$$= \sum_{i=1}^\infty \sum_{j=1}^\infty \frac{d_k}{k^{1/p}} \int_{(ij)^{1/p}}^\infty x dF(x)$$

257
Theorem 1. Let \(\{X_{ij}\} \) be a double sequence of pairwise negatively dependent random variables. If
\[
P\{X_{ij} \geq t\} \leq P\{|X| \geq t\}
\]
for all non-negative real numbers \(t \) and
\[
E|X|^p \log^+ |X| < \infty, \quad \text{for } 1 < p < 2,
\]
and
\[
S_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij},
\]
then
\[
\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{(X_{ij} - E[X_{ij}])}{(mn)^{1/p}} \rightarrow 0 \quad \text{a.e. as } m \wedge n \rightarrow \infty.
\] (12)

Proof. We shall follow the proof of Lemma 3, then without loss of generality we assume that \(X_{ij} \geq 0 \). Let
\[
Y_{ij} = X_{ij} I_{\{X_{ij} > (ij)^{1/p}\}} + (ij)^{1/p} I_{\{X_{ij} \leq (ij)^{1/p}\}}
\]
and \(S_{mn}^* = \sum_{i=1}^{m} \sum_{j=1}^{n} Y_{ij} \).

If we let \(d_k \) to be the number of divisors of \(k \) i.e. the cardinality of \(\{(i, j) : ij = k\} \) and \(F(x) \) be the distribution of \(X \), then we obtain
\[
\sum_{i=1}^{m} \sum_{j=1}^{n} P[X_{ij} \neq X_{ij}] = \sum_{i=1}^{m} \sum_{j=1}^{n} P[X_{ij} > (ij)^{1/p}]
\]
\[
\leq \sum_{i=1}^{m} \sum_{j=1}^{n} P[X > (ij)^{1/p}]
\]
\[
\leq \sum_{k=1}^{d_k} \sum_{i, j : ij = k} (ij)^{1/p} \leq \sum_{k=1}^{d_k} \sum_{i, j : ij = k} (ij)^{1/p} = \sum_{k=1}^{d_k} \sum_{i, j : ij = k} (ij)^{1/p} dF(x)
\]

Furthermore,
\[
\sum_{i=1}^{m} \sum_{j=1}^{n} (X_{ij} - Y_{ij}) \rightarrow 0 \quad \text{a.e.}
\] (14)

(Which is a two parameter analog of Theorem 5.2.1 of Chung [8]).

Now, for every subsequences \(\{k_m\} \) and \(\{l_n\} \) of positive integer such that
\[
\liminf_{n \rightarrow \infty} \frac{k_m}{k_{m-1}} > 1 \quad \text{and} \quad \liminf_{m \rightarrow \infty} \frac{l_n}{l_m} > 1
\]
and for any \(\varepsilon > 0 \), we use Chebyshev’s inequality and Lemmas 1 and 3 to obtain
\[
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} P\left|\sum_{i=1}^{k_m} \sum_{j=1}^{l_n} S_{ij}^* - ES_{ij}^*\right| > \varepsilon
\]
\[
\leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} VarS_{ij}^* \leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{(k_m l_n)^{2/p}} \sum_{i=1}^{k_m} \sum_{j=1}^{l_n} VarY_{ij}
\]

\[
\leq c \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{(k_m l_n)^{2/p}} \right) EY_{ij}^2
\]

\[
\leq c \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{EY_{ij}^2}{(ij)^{2/p}}
\]
\[\leq cE|X|^p \log^+ |X| < \infty. \quad (15) \]

Where we use \(\sum_{k=1}^{\infty} \frac{d_k}{k^{2/p}} = O\left(\frac{\log i}{(i+1)^{2/p}} \right) \), for more detail about \(\sum_{k=n}^{\infty} \frac{1}{k^n} \) see Chandra and Goswami (1992) page 217 [6]. Therefore by the Borel Cantelli Lemma we have

\[P\left(\left| S^*_{kl} - ES^*_{kl} \right| / (k_m)^{1/p} > \varepsilon \text{ i.o.} \right) = 0 \]

and this is equivalent to

\[\frac{S^*_{kl} - ES^*_{kl}}{(k_m)^{1/p}} \rightarrow 0 \text{ a.e.} \]

(See Chung Theorem 4.2.2, p. 73 [8]). Now for any positive number \(k \) and \(l \) such that \(k_m \leq k \leq k_{m+1} \) and \(l_n \leq l \leq l_{n+1} \), we have

\[\frac{S^*_{kl} - ES^*_{kl}}{(k_m)^{1/p}} \leq \frac{S^*_{k_m l_{n+1}} - ES^*_{k_m l_{n+1}}}{(k_m)^{1/p}} \left(\frac{k_{m+1} l_{n+1}}{k_m l_n} \right)^{1/p} \]

\[+ \frac{ES^*_{k_m l_{n+1}} - ES^*_{k_m l_{n+1}}}{(k_m)^{1/p}} - \frac{S^*_{kl} - ES^*_{kl}}{(k_m)^{1/p}}. \quad (16) \]

Similarly we can obtain a lower bound for left-hand side of (16) as follows

\[\frac{S^*_{k_m l_{n+1}} - ES^*_{k_m l_{n+1}}}{(k_m l_{n+1})^{1/p}} - \frac{S^*_{k_{m+1} l_{n+1}} - ES^*_{k_{m+1} l_{n+1}}}{(k_{m+1} l_{n+1})^{1/p}} \leq \frac{S^*_{kl} - ES^*_{kl}}{(k_l)^{1/p}}. \quad (17) \]

Then by using (16) and (17), it follows that

\[\left(1 - \frac{1}{ab} \right)^{1/p} EX \leq \liminf_{(k,l) \to \infty} \frac{S^*_{kl} - ES^*_{kl}}{(k_l)^{1/p}} \leq \limsup_{(k,l) \to \infty} \frac{S^*_{kl} - ES^*_{kl}}{(k_l)^{1/p}} \leq (ab - 1)^{1/p} EX \quad (18) \]

then for any \(a = \liminf_{m \to \infty} \frac{k_m}{k_{m+1}} > 1 \) and \(b = \limsup_{m \to \infty} \frac{l_m}{l_{m+1}} > 1 \), it follows that

\[\frac{S^*_{mn} - ES^*_{mn}}{(mn)^{1/p}} \rightarrow 0 \text{ a.e.} \quad (19) \]

Combining (14) and (19), we get

\[\frac{S^*_{mn} - ES^*_{mn}}{(mn)^{1/p}} \rightarrow 0 \text{ a.e.} \quad (20) \]

Since

\[\frac{S^*_{mn} - ES^*_{mn}}{(mn)^{1/p}} = \frac{S^*_{mn} - ES^*_{mn}}{(mn)^{1/p}} - \sum_{i=1}^{m} \sum_{j=1}^{n} EZ_{ij} \quad (21) \]

it remains to prove that the second term of the right-hand side converges to 0 a.e.

By Lemma 3 (b), we obtain

\[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{i=1}^{k_m} \sum_{j=1}^{l_n} EZ_{ij} \frac{1}{(k_m l_n)^{1/p}} \leq c \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} EZ_{ij} / (ij)^{1/p} \leq cE|X|^p \log^+ |X| < \infty, \quad (22) \]

from which, it follows that

\[\lim_{(m,n) \to \infty} \sum_{i=1}^{k_m} \sum_{j=1}^{l_n} \frac{EZ_{ij}}{(k_m l_n)^{1/p}} = 0. \quad (23) \]

But for every \(k \) and \(l \) such that \(k_m \leq k \leq k_{m+1} \) and \(l_n \leq l \leq l_{n+1} \) we have

\[R = \left| \sum_{i=1}^{k} \sum_{j=1}^{l} EZ_{ij} / (kl)^{1/p} - \sum_{i=1}^{k_m} \sum_{j=1}^{l_n} EZ_{ij} / (k_m l_n)^{1/p} \right| \leq c \sum_{i=1}^{k_m} \sum_{j=1}^{l_n} \frac{EZ_{ij}}{(k_m l_n)^{1/p}}, \quad (24) \]

R converges to 0 which implies that, by (23)
This completes the proof.

Corollary 3. Let \(\{X_{ij}\} \) be a double sequence of PND identically distributed random variables with
\[E|X_{11}|^p \log^+ |X_{11}| < \infty , \text{ and } 1 \leq p < 2 , \] then
\[\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{EZ_{ij}}{(mn)^{1/p}} \rightarrow 0 . \] (25)

For \(p=1 \) see Theorem 2 of [2].

Remark. The generalization to \(r \)-dimensional arrays of random variables can be obtained easily under the condition
\[\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{EZ_{ij}}{(mn)^{1/p}} \rightarrow 0 \text{ a.e. as } m \vee n \rightarrow \infty . \] (26)

Theorem 2. Let \(\{X_{ij}\} \) be a double sequence of pairwise negatively dependent random variables. If \(P\{X_{ij} \geq t\} \leq P\{X \geq t\} \) for all non-negative real numbers \(t \) and \(EX^p \log^+ |X| < \infty , \) for \(1 < p < 2 , \) then
\[\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{(X_{ij} - EX_{ij})}{(mn)^{1/p}} \rightarrow 0 \text{ in } L^1 \text{ as } m \vee n \rightarrow \infty . \] (27)

Proof. Since \(\{X_{ij}\} \) are PND by Lemma 3 we have
\[E\left[\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{(X_{ij} - EX_{ij})}{(mn)^{2/p}} \right] \leq \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{EY_{ij}^2}{(mn)^{2/p}} . \] (28)

Since
\[E\left[\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{(X_{ij} - EX_{ij})}{(mn)^{1/p}} \right] \]
\[\leq E\left[\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{(X_{ij} - EX_{ij})}{(mn)^{1/p}} \right] \]
\[\leq \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{EY_{ij}^2}{(mn)^{2/p}} . \] (29)

it suffices to show that \(\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{EY_{ij}^2}{(mn)^{2/p}} \) converges to 0 as \(m \vee n \rightarrow 0 \) By Lemma 3 (a), we obtain
\[\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{EY_{ij}^2}{(mn)^{2/p}} \leq \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{cE|X|^p \log^+ |X|}{(mn)^{2/p}} . \] (30)

from which, it follows that
\[\lim_{(m,n) \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{EY_{ij}^2}{(mn)^{2/p}} = 0 . \] (31)

The rest of proof is similar to that used in the proof of (25) in Theorem 1.

Corollary 4. Let \(\{X_{ij}\} \) be a double sequence of PND identically distributed random variables with
\[E|X_{11}|^p \log^+ |X_{11}| < \infty , \text{ and } 1 \leq p < 2 , \] then
\[\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{(X_{ij} - EX_{ij})}{(mn)^{1/p}} \rightarrow 0 \text{ in } L^1 \text{ as } m \vee n \rightarrow \infty . \] (32)

Remark. The generalization to \(r \)-dimensional arrays of random variables can be obtained easily under the condition
\[E|X|^p \log^+ |X|^{-1} < \infty . \]

References

theorems for dependent random variables. Proc., First
world congress of nonlinear analysts, Lakshmikantham
V. (Ed.), de GruyterPubl, Berlin-New York, 1639-1650,
(1996a).

of large numbers for negatively dependent random
variables in Banach spaces, Madan Puri festschrift
(Edited by E.Bruner and M. Denker) VSP international

5. Chandera T.K. and Ghosal S. Extensions of the strong
law of large numbers of Marcinkicwicz and Zegmund for

6. Chandera T.K. and Goswami A. Cesaro uniform
integrability and the strong law of large numbers,

7. Choi B.D. and Sung S.H. On convergence of
\((S_n - ES_n) / n^{1/r}, 1 < r < 2\), for pairwise independent
(1985).

9. Ebrahimi N. and Ghosh M. Multivariate negative
dependence. Comm. Statit. Theory Methods, A10, 307-

10. Etemadi N. An elementary proof of the strong law of

11. Hong D.H. and Hwang S.Y. Marcinkiewicz-type strong
law of large numbers for double arrays of pairwise
independent random variables. Internat. J. Math. and

13. Matula P. A note on the almost sure convergence of

14. Smythe R.T. Strong laws of large numbers for r-
dimensional arrays of random variables. Ann. Probability,