A SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS

R.A. Kamyabi-Gol*

Department of Mathematics, Faculity of Mathematical Science, University of Mashhad, Mashhad, Islamic Republic of Iran

Abstract

In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.

Keywords: Hypergroups; Haar measure; Markov-Kakutani

Introduction

A fundamental open question about hypergroups is the existence of a Haar measure for any hypergroup (for a definition the reader can consult with Jewett [6]). If a hypergroup \$K\$ is compact or discrete, then \$K\$ possesses a Haar measure. All known examples have a Haar measure [6, s5]. Spector in [11] claims that any commutative hypergroup possesses a Haar measure but as Ross in [9] mentioned there are several technical problems in his proof. Ross in [9] has given a lengthy proof for the existence of the Haar measure on commutative hypergroups. Recently Izzo in [5] has given a short proof of the existence of Haar measure on a commutative locally compact group by using the Markov-Kakutani fixed-point theorem [1, pp. 151-152]. Based on his idea, we give a short proof of the existence of the Haar measure on commutative hypergroups. For definitions and notations we follow Jewett [6].

For the reader's convenience, we include the Markov-Kakutani fixed point theorem. Let \$\cal S\$ be a compact convex subset of a Hausdorff topological vector space and \$\cal F\$ be a commutative family of continuous affine mappings of \$\cal S\$ into \$\cal S\$

Note 1.1. For a vector space X, let $X^{\}$ be the space of all linear functionals on X with the weak topology induced by X. Then, if C is a closed subset of $X^{\} = x^{\} = x^{\}$

Lemma 1.2. Let K be a hypergroup and U a symmetric neighborhood of the identity $e \in K$. Then there exists a subset M of K such that for any finite subset $A_{a_1, a_2,cdots a_n}$ of K, the set $a_1*a_2*cdots*a_n*U*U$ contains at least one element of M and the set $a_1*a_2*cdots*a_n*U$ contains at not one element of M.

Proof. Let $\{ A = \{T \in K:, Mbox \{for any \} p \in q \in K:, Mbox \{for any \} p \in q \in T, Mbox \{there is a finite subset \} \{a_1,a_2, cdots,a_n\} Mbox {of } K Mbox {such that } p notin q^A* br{A}, Mbox {where } br{A}=U* br{a_n}* cdots * br{a_1} \}.$

that is abelian. Then there exists $p\ \ Cal S$ such that $\Delta(p) = p$ for all $\Delta(p) \in P$ for all $\rho \in P$.

^{*} *E-mail: kamyabi@math.umac.ir*

Then $\cal A$ is non-empty (all single subsets of K are in $\cal A$) and any chain $\left\{T_al\right\}_{\alin I}$ in $\cal A$ has an upper bound $\cup_{\alin I} T_al$. So by Zorn's Lemma $\cal A$ has a maximal element M. By using [6, 4.1A, 4.1B], we have $M\cap a*U*U\neq \emptyset$. Now for $\{a_1, a_2, cdots, a_n\}$ an arbitrary finite subset of K, we have $M\cap a_1*a_2*\cdots*a_n*U*U=M\cap(\cup_{x\ina_1*a_2}\cdots*a_n}, x*U*U)=\cup_{x\ina_1*a_2}\cdots*a_n}, (M\cap x*U*U)\neq\emptyset$.

To show that \$M\$ intersects \$a_1, a_2,\cdots, a_n*U*U\$ at most at one point, let there are \$s_1\$ and \$s_2\$ in \$M\$ that \$s_1\neq s_2\$ and \$s_i\in a_1*a_2*\cdots*a_n*U\$ for \$i=1,2.\$ Then by using [6, 4.1A, 4.1B] we have \$s_1\in s_2*A*\br{A}\$, where \$A\$ is \$U*\br{a_n}*\cdots*\br{a_2}\$ and this contradicts \$M\in {\cal A}\$. So the proof of the Lemma is complete.

Theorem 1.3. Every commutative hypergroup \$K\$ has a left Haar measure.

Proof. Let $C_{00}(K)^{{\#}}$ be the space of all linear functionals on $C_{00}(K)$. We consider on $C_{00}(K)^{{\#}}$ the weak topology generated by $C_{00}(K)^{{\#}}$ the weak topology generated by $C_{00}(K)^{{\#}}$. It is clear that if there exists a ${Lambda} C_{00}(K)^{{\#}}$ such that f(Lambda) = 0 for all $f(C_{00}(K)^{{\#}})$ such that f(Lambda) = 0 for all $f(C_{00}(K),$ then Lambda = 0. So $C_{00}(K)^{{\#}}$ with this topology is a locally convex space [4, p. 50]. Let U be a fixed symmetric neighborhood of the identity e(K) with compact closure. Let C S be the set of all positive linear functionals Lambda on $C_{00}(K)$ that satisfy the following two conditions:

(ii) $\Lambda = 1$ whenever f = 1 in $C_{00}^{+}(K)$ and f = 1 on $a_1*a_2*\cdots*a_r*U*U$ for some finite subset $A_a_1, a_2,\cdots,a_r\}$ in K.

Then one can easily check that $\cal S$ is closed and convex. Moreover, any $f\n C_{00}^+(K)$ can be written as a finite sum of non-negative continuous functions, each of which has support in a^*U for some $a\in K$. To see this, let spt f=C, (compact set). Then $C\subseteq \cup_{1}\eq n$, a_i*U for some $a_i\in K$, $1\eq a$, a_i+U for some $a_i\in K$, $1\eq a$, a_i+U for some $a_i\in K$, $1\eq a$, a_i+U for some $a_i\in K$, $1\eq a$, a_i+U for some $a_i\in K$, $1\eq a_i\eq a$. By the partition of unity on compact sets, there are $h_i\in C_{00}^+(K)$ such that $0<\fac{fac}{f_i}{f}\eq 1$ on C. That is for any $x\in C$, $0<\h_i(x)\eq f(x)$ and $h_1(x)+h_2(x)+\cdots +h_n(x)=f(x)$. Now it follows from (i) that the set A

\Lambda(f):\, \Lambda\in \cal S \}\$ is bounded. So by Note 1.1., \$\cal S\$ is compact.

For each $x\ K$ and ΛS , let $T x:, C \{00\}(K)^{\pm} \to C \{00\}(K)^{\pm}$ is defined by $T_x = \frac{f}{f}$ for \$f∖in $C_{00}(K)$ where $\lambda_x f(y) = f(xy)$. Then it is easy to see that T_x is affine and $T_x(cal S)$ S\$. Indeed, let $\Delta \in S$. If $f \in S$. $C_{00}^{+(K)}$ and $f\leq 1$ with $spt \leq 1$ a_1*a_2*\cdots*a_n*U\$ for some \$a_i\in K,\quad $1 \le i \le n$, then $\lambda, xf \le C \{00\}^{+}(K)$ [6, 4.2E] and \$\, xf ∖leq 1\$ with \$spt(xf)\subseteq $br{x}*a_1*a_2*\cdots*a_n*U$. So by (i) Δa $(xf) \leq 1$. If $f \in C_{00}^{+}(K)$ and f = 1 on $a_1*a_2*\subset a_n*U*U$ for some $a_i\in K$, $l \in G$ i\leq n\$, then $\lambda_xf\in C_{00}^+(K)$ and $\lambda_xf=1$ on $\int x^{a_1*a_2*} dots^{a_n*U*U}. So by (ii),$ Lambda($_xf$)\geq 1\$.

Also T_x is continuous, since if $\left|\left|\frac{a}{a}\right|, Lambda_a|=Lambda$ in <math>\left|\left|a\right|, Lambda_a|=Lambda$ in <math>\left|\left|a\right|, Lambda_a|a|(f)-T_xLambda_a|(f)-T_xLambda_b|= 0\$. Moreover for $x,y\in X_x, T_x(T_yLambda) = T_{x*y}, Lambda = T_{y*x}, Lambda = T_y (T_xLambda)$ for any <math>Lambda\in C_{00}(K)^{+}\$. This shows that the family $\left|\left|a\right| = 1 - T_x, Lambda_b|$ and $Lambda_b|$ by $Lambda_b|$ by La

Now since all elements of $\cal S$ are non-zero positive linear functionals on $C_{00}(K)$, by [6, s5.2] the proof is complete.

Remark 1.4. Can the above proof be modified to show that every amenable hypergroup has a left Haar measure, using Day's generalization of Markov-Kakutani fixed-point theorem [2, Theorem 1] (see also [7, Theorem 4.2]). (For an extension to hypergroups see

[10, Theorem 3.3.1].)

It is attempted such modification, but there is a problem in the continuity of action of hypergroup K on cal S (metioned earlier) defined by $(x, Lambda) \log T_x Lambda (mbox{where} T_x Lambda (f)=Lambda(_xf) mbox{for} f (C_{00}(K)).$

References

- 1. Conway J.B. A Course in Functional Analysis. Springer-Verlag, New-York (1985).
- 2. Day M.M. Fixed point theorems for compact convex sets, Ill. *J. Math.*, **5**: 585-590 (1961).
- 3. Dunford N. and Schwartz J. *Linear Operators*. Part I, Interscience Publ., New-York (1958).
- 4. Fell J.M.G. and Doran R.S. Representations of *algebras, Locally Compact Groups, and Banach *algebraic Bundeles. Vol. 1 (1988).

- 5. Izzo A.J. A functional analysis proof of the existence of Haar measure on locally compact abelian groups. *Proc. Amer. Math. Soc.*, **115**(2): 581-583 (1992).
- 6. Jewett R.I. Spaces with an abstract convolution of measures. *Advances in Math.*, **18**: 1-101 (1975).
- 7. Rickart C.E. Amenable groups and groups with the fixed point property. *Trans. Amer. Math. Soc.*, **127**: 221-232 (1967).
- 8. Ross K. Every commutative hypergroup possesses an invariant measure, (Preprint).
- 9. Skantharajah M. Amenable hypergroups. Doctoral Thesis, University of Alberta (1989).
- Spector R. Apercu de la theorie des hypergroupes, Analyse Harmonique sur les groupes de Lie. Lecture Notes in Math., 497, Springer-Verlag, Berlin-Heidelberg-New York (1975).
- Spector R. Apercu de la Theorie des Hypergroupes, Analyse Harmonique sur les Groupes de Lie. Lecture Notes in Math., 497, Springer-Verlag, Berlin-Heidelberg-New York (1975).