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Abstract 
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common one-dimensional probability density function. Some asymptotic 
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1. Introduction 

Let  be a probability space. The random 
variables we deal with are all defined on . Let 

 denote the 

( , , )PΩ F

( , , )PΩ F
m
kN σ -algebra generated by the events 

{ ,..., }.k k m mX A X A∈ ∈  

A sequence of random variables { ,  is said 
to be 

1}nX n ≥
ρ -mixing if 

2 1 2( ), ( )
sup sup | ( , ) |

( ) 0, .

m
m sm X L Y L

corr X Y

s as sρ

∞
+∈ ∈

= → →

N N

∞
 

The problem of interest is the estimation of 
nonparametric regression function 

( ) , 1,2,..., ,m m mY g x m nε= + =  (1.1) 

where [0,1]m
m nx = ∈  and the variables mε  are ρ -

dependent random variables with a common one-
dimensional normal density function with zero mean 
and variance 2σ  and g  belongs to a large function 
class H  (definition will be given in the next section). 

Hall et al. [8] considered model (1.1) when 1,..., nε ε  
are independent, identically distributed (i.i.d.) normal 
random variables with mean 0 and variance 2σ . They 
introduced a local block thresholding estimator which 
thresholds empirical wavelet coefficients in groups 
rather than individually and showed that the estimators 
achieve optimal minimax convergence rates over a large 
class of functions H  that involve many irregularities of 
a wide variety of types, including chirp and Doppler 
functions and jump discontinuities. Therefore, wavelet 
estimators provide extensive adaptivity to many 
irregularities of large function classes. Cai [1] 
considered the asymptotic and numerical properties of a 
class of block thresholding estimators for model (1.1) 
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with i.i.d. Gaussian errors. He investigated the block 
size and the thresholding constant such that the 
corresponding block thresholding estimators obtain 
optimal convergence rates for both global and local 
estimation over a large classes of functions as in [8]. 
Doosti and Niroumand [7] considered a stochastic 
regression model with pairwise negative quadrant 
dependent noise. 

Wavelet methods in nonparametric curve estimation 
have become a well-known technique. For a systematic 
discussion of wavelets and their applications in 
statistics, see the recent monograph by Hardle et al. 
[11]. The major advantage of wavelet method is ability 
to adapt to the degree of smoothness of the underlying 
unknown curve. These wavelet estimators typically 
achieve the optimal convergence rates over exceptio-
nally large function spaces. For reference, see [4-6]. 
Hall and Patil [9,10] also have demonstrated explicitly 
the extraordinary local adaptability of wavelet 
estimators in handling discontinuities. They showed that 
discontinuities of the unknown curve have a negligible 
effect on performance of nonlinear wavelet curve 
estimators. 

This paper first establishes some necessary basic 
mathematical background and terminology relating to 
wavelets in Section 2. The main results are described in 
Section 3. 

2. Preliminaries 

2.1. Wavelet Estimators 

For any function 2 ( )f ∈L R , we can write a formal 
expansion (see [3]): 

0 0

0

, , , , ,i k i k j k j k
k Z j i k Z

f α φ β ψ
∈ ≥ ∈

= +∑ ∑∑  

where the functions 

0 0

0

/ 2
, ( ) 2 (2 )i i

i k x x kφ φ= −  

and 
/ 2

, ( ) 2 (2 ),j j
j k x x kψ ψ= −  

constitute an (inhomogeneous) orthonormal basis of 
 Here 2 ( ).L R ( )xφ  and ( )xψ  are the scale function and 

the orthogonal wavelet, respectively. ( )xφ  and ( )xψ  
are bounded and compactly supported and 1φ =∫ . 
Wavelet coefficients are given by the integrals 

0 0, , ,( ) ( ) , ( ) .i k i k j k j k

The orthogonality properties of φ  and ψ  imply: 

0 1 0 2 1 2

1 1 2 2 1 2 1 2

0 1 2

, ,

, ,

, , 0

,

,

0, ,

i j i j j j

i j i j i i j j

i j i j i i

φ φ δ

ψ ψ δ δ

φ ψ

=

=

= ∀ ≤

∫

∫

∫

 (2.1) 

where ijδ  denotes the Kronecker delta, i.e., 1ijδ = , if 
i j= ; and 0ijδ = , otherwise. 

In our regression model, the mean function g  is 
supported on a fixed unit interval [0,1]. Therefore, we 
confine our attention to the wavelet basis of [0,1] 
intervals given by [2], that is, the collection of 

0 ,{ i jφ , 
0 10,1,..., 2ij −= ; ,i jψ , , , 0 0i i≥ ≥ 0,1,...j = 2 1}j −  

forms an orthonormal basis of  Since, in this 
paper, we require vanishing moments up to N-1 for both 

2[0,1].L

φ  and ψ  ( , ; ( ) 0kx x dxφ =∫ 1,2,...,k N −= 1
( ) 0kx x dxψ =∫ , 1, 2,...,k N −1= ), the so-called 

Coiflets will be used here. Hence, the corresponding 
wavelet expansion of ( )g x , is 

0 0

0

, , , ,( ) ( ),i j i j i j i j
j Z i i j Z

g x xα φ β ψ
∈ ≥ ∈

= +∑ ∑∑  (2.2) 

where 

0 0, , ,( ) ( ) , ( ) .i j i j i j i j,g x x dx g x dxα φ β ψ= =∫ ∫  

An empirical wavelet expansion based on term-by-
term thresholding is given by 

0 0

0

, ,

2 1
, ,

( )

( ) ( log ),

i j i j
j Z

i j i j ij
i i j Z

g x

x I cn n

α φ

β ψ β

∈

−

≥ ∈

=

+ >

∑

∑∑
 (2.3) 

where ,i jα 1
, ,( ) ,m m i j m i jn Y xφ β−= ∑ 1

,m m i jn Y ψ−= ∑  
( )mx , c is an appropriate threshold constant, and 

 is a truncating point. Note that here; a 
thresholding decision is made about each term in 

1i i> 0

ijψ . 

,f x x dx f x dα φ β ψ= =∫ ∫

In block thresholding, the integers  are divided 
among consecutive, nonoverlapping blocks of length , 
say 

j

il
{ : ( 1) 1 }ik i ij k l v j kl v= − + + ≤ ≤ +B , k−∞ <  

< ∞ , where v  is an arbitrary integer. (It simplifies 
notation a little if we take  which we shall do.) In 
this approach, all terms involving the functions 

0v =

ijψ  for x  
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ikj ∈B  are included in or excluded from the empirical 
wavelet transform. This leads to the estimator, 

0 0

1

0

, ,

1
1

, ,
( )

( )

ˆ( ( )) (

i j i j
j Z

i

i j i j ij
i i k Z ik

g x

x I B cn

α φ

β ψ

∈

−
−

= ∈

=

+ >

∑

∑∑ ∑

%

),
 (2.4) 

where  denotes summation over , and  

is an estimator of the "average" value of 
( )ik∑ ikj ∈B ˆ

ikB
2
ijβ for ikj ∈B . 

Let  and  be the spaces spanned by { ,iV iW }ij j Zφ ∈  
and { , }ij j Zψ ∈ , respectively, and let  and 

 be the projection operators on these spaces. If 

 and 

Pr (.)
iVoj

Pr (.)
iWoj

1i i<
1i

f V∈  then the coefficients of  

and  may be computed from the values of 

Pr ( )
iVoj f

Pr ( )
iWoj f

1 , ,i jf j Zφ ∈∫ , using "subband filtering schemes" 

discussed by [3], chapter 5. Define 

1 1

1/ 2
,

1

ˆ .
n

i m
m

G n Y φ−

=

= ∑ i m  

Let the coefficients ,ˆi jα  and ,
ˆ

i jβ  be given by 

1 , ,
ˆ ˆPr ( )

iW i i j i j
j Z

oj G β ψ
∈

= ∑  

and 

1 00 , ,
ˆ ˆPr ( ) ,

iV i i j i j
j Z

oj G α φ
∈

= ∑ 0

2
,

 

and put 1
( ),

ˆˆ
iki k i i jB l β−= ∑ . In this notation our wavelet 

estimator of g  is 

0 0

1

0

, ,

1
1

, ,
( )

ˆ ˆ

ˆ ˆ( ( )) (

i j i j
j Z

i

i j i j ij
i i k Z ik

g

x I B cn

α φ

β ψ

∈

−
−

= ∈

=

+

∑

∑∑ ∑ ).>
 (2.5) 

Choice of  and  will be discussed in next 
section. 

0 1, , ii i l c

2.2. The Class of Functions, H  

Given 1 20 s s N< < <  and 1 2 3, , , , 0C C C vγ ≥ ,  
we shall define a class of functions =H  

1 2 1 2 3( , , , , , , , )s s C C C N vγH . 
 
Definition 2.1.  For given constants 1 20 s s N< < < , 
let 1 2 1 2 3( , , , , , , , )s s C C C N vγ=H H  denote the class of 

functions g  such that for any  there exists a set of 
integers  for which the following is true: 

0i ≥

iS

3( ) 2i
icard S C γ≤  and 

1.  For each ij S∈  there exist constants 

0 1( / 2 ), ,...,i
Na g j a a 1−=  such that 

1

1

1
0

| ( ) ( 2 ) | 2
N

isi l
l

l

g x a x j C
−

−−

=

− − ≤∑  for all 

 [ / 2 , ( ) / 2 ];i ix j j v∈ +

2.  For each ij S∈/  there exist constants 

0 1( / 2 ), ,...,i
Na g j a a 1−=  such that 

2

1

2
0

| ( ) ( 2 ) | 2
N

isi l
l

l

g x a x j C
−

−−

=

− − ≤∑  for all 

 [ / 2 , ( ) / 2 ].i ix j j v∈ +

The function class 1 2 1 2 3( , , , , , , , )s s C C C N vγH  
contains the Besov class  as a subset for all 2

2( )sB C∞∞

1 2 ,s s 0γ< >  and with  depending on the choice 
of the other constants. Furthermore, as pointed out in 
[8], a function 

1 0C >

g ∈H  can be regarded as the 
superposition of a smooth function 2g  from the Besov 
space 2sB∞∞  with a function 1g  which may have 
irregularities of different types, such as jump 
discontinuities and high-frequency oscillations. 
However, the irregularities of 1g  are controlled by the 
constants  and 3C γ so that they do not overwhelm the 
fundamental structure of g . We refer to [8] and [1] for 
more discussions about the function classes . H

Since our wavelets' support is contained in the 
interval [0,1], we confine attention to the function space 
H  with 1v = . 

The following lemma which characterizes some 
properties of the wavelet coefficients of g ∈H , is due to 
[8], Proposition 3.1. 
 
Lemma 2.1.  For every function 1 2 1( , , , ,g s s Cγ∈H  

 and our selected Coiflets, the wavelet 
coefficients of 

2 3, , , )C C N v
g , denoted with ,i jα  and ,i jβ  have 

following properties: 
1( 1/ 2)

, 1 1| | | | 2 i s
i j iC ifjβ ψ − +≤ ∈ ,S

,S

,

 

2( 1/ 2)
, 1 2| | | | 2 i s

i j iC ifjβ ψ − +≤ ∈/  

1( 1/ 2)/ 2
, 1 1| 2 ( / 2 ) | | | 2 i si i

i j ig j C ifjα φ − +−− ≤ S∈

i si i
i j i

 

2( 1/ 2)/ 2
, 1 2| 2 ( / 2 ) | | | 2 .g j C ifj Sα φ − +−− ≤ ∈/  

155 



Vol. 17  No. 2  Spring 2006 Doosti and Niroumand J. Sci. I. R. Iran 

3. Main Results 

Our main theorem provides an upper bound to 
convergence rates uniformly over functions in H . Since 
the bound is of the same size as the minimax lower 
bound, then it is optimal. 

Let φ  be a Coiflet, and ψ  the associated wavelet, 
with Daubechies number N and support contained in the 
interval . Define the indices  and  in terms of 

N by  and . Assume 
that the errors 

[0,1] 0i 1i
0 01 1/(2 1)2 2i iNn− +≤ ≤ 1 12i n− ≤ ≤ 12i

mε  in the model at (1.1) form the ρ -
mixing sequence of random variables which 

( )
k

kρ < ∞∑  

and identically distributed as normal 2(0, )N σ . Put 
 for each , and assume that il = 2(log )l n= i 248c σ≥ , 

1 20 s s N≤ ≤ <  and 1

2

2 1
2 10 s

sγ +
+≤ < ; and that for all δ > 0, 

2 11/(2 1) /(2 1)
3 ( )s sC O n γ δ+ − + += .  

(Recall that c  is the threshold constant in the 
formula for ĝ .) We call these conditions (C). Hall et al. 
[8] considered model (1.1) and provided the following 
theorem when 1,..., nε ε  were independent, identically 
distributed (i.i.d.) normal random variables with mean 0 
and variance 2σ . Here we extend their results when 
variables mε  form a ρ -dependent processes. 

 
Theorem 3.1.  If conditions (C) hold, and if the 
estimator ĝ  is as defined at (2.5), then for each 

 there exist a constant 1 2,C C > 0 1 2( , , ,K K s s γ=  
 such that 1 2, , , , ) 0C C V N v >

2 2
2 12

1 2 1 2

2
( , , , , , , , ) ˆsup ( ) ( (1)).

s
s

g s s C C V N v g g n K oγ

−
+

∈ − ≤ +∫EH  

 
Proof.  The proof of this Theorem is similar to that of 
Theorem 4.1 of [8]. The difference is that we consider 
the errors { mε ,  to be a 1}m ≥ ρ -mixing process, 
instead of i.i.d. random variables in their paper. Hence, 
several technical difficulties have to be overcome. 

We will break the proof of Theorem 3.1 into several 
parts. 

 
Part (a).  Properties of the projection operator. As in [8] 
page 42, there exists small number , such that 

1i mr

1 1

1

1/ 2

1/ 2

( ) ( )

( ) ( )

: ( ) .

i m i m

i m

g x x dx

m yn g y dy
n

mn g r
n

α φ

φ

=

+
=

= −

∫

∫  (3.1) 

Thus, we have 

1 1 1 1 1

1/ 2

1 1

ˆ ( ) ( ) ( ) ( ).
n n

i i m i m i m m i m
m m

G x r x n xα α ε α−

= =

= + +∑ ∑  

In similar way, we may write for every integer 
10 i i≤ < , 

1

ˆPr ( ) ( ) ( ),
iW i ij ij ij ij

j Z

oj G u U xβ ψ
∈

= + +∑  

1 0 0 0 00

ˆPr ( ) ( ) ( ),
iV i i j i j i j i j

j Z

oj G v V xα φ
∈

= + +∑  

where  and  are real numbers, iju
0i jv

1

0 1

1

1

1 , ,

1 , .

n

ij m i m ij
m

n

i j m i m i j
m

U
n

V
n

ε φ ψ

ε φ φ

=

=
0

= < >

= < >

∑

∑
 (3.2) 

In the above, ,f g fg< >= ∫  is the inner product 
in . In this notation, we may write 2 ([0,1])L

1 1
1

, .
n

ij i m i m ij
m

u r φ ψ
=

= < >∑  

By Parseval's identity, 

0 1

0 1

2 2 .ij i j i m
i i i j Z j Z m

u v r
≤ < ∈ ∈

+ = 2∑ ∑ ∑ ∑  

Hall et al. [8, p.43] showed that 
2 2

2 12

1

2 ,
s

s
i m

m

r Cn
−

+≤∑  (3.3) 

and 
1( 1/ 2)| | 2 i s

iju C − +≤ .  (3.4) 

Because of the compact support of our wavelets, 
there are at most 12i i−  none zero terms of , 

1
,i l ijφ ψ< >

1, 2,...,l n= , and also 
1

,i l ijφ ψ< > , . 1, 2,...,l n=

At last, let's calculate the variance of  and . ijU
0i jV
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1

1 1

1 1

2 2 2

1

1

1 1

2 2 1

1

( )

2 2 1

1

1 ( ) ,

2 ( , .

2 ( )

[ , . , ]

2 ( )

1( ).

n

ij m i m ij
m

n n

k l i k ij i l ij
k l k

n

k

n k

i r ij i r k ij
r k

n

k

U
n

n

k
n n

k
n n

O
n

ε φ ψ

ε ε φ ψ φ ψ

σ σ ρ

φ ψ φ ψ

σ σ ρ

=

−

= = +

−

=

−

+
=

−

=

= < >

+ < > <

= +

< > < >

≤ +

=

∑

∑ ∑

∑

∑

∑

E E

E , )>

 (3.5) 

Similarly, we have 

0

2 1( )i jV O
n

=E  (3.6) 

Therefore,  and  are both normally 

distributed with zero means with variance . 
ijU

0i jV
2 / nσ

Part (b).  Decomposition of the quadratic risk. 
Observing that the orthogonality (2.1) implies that 

2
2 1 2 3 4ˆ | ,g g T T T T− = + + +E |  (3.7) 

where 

1

0 0 10

1

0

1

0

1

0

2
1

2 2
2 2

1
1 2

3
( )

1
1 2

( )

1
1 2

4
( )

,

ˆˆ( ) ?Pr (

ˆˆ{ ( ) ( ) }

ˆ{ ( ) ( ) },

ˆ( ) .

i

ij
i i j Z

i j i j V i
j Z

i

ik ij ij
i i k Z ik

i

ik ij ij
i i k Z ik

i

ik ij
i i k Z ik

T

T oj

T I B n c

I B n c u U

T P B n c

β

α α

β β

β

∞

= ∈

∈

−
−

= ∈

−
−

= ∈

−
−

= ∈

=

= − = −

= > −

= > −

= ≤

∑∑

∑

∑∑ ∑

∑∑ ∑

∑∑ ∑

E E

E

E

)? ,G g

 

The remainder of the proof consists of bounding 
. 1 4,...,T T

Bound for T1: By Considering Equation (5.5) of [8] 
2 2

2 12
1 (

s
sT O n
−

+= ).  (3.8) 

Bound for T2: From the definition of 
0

ˆi jα , (3.3) and 

(3.6), we have 
0 0

0 0

2 2 2
2 1 2 12

2 2
2 12

2 1 2 1
2 2

3
0 0

2

( ).

i i

s N
s N

s
s

i j i j
j j

T v V

Cn n

O n

σ
− −

+ +

−
+

− −

= =

= +

≤ +

=

∑ ∑E

 (3.9) 

Bound for T3: 
1

0

1

0

1

0

1
1 2

3
( )

1
1 2

( )

1
1 2

( )

3 3

ˆ{ ( ) ( ) }

ˆ2 { ( ) }

ˆ2 { ( ) }

: 2 2 .

i

ik ij ij
i i k Z ik

i

ik ij
i i k Z ik

i

ik ij
i i k Z ik

T I B n c u U

I B n c U

I B n c u

T T

−
−

= ∈

−
−

= ∈

−
−

= ∈

= > −

≤ >

+ >

′ ′′= +

∑∑ ∑

∑∑ ∑

∑∑ ∑

E

E

E

 (3.10) 

It follows from (3.3) that 

1 1 2 2
2 12

0 0

1 1
2 2

3
( )

.
s

s

i i

ij ij
i i k ik i i j

T u u Cn
−

+

− −

= =

′′≤ ≤ ≤∑∑∑ ∑∑  (3.11) 

Thus, we only need to bind . Let  denote the 
integer part of the base-2 logarithm of 

3T ′ 1i −
21/(2 1)sn + ; thus, 

2 i−  is of the optimal order for a bandwidth in kernel 
estimation of a function of known smoothness 2s . Put 

, where  denotes block 
length. As in [8] page 44, we may split  into several 
parts: 

1 2
( )(ikik ij ijB l uβ−= +∑ )

2

)

2

)

U

U

.

il l=

3T ′

3 31 32 33 34 ,T T T T T′ = + + +  (3.12) 

where 

0

1

1

1

1 2
31

( )

1
1 1

32
1 (

1
1 1

33
1 (

1
1 1

34
1

ˆ{ ( ) },

ˆ[ ( ) ( (2 ) ) ],

ˆ[ ( ) ( (2 ) ) ],

ˆ[ ( ) ( (2 )

i

i

i

ik ij
i i k Z ik

i

ik ik ij
i i k S ik

i

ik ik ij
i i k S ik

i

ik ik
i i k Z

T I B n c U

T I B n c I B n c

T I B n c I B n c

T I B n c I B n

−

= ∈

−
− −

= + ∈

−
− −

= + ∈/

−
− −

= + ∈

= >

= > >

= > >

= > ≤

∑∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

E

E

E

E 2

( )

) ]ij
ik

c U∑

 

From (3.5), we have 
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0

0

2 2
2 12

2
31

( )

2 1
1

0

( )

( ).

i

s
s

i

ij
i i k ik

i

i i j

T U

Cn

O n
−

+

′

=

′ −
−

= =

≤

≤

=

∑∑∑

∑∑

E

 (3.13) 

By considering Equations (5.10) and (5.11) of [8] 
page 45 we have 

2 2
2 12

32 (
s

sT O n
−

+= ),  (3.14) 
2 2

2 12
33 (

s
sT O n
−

+= ).  (3.15) 

By Lemma 3.1 below, we can show that for all 
0λ > , 

34 ( )T O n λ−= .

2 .

.a U

 (3.16) 

 
Lemma 3.1.  Let the integer n be large enough. Then 
for all integers  and for all , , ,i k 0t >

22 2 1 2 /

( )

{ ln (1 ) } lt
ij

ik

P U t eσ − −≥ + ≤∑  

 
Proof.  Let  Note 
that for all integer i  and , we have 

2
11{ ( ,..., ) : 1}.l l

jl ja a a a== = ∈ =∑RA

k

2 1

( ) 1

( ) / 2 sup
l

ij j ij
aij j

U
∈ =

=∑ ∑
A

 (3.17) 

Consider the centered Gaussian process 
 defined by { ( ), }Z a a∈ A 1( ) l

j j ijZ a a== ∑ U

)

. Firstly, by 
the Cauchy-Schwarz inequality, Jenson's inequality and 
(3.5), we have 

2 1/ 2

1

2 1/ 2

(sup ( )) {( )

( / ) .

l

ij
a j

Z a U

l nσ

∈ =

≤

≤

∑E E
A  (3.18) 

Secondly, for every , we have a∈ A
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By an argument similar to that for proving (3.5), we 

can show the following inequalities: 
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In deriving the first inequality, we have used the fact 
that φ  and ψ  are supported on [0 . Again (3.20) and 
(3.21) together yield 

,1]
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 (3.22) 

Now we denote : (sup ( )).am Z∈ a= E% A  It follows 
from Borel's inequality, (3.18) and (3.22) that for all 
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The lemma follows on taking . 2 2 2 /u lt nσ=
Bound for T4: As to the last term, we may write 
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As in [8] page 47 we could show 
2 2
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s
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45 (

s
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+= ).  (3.28) 

This in conjunction with (3.8)-(3.16), gives Theorem 
3.1. 
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