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Abstract 

In this paper the concept of the Minimum Universal Cost Flow (MUCF) for an 
infeasible flow network is introduced. A new mathematical model in which the 
objective function includes the total costs of changing arc capacities and sending 
flow is built and analyzed. A polynomial time algorithm is presented to find the 
MUCF. 
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1. Introduction 

Let G = (N,A, u,c) be a network with node set N, arc 
set A, capacity vector u and cost vector c. Each 
components  and  of u and c represent the arc 
capacity and flow cost of , respectively. A 
minimum cost flow problem (MCF) on G is defined as: 

iju ijc
( , )i j A∈

min. ij ij
(i, j) A

c x
∈
∑  (1-1a) 

. : ij ki i
j N k N

s t x x b i
∈ ∈

− = ∀ ∈∑ ∑ N

, )

 (1-1b) 

0 (ij ijx u i≤ ≤ ∀ ∈j A  (1-1c) 

A flow x that satisfies Equations (1-1b) and (1-1c) is 
called a feasible flow and the network is feasible if such 
a flow exists. Feasibility of a flow network depends on 
node numbers, s and arc capacities s. Flow 
network infeasibility was first considered by Hoffman 
[1]. He proved that a flow network is infeasible if and 
only if there exists a cut 

ib iju

( , )S S  such that 

( , ) ( , )
i

i S i j S S

b
∈ ∈

> iju∑ ∑  (1-2) 

In such a case, S is called isolation by Greenberg [2] 
and a witness by Aggarwal, Hao and Orlin [3]. 
Aggarwal et al. [3] showed that the problem of finding a 
minimum witness in an infeasible flow network is Np-
hard. But rather efficient heuristic procedures have been 
introduced for practical instances, Greenberg [2,4,5]. 

Having a flow network been diagnosed as infeasible, 
the next task is to convert it to a feasible one by the least 
cost. For this purpose McCormick [6] introduced the 
following model: 

( , )
min . ij ij

i j A
c α

∈

′∑  (1-3a) 

. : ij ki i
j N k N

s t x x b i
∈ ∈

N− = ∀ ∈∑ ∑  (1-3b) 

0 (ij ij ij , )x u i j Aα≤ ≤ + ∀ ∈  (1-3c) 

where ijc ′  is the cost of changing the capacity of arc 
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( , )i j A∈  by one units. When the above problem is 
solved the optimal amount of capacity change and a 
feasible flow in the resulting network would be 
obtained. Such a feasible flow was called a Least 
Infeasible Flow (LIF) [6]. 

As it is seen, the objective function of McCormick's 
model consists of the modification cost only. The 
optimal flow cost has to be computed by solving the 
minimum cost flow problem using the resulted arc 
capacities. 

In this paper we first construct a comprehensive 
model that includes both modification and flow costs. 
Then a polynomial time algorithm for computing the 
optimal capacities and flow is presented. This algorithm 
has two applications, i.e. modifying the arc capacities 
and obtaining the optimal flow in the resulting feasible 
flow network at the same time, and minimizing the sum 
of modification and flow costs instead of the 
modification cost only. In Sections 2 and 3 we construct 
the model and obtain the optimality conditions. In 
Section 4 a polynomial time algorithm that finds the 
optimal arc capacities and flow is introduced and is 
verified. 

2. Problem Formulation and Analysis 

Suppose that due to the current arc capacities the 
flow network G = (N,A) and the minimum cost flow 
problem defined by (1-1) are infeasible. Thus there 
exists a witness S such that (1-2) is true. In order to 
change the network to a feasible one, arc capacities have 
to be modified so that there does not exists any witness 
satisfying (1-2). In the procedure of computing LIF, arc 
capacities are changed so as the total changing cost is 
minimized. The computed LIF is merely a feasible flow 
in the resulted network and hence its sending cost may 
be non-optimal, when both costs are taken into account. 
The following example proves this claim. 

 
Example 2.1.  Consider the flow network shown in 
Figure (2.1), where c  denotes the flow cost, cij ij′  
denotes the capacity changing cost and  denotes the 
current capacity of arc ( , . Let 

iju
)i j A∈ ijα  be the 

amount of the increment of the capacity of arc 
. The LIF that minimizes ( , )i j A∈

( , )
ij ij

i j A
c α

∈

′∑  is 

, , , , , 12 1x ∗ = 23 4x ∗ = 13 1x ∗ = 13 1α∗ = 12 2α∗ = 23 0α∗ =  
and , and the minimum cost of the converting the 
flow network to a feasible one is 48. The total costs of 
converting and flow cost, 

13 1x ∗ =

( , )
( )ij ij ij ij ij

i j A
c x c c α∗ ∗

∈

′+ +∑ ∑  

is 88. If we let 12 12 131, 3, 1x xα∗ ∗ ∗= = =  and 13 0α∗ = , then 

( , )
ij ij

i j A
c x ∗

∈

+∑  ( )ij ij ijc c α∗′+∑  becomes 87. □ 

The above example shows that a LIF is not the best 
solution of an infeasible flow network. 

In order to change the infeasible network G to a 
feasible one, according to (2-1) the current arc 
capacities have to be increased, as much as all witnesses 
are vanished. Since the amount of increments must 
incur the least possible cost, any feasible solution of the 
resulting flow network has a flow amount equal to the 
new arc capacities. In other words if x is a flow 
satisfying the current capacity constraints, the amount of 
change on ijx , in order to satisfy the conservation 
constraints, is equal to the increasing amount of . 
Now let 

iju

ijα  and ijc ′  respectively denote the number of 
capacity units to be added to  and the cost of each 
unit, the minimum universal cost flow model is defined 
as: 

iju

( , ) ( , )
min . ( )ij ij ij ij ij

i j A i j A
c x c c α

∈ ∈

′+ +∑ ∑  (2-1a) 

. : ( ) ( )ij ij ki ki i
j N k N

s t x x b iα α
∈ ∈

N+ − + = ∀ ∈∑ ∑  (2-1b) 

0 (ij ij , )x u i j A≤ ≤ ∀ ∈  (2-1c) 

0 ( , )ij i j Aα ≥ ∀ ∈  (2-1d) 

It is obvious that the problem (2-1) is not a minimum 
cost flow problem and can't be solved by the related 
algorithms. Since 0ijc ′ ≥ , problem (2-1) may be solved 
by a minimum convex cost flow algorithm. But we 
introduce a different algorithm, to solve the problem, 
without duplication of arcs. First we obtain the 
optimality conditions. 

 

 

Figure 2.1 
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2.1. Optimality Conditions 

Let iπ  and ijλ  denote the dual variables 
corresponding to (2-1b) and (2-1c), respectively. The 
dual problem of (2-1) is defined as: 

( , )
max. i i ij ij

i N i j A
b π λ

∈ ∈

−∑ ∑ u  (2-2a) 

. : ( , )i j ij ijs t c i j Aπ π λ− − ≤ ∀ ∈  (2-2b) 

( , )i j ij ijc c i j Aπ π ′− ≤ + ∀ ∈  (2-2c) 

i unrestrictedπ  (2-2d) 

0ijλ ≥  (2-2e) 
 
Theorem 2.1.  Suppose ij ij i jc cπ π π= − +  and ij ijc cπ π=  

 denote the reduced costs of arc ( ,  with  

and  costs respectively.  and 
ijc ′+ )i j A∈ ijc

ij ijc c ′+ ( , )∗ ∗x α ∗π  are 
respectively optimal if and only if the following 
conditions hold: 

0 0
1) 0 ,

0 0

ij ij
ij ij ij

ij ij

c
c x u

c

π
π

π

α

α

∗

∗

∗

∗

∗

∗

⎧ ≠ ⇒ =⎪< ⇒ = ⎨
= ⇒ ≥⎪⎩

 (2-3a) 

2) 0 0 , 0ij ij ijc xπ α
∗ ∗ ∗> ⇒ = =  (2-3b) 

3) 0 0 , 0ij ij ij ijc x uπ α
∗ ∗ ∗= ⇒ ≤ ≤ =  (2-3c) 

 
Proof.  Considering the problems (2-1) and (2-2) and 
the complementary slackens conditions we have: 

( ) 0 (ij ij i j ij ij ij ijx c x c ππ π λ λ
∗∗ ∗ ∗ ∗ ∗ ∗− + + = ⇒ + =) 0  

( ) 0ij ij ij i j ij ijc c c πα π π α
∗∗ ∗ ∗ ∗′+ − + = ⇒ = 0

0

 

( )ij ij iju xλ∗ ∗− =  

Since (2-2a) is to be maximized and the coefficient 
of ijλ  in (2-2a) is , in an optimal solution, iju− ijλ  

should be at the least possible value. Thus if 0ijx ∗ ≠  

then ij ijc πλ
∗∗ = − . If  then  and hence we 

have 

0ijc π∗

≠ 0ijλ
∗ ≠

ij ijx u∗ = . Noting 0ij ijc πα
∗∗ = , (2-3a) is obtained. 

Now if , Since , then  and 

the condition  implies , and 

0ijc π∗

> 0ijλ
∗ ≥ 0ij ijc π λ

∗ ∗+ >

( )ij ij ijx c π λ
∗∗ ∗+ =

3. Computing the Optimal Solution 

In the model (2-1) the flow on an arc may exceed its 
current capacity. The extra flow is denoted by ijα . If an 
arc has a positive residual capacity it is no need to 
increase its capacity. In other words whenever arc (i,j) is 
saturated, then ijα  embarks to be positive. This fact can 
be easily extracted from the complementary slackens 
conditions (2-3). Sending ijα  units of extra flow on arc 
(i,j), causes a cost equal to ( )ij ij ijc c α′+ , since the 
capacity increment cost is ij ijc α′  and sending flow cost 
is ij ijc α . Therefore whenever the flow on an arc reaches 
its capacity, the arc cost becomes . Now let ij ijc c ′+

0i

i
b

B
>

= b∑  and , for a pseudo flow x and 

. It is very easy to see that, within any feasible 
flow network it is no need for arc capacities to be 
greater than B. The model (2-1) can now be 
reformulated as: 

αx = x + α

0≥α

( , ) ( , )
min . ij ij ij ij

i j A i j A
c x cα α

∈ ∈

′+∑ ∑  (3-1a) 

. : ij ki i
j N k N

s t x x b iα α

∈ ∈

− = ∀ ∈N∑ ∑  (3-1b) 

0 (ij , )x B iα j A≤ ≤ ∀ ∈

, )

 (3-1c) 

0 (ij i j Aα ≥ ∀ ∈  (3-1d) 

4. The Minimum Universal Cost Flow  
(MUCF) Algorithm 

As many minimum cost flow algorithms, MUCF 
algorithm uses residual network for adjusting the arc 
capacities. The residual network that is used in our 
algorithm differs in arc capacities and costs from the 
residual networks defined so far. First we describe this 
network which we call it expanded residual network. As 
it will be seen later the algorithm at each iteration 
generates a pseudo flow  in which αx 0ijα =  while 

ij ijx u< . Now define: 

{ } { }1 ( , ) : 0 ( , ) : 0ij ij ij ijA i j x u i j x uα= < < = < <  

and 

{ } { }2 ( , ) : ( , ) :ij ij ij ijA i j x u i j x uα= ≥ = =  0 0ijx ∗ =

0ijc π∗

>  implies . If , then 0ijα∗ = 0ijc π∗

= 0ij ijx λ∗ ∗ = , 

0ijc π∗

> . Hence 0 ij ijx u∗≤ ≤  and . □ 0ijα∗ =
The expanded residual network, ( )G αx  is 

constructed as follows: 
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( )G αx  Contains all nodes of G. For each arc 
 two arcs (i,j) and (j,i) belong to ( , )i j A∈ ( )G αx . The 

former one has residual capacity ij ij ijr u x α= −  and cost 
. The residual capacity and cost of the latter one are ijc

jir x ij
α=  and , respectively. For each arc 

 there are two arcs (i,j) and (j,i) in 
ji ijc c= −

2( , )i j A∈ ( )G x α . 
The residual capacity and cost of (i,j) are ijB x α−  and 

, respectively. For arc (j,i), if ij ijc c ′+ ij ijx uα =  then 

jir x ij
α=  and , otherwise ji ijc c= − ji ijr x uα= − ij  and 

. ( )ji ij ijc c c ′= − +

Now let x be a pseudo flow and , for i0≥α A∈  let: 

( ) i ji
j N k N

e i b x x ik
α α

∈ ∈

= + −∑ ∑  

Define  as the set of excess nodes 
and  as the set of deficit nodes. The 
algorithm begins with a pseudo flow x = 0, extra 
capacity vector  and node potentials 

{ : ( ) 0}E i e i= >
{ : ( ) 0}D i e i= <

0=α 0=π . At 
each step it selects a node s E∈  and a node t D∈  and 
finds a shortest path P from s to t in ( )G x α , using ijc π  

and ijc π  as the length of arcs with ij ijx u≤  and 0ijα > , 
respectively. Then 

min{ ( ), ( ),min{ : ( , ) }}ije s e t r i j Pδ = − ∈  

units of flow is augmented along P in ( )G αx . The 
equivalent operations in G are as follows: 

Suppose  in ( , )i j P∈ ( )G x . Two cases are 
possible: 

Case I:  , if , set ( , )i j G∈ 1( , )i j A∈ ij ijx x δ= + , 
otherwise set ij ijα α δ= + . 

Case II:  , if 0( , )j i G∈ ji jix u< < , set jix =  

jix δ− , otherwise if 0jiα = , set ji jix x δ= − , and if 
0jiα > , set ji jiα α δ= − . 

After updating x and α  the algorithm updates π  to 
, where d, denotes the shortest path distances from 

s to all other nodes. The above steps are repeated until E 
and/or D are empty. 

π - d

4.1.  Algorithm Verification 

Lemma 4.1.  A feasible flow  is an optimal solution 
of problem (3-1) if and only if the expanded residual 

network, 

αx

( )G αx , contains no negative cost directed 
cycle. 

 
Proof.  In ( )G αx  define 3 1{( , ) : ( , ) }A j i i j A= ∈  and 

4 {( , ) : ( , ) }2A j i i j A= ∈ . For a given , suppose that αx
( )G αx  contains a negative cost directed cycle as w. 

The cost of w equals to 

1 2

3 4

( , ) ( , )

( , ) ( , )

( )

( )

ij ij ij
i j A w i j A w

ij ij ij
i j A w i j A w

C w c c c

c c

∈ ∩ ∈ ∩

∈ ∩ ∈ ∩

′= + +

c ′+ − + − +

∑ ∑

∑ ∑
 

which is negative. Let min { : ( , ) }ijr i j wδ = ∈ , 
augmenting δ  units of flow along w reduces the 
objective function of problem(3-1) by ( )C wδ  units. 
Thus  could not be optimal. Conversely suppose that 
for a given feasible flow  of (3-1), 

αx
αx ( )G αx  contains 

no negative cost directed cycle. Let  denotes the 
optimal solution of problem (3-1). Then according to 
[7], −  is a feasible solution of problem (3-1) and 
can be decomposed in to at most m directed cycles in 

*αx

*αx αx

( )G αx . The sum of the cost of flows on these cycles 
according to (3-1a) is 

( , ) ( , )

( ) (ij ij ij ij ij ij
i j A i j A

c x x cα α )α α
∗ ∗

∈ ∈

′− + −∑ ∑ . 

Since the cost of all cycles in ( )G αx  are 
nonnegative we have 

( , ) ( , )

( ) ( )ij ij ij ij ij ij
i j A i j A

c x x cα α α α
∗ ∗

∈ ∈

′ 0− + −∑ ∑ ≥  

or 

( , ) ( , ) ( , ) ( , )
ij ij ij ij ij ij ij ij

i j A i j A i j A i j A

c x c c x cα αα α
∗ ∗

∈ ∈ ∈ ∈

′ ′+ ≥ +∑ ∑ ∑ ∑ . 

According to the optimality of  we get 
*αx

( , ) ( , ) ( , ) ( , )
ij ij ij ij ij ij ij ij

i j A i j A i j A i j A

c x c c x cα αα α
∗ ∗

∈ ∈ ∈ ∈

′ ′+ ≤ +∑ ∑ ∑ ∑ . 

Hence  is also an optimal solution of problem  
(3-1). □ 

αx
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Remark 4.1.  A feasible flow for problem (3-1) is 
optimal if and only if, some set of node potentials,
satisfy the following conditions: 

A

and (4-1) 

π , 

1 30 , ( , )ijc i j Aπ ≥ ∀ ∈ ∪  

2 40 , ( , )ijc i j Aπ ≥ ∀ ∈ ∪ . A

in ( )G αx . 

Proof.  Given a feasible flow αx  for problem (3- , 
suppose that there exists some node potentials π , 
satisfying

1)

 condition (4-1). Therefore for every directed 
cycle w, 

1 3 2 4( , ) ( ) ( , ) ( )
0ij ij

i j A A w i j A A w
c cπ π

∈ ∪ ∩ ∈ ∪ ∩

+ ≥∑ ∑ . 

Thus we have 

Since w is a directed cycle we get: 

c ≥

1 3

2 4

( , ) ( )

( , ) ( )
0.

ij i j
i j A A w

ij ij i j
i j A A w

c

c c

π π

π π

∈ ∪ ∩

∈ ∪ ∩

+ −

′+ + + − ≥

∑

∑
 

1 3 2 4( , ) ( ) ( , ) ( )
0ij ij ijj

i j A A w i j A A w
c c

∈ ∪ ∩ ∈ ∪ ∩

′+ +∑ ∑ . 

i.e. the cost of cycle w is nonnegative. Thus ( )G αx  
contains no negative cost directed cycle. Conversely, if 
contains no negative cost directed cycle, then the 
shortest path distances from node 1 to all other nodes, d, 
are well defined and satisfy the conditions 

and 

If we let , then 

A

and 

1 3( ) ( ) , ( , )ijd j d i c i j A A≤ + ∀ ∈ ∪  

2 4( ) ( ) , ( , )ij ijd j d i c c i j A A′≤ + + ∀ ∈ ∪ . 

= −π d

1 3( ( ) ( ( )) 0 , ( , )ij ijc d i d j c i j Aπ− − + − = ≥ ∀ ∈ ∪  

( ( ) ( ( )) 0ij ij ijc c d i d j c π′+ − − + − = ≥ , 

he following two lemmas are counterparts of 
n

ect to de i
the shortest path s from node s to

 2 4( , )i j A A∀ ∈ ∪ . □ 

T
Lemmas 9-11 and 9-12 in [7]  are similarly proved. 

 
Lemma 4.2.  Suppose that αx  satisfies (4-1) with 
resp some no  potent  π . Let vector d denotes 

 distance  all other nodes 
in 

a d

als

( )G x  with ijcα π  and ijc π  as the lengths of arcs 

1 3)j A A( ,i ∈ ∪  and 2 4)j A A∈ ∪ , respectively. 
Then the following properties are

( ,i
 valid. 

he pseudo flow  also satisfi
conditions (4-1) with res

a) T es the optimality 
pect to ′ = −π π d . 

b) 1 30 , ( , ) ( )ijc i j A A P≥ ∀ ∈ ∪ ∩  and 

αx

π ′ 0ijc π ′ ≥ , 

2 4( , ) ( )i j A A P∀ ∈ ∪ ∩ , where P denotes the shortest 

-1) and we obtain 
 shortest path fr  node s e other 

no  k in

path from s to all other nodes. □ 
 

Lemma 4.3.  Suppose that a pseudo flow αx  satisfies 
condition (4 ′αx  from αx  by sending 
flow along a om  to som

de  ( )G αx , then  also satisfies condition  

Theorem 4.1.  Algorithm MUCF solves problem (2-1) 

ss no
deficit node. Th m terminates, when an o

′αx
(4-1). □ 

 

in polynomial time. 
 

Proof. The algorithm begins with a pseudo flow ( , )x α  
satisfying (2-3) or equivalently a pseudo flow αx  
satisfying (4-1) with respect to some node potentials π . 
At each step, the algorithm attempts to reduce the 
infeasibility of the solution and meanwhile attempts to 
preserve the optimality conditions. Lemmas (4-2) and 
(4-3) show that the algorithm at each step preserves the 
optimality conditions and reduces the infeasibility of the 
solution by sending flow from an exce

e algorith ptimal 
and feasible flow is found. Let max{ :ijU u

de to a 

=  
( , ) }i j A B∈ + , and max{ : ( , ) }ijC c i j A= ∈  and 
S(m,n,C) denotes the time required to solve a shortest 
path problem with m arcs, n nodes and nonnegative cost 
whose values are no more than C. In each iteration, the 
algorithm finds a shortest path from an excess node to a 
deficit node which takes o(S(m,n,nC)) time, and the 
number of iterations is bounded by o(nU). Thus the 
running time of the algorithm is o(nU S(m,n,nC)). By 
scaling the capacity similar to [7], the polynomial 
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version of the alg U S(m,n,nC)), is 
ob

inimizes the sum of these costs, MUCF, 
called Minimum Universal s introduce
and computed by a  of polynomi

remal combinatorial analysis. In: 

Symposia in Applied Mathematics. Vol. x, combinatorial 
Analysis (American Mathematical Society, Providence, 
RI): p. 113-121 (1960). 

2. Greenberg H.J. Diagnosing infeasibility in min-cost 

orithm, o(mlog 
tained. □ 

5. Conclusion 

This paper showed that the total costs of converting 
an infeasible flow network to a feasible one and solving 
the obtained problem may not be minimized by a LIF. A 
flow that m

Cost Flow, wa
proposed algorithm

d 
al 

5. Greenberg H.J. Consistency, redundancy and implied 
equalities in linear systems. Technical Report, 
Mathematics Department, University of Colorado at 
Denver, Co (1993). 

time order. 
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