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Abstract

In this paper, we use the continuous Legendre wavelets on the interval [0,1]
constructed by Razzaghi M. and Yousefi S. [6] to solve the linear second kind
integral equations. We use quadrature formula for the calculation of the products
of any functions, which are required in the approximation for the integral
equations. Then we reduced the integral equation to the solution of linear
algebraic equation.
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Introduction

In recent years, wavelets have found their way into
many different fields of science and engineering.

Legendre wavelets y, (t) =w(k,n,m,t) have four
arguments: k=23,..., n=2n-1, n=123,..,2'm
is the order for Legendre polynomials and t is the

Wavelets constitute a family of signal functions normalized time. They are defined on the interval [0,1)

constructed from dilation and translation of a signal by:

function called the mother wavelet. When the dilation

parameter a and the translation parameter b vary 1 - ~

continuously, we have the following family of (m+1)52k/2 L, (2%t —n) n-t gy ned

continuous wavelets [1]. Y (1) = 2 2k 2

1 (top 0 otherwise

Wap () =|a| ZW(T)' abeR, a=0. 1)
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Hear, L, (t) are the well-known Legendre

polynomials of the order m, which are orthogonal to the
weight function w(t)=1 and satisfy the following

recursive formula:

Ll(t) = t,
2m+1
Lm+1(t) = m+1 tLp, ®

m
-———Ln4(t), m=123,...
L

The set of Legendre wavelets are an orthonormal set
[6,7].

Function Approximation

A function f(t) e L>[0,1) may be expand as:

F =D Comun(®), b
n=1 m=0
where
Com = (F ) wnm() . @)

In (2.2), (., .) denotes the inner product.
If the infinite series in (2) are truncated, then (2) can
be written as:

2k M1

FO=Y ComVan®=CT¥(), @

n=1 m=0

where C and P(t) are 2K-IM x1 matrixes given by:

— T
C =1[C10:CrasesCoses Com—1r+41 Copet ey Coret g 4]

— T
_[C]_|C21---1C2k71M] ’

®)

and
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\P(t) = [l//l,O (t)ll//l,l(t)l“'ll//l,M—l(t)V"'vl//Z,O (t)”
WZ,M—l(t)!---ll//gkflvo (t),...,l//zk,lnyl(t)]T (6)

= [y, (1), w5 (1),..., Wokipm o1

Similarly a function k(t,s) e L?[0,1)x[0,1) may be
approximated as:

K(t,s) = WT ()K¥(s), @
where K is an 2k1M x 2X-1M matrix, with:
Kij = (wi (1), (k(t,),p7;(s))) -

The integration of the vector W (t) defined in
equation (6) can be obtained as:

I;T(t')dt': PY(), ®)

where P is the 2KIM x2XIM operational matrix for
integration and is given in [6] as:

LFF - FF
OLF -~ FF
P:zikzsz'-.ss ©)
000 - LF
000 - 0 L

2 0 0
00 0
F=t
2k
00 -0

and
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1
1 —_— 0 0
J3
3, B
3 3v5
0 ﬂ 0 _5
53 5V7
L_i -7
_2k 0 0

The integration of the product of two Legendre
wavelet function vectors is obtained as:

1
| =j P(O)WwT (t)dt, (10)
0

where | is an identity matrix.
The following property of the product of two
Legendre wavelet vector functions will also be used:

PP ()C ~CT¥(), (11)

where C is given in (5) and C is a 2X1M x 2K M
matrix, which is called the product operation matrix of
Legendre wavelet vector functions [6].

Linear Integral Equations
Fredholm Integral Equation of the Second Kind

Consider the following integral equation:
1
Y0 = [ kt.9)y(e)ds +x(1) 12)

where  xe L?[0,1),k € L?[0,1)x[0,]) and y is an

unknown function [2,3]. If we approximate X, y and k by
the way mentioned before:

X(t) = XTW(t), y(t) =Y TW¥(t),
(13)
k(t,s) = PT (1)KW(s).

With substituting in (3.1) we have:
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0 0

0 0

0 0

0 0

J2M -3

(2M -3)v/2M -1

-J2M -1 0
(2M -1)/2M -3 ]

YT ()Y =¥ ()X +j01\1ﬂ OKP(S)¥PT (5)Yds

— YT ()X + 9T (t)KUOl‘P(s)‘PT (s)ds]Y
=¥T(t)(X +KY).
then

(1-K)Y =X. (14)

Volterra Integral Equation of the Second Kind

For the following Volterra integral equation [2,5].
() = [ k(L 9)Y(E)s + X0, (15)
with (8) and (11) we have:
[ ko) = [ T @K ()vds
=97 (K | ;‘P(s)\PT (s)Yds

T (t)Kﬁ?T\F(s)ds
=T (t)KY TP¥(t)
then

y(t) = x(t) +¥T ()KY TP¥(1) . (16)
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By evaluating this equation in 2XIM points
(1™ in the interval [0]) we have a system of
linear equations:

T(t.)Y = x(t. T YKY T .
Y)Y =x(t)+ ! (t)KY TPP() an
i=12,..,2xIM

Numerical Examples

We first let M =3 and k=2. The six basis
functions are given by:

() = V2
v (t) = VB (4t -1)

_ S 2 1
w3(t)-JE(4(4t 1) 2]

(18)
v, (t) =2

—<t<1

ws(t) =6 (4t-3)
_ Sa_ a2 1
w6<t)—¢1_0(4(4t 3) 2)

Example 1

1
y(t) = Ioln|t—s|y(s)ds

1o 021 t) _ (t4 L
t 2('[ Int+@1—t)2 In(l—t) (t+2)).

With exact solution y(t) =t. Table 1 and Figure 1
are the numerical results for Example 1.

Example 2
1

1 ] 1
y(t) = J‘O[—%e2t 3’ ]y(s)ds + e2t+3 .

With exact solution y(t) =e?'. Table 2 and Figure 2
are the numerical results for Example 2.
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Example 3

YO = [ (6747 - s0)y(s)ds

PO RN T I
4 3 2

With exact solution y(t) =3t—1. Table 3 and Figure
3 are the numerical results for Example 3.

Example 4

YO = [ +(6-)-4(t-9)*)y()ds

+(3-t)et —2-t—4t?

With exact solution y(t) =e!. Table 4 and Figure 4
are the numerical results for Example 4.

Table 1.
Xi y(xi) Yi [ Y(xi) =il
0.0 0.0000000000 0.0000000118 0.0000000118
0.2 0.2000000000  0.1999999965 0.0000000035
04 0.4000000000 0.4000000117 0.0000000117
0.6 0.6000000000 0.5999999726 0.0000000274
0.8 0.8000000000 0.8000001816 0.0000001816
1.0 1.0000000000 0.9999995534  0.0000004466

Table 2.
Xi y(Xi) Yi [y(xi) =il
0.0 1.000000 1.012990 0.012990
0.2 1.491825 1.487708 0.004116
04 2.225541 2.230965 0.005424
0.6 3.320117 3.307555 0.012561
0.8 4.953032 4.962956 0.009924
1.0 7.389056 7.348320 0.040736
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Table 3. Table 4.
X; y(Xi) Yi [ YO&) = Vil X y(xi) Vi [ YO%) =il
0.0 -1.000000 -1.000000 0.000000 0.0 1.000000 0.965175 0.034825
0.2 -0.400000 -0.400401 0.000401 0.2 1.221403 1228185 0.006782
0.4 0.200000 0.201107 0.001107 0.4 1.491825 1.509680 0.017855
0.6 0.800000 0.797021 0.002979 0.6 1.822119 1.786376 0.035743
0.8 1.400000 1.403141 0.003141 0.8 2.225541 2.205723 0.019818
1.0 2.000000 1.990637 0.009363 1.0 2.718282 2.728838 0.010556
Figure 1. Figure 2.
Figure 3. Figure 4.

Solid: true solution,

Doted: numerical solution
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Conclusion

The Legendre wavelet operational matrix P, together
with the integration of the product of two Legendre
wavelet vectors functions, are utilized to solve the
integral equation. The present method reduces an
integral equation into a set of algebraic equations. In
this paper, we use the 6-base Legendre wavelets, the
result for the product with quadrature solution is good.
For better results, using the greater N is recommended.
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