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Abstract 

Let T  denote the unit circle in the complex plane. Given a function , 
one uses t usual (harmonic) Poisson kernel 

)(TLf p∈
),( zζΡ  for the unit disk to define the 

Poisson integral of , namely f ][ fPh = . Here we consider the biharmonic 
Poisson kernel ),( zF ζ  for the unit disk to define the notion of -integral of a 
given function ; this associated biharmonic function will be denoted by 

. We then consider the dilations 

F
)(TLf p∈

][ fFu = )()( rzuzur =  for Tz∈  and . 
The main result of this paper indicates that the dilations  are convergent to  in 
the mean, or in the norm of . 

10 <≤ r

ru f
)(TLp
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1. Introduction 

We denote by D  the unit disk and by T  the unit 
circle in the complex plane. The Laplace operator in the 
complex plane is defined by 

2 2 2

2 2

1 .
4z z x iy

z z x y
⎛ ⎞∂ ∂ ∂

Δ = Δ = = + = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 

A function u  defined on  is said to be biharmonic 
provided that . It is known, (see [3]) although 
not so well, that the biharmonic Green function for the 
unit disk has the form 

D
2 0uΔ =

( ) ( )
2

2 2( , ) log 1 1
1
zz z z

z
ζ 2ζ ζ ζ
ζ

−
Γ = − + − −

−
 

 ( , )z D

We define the biharmonic Poisson kernel for the unit 
disk to be the function 

( ) ( )
( )
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= − ∂ Δ Γ
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 ( , )z T Dζ ∈ × . 

Being asymmetric, the kernel function ( , )F zζ  is 
biharmonic in its second argument. 

For a function 1( )f L T∈ , we define the -integral 
of 

F
f  by 

( ) [ ]( ) ( , ) ( ) ( )
T

u z F f z F z f dζ ζ σ ζ= = ∫  

Dζ ∈ × .  , z D∈ 1( )f L T∈  
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where 1(2 )d dσ π −= θ  is the normalized arc length 
measure on the unit circle. It follows that [ ]F f  is 
biharmonic in the unit disk, moreover it extends 

1( )f L T∈  to a biharmonic function throughout the unit 
disk ; a property which explains the phrase 
"biharmonic Poisson kernel" we have associated to 

D

( , )F zζ . 
Similarly, given a Borel measure ν  on the unit circle 
, we define its F -integral by the formula T

[ ]( ) ( , ) ( ) .
T

F z F z d z Dν ζ ν ζ= ∈∫  

In this paper we aim to study the biharmonic 
functions defined by the biharmonic Poisson kernel 

( , )F zζ , or the F -integrals of functions. To do this, 
we begin with a careful examination of the kernel 
function ( , )F zζ  itself. It turns out that ( , )F zζ  is an 
approximate identity. We then study the convergence in 
the mean of -integrals of functions in F ( )pL T . Given 

( )pf L T∈ , we consider [ ]u F f= , and define its 
dilations in the following manner: 

( ) ( ), 0 1, .ru z u rz r z D= ≤ < ∈  

Suppose f  be a function in ( )pL T  and [ ]h P f=  
be its Poisson integral which extends f  to a harmonic 
function in the unit disk. It is well-known that the 
dilations  are convergent to  in the mean, or in the 
norm of 

rh h
pL  (see for instance [4]). The main result of 

this paper says that the functions  are convergent to ru
f  in the mean as well, therefore from this perspective, 
the biharmonic Poisson kernel resembles the usual 
(harmonic) Poisson kernel. 

The biharmonic poisson kernel played a significant 
role in a Riesz-type representation formula found by 
Abkar and Hedenmalm [2]. Moreover, in a recent paper 
[1], the current author studied the boundary behavior of 
the potentials associated to the biharmonic Poisson 
kernel, i.e., . Here we have been able to 
establish a Fatou theorem on the existence almost 
everywhere of nontangential limits on the boundary of 
the unit disk. For more information on the origin of the 
biharmonic Poisson kernel and its relevance to the 
potential theory of the complex plane we refer the 
interested reader to [2]. 

[ ]u F f=

2. Convergence in the Mean 

In this section we study the -integrals of functions F

( )pf L T∈  for 1 p≤ ≤ +∞ . Putting , we shall 
see that the dilations  are convergent to 

[ ]u F f=

ru f  in the 
norm of ( )pL T  when 1 p≤ < +∞ , and they converge 
weak-star to f  when p = +∞ . This is a dual statement 
to the convergence in the mean of Poisson integrals of 

( )pL T  functions to the same function.  
In the following proposition we collect some intrinsic 

properties of the biharmonic Poisson kernel. In 
particular, it follows from parts (a), (b), and (d) of the 
proposition that the biharmonic Poisson kernel  is an 
approximate identity. We mention that the proof of the 
proposition follows readily from the definition of the 
biharmonic Poisson kernel. 

F

 
Proposition 2.1.  Let ( , )F zζ  denote the biharmonic 
Poisson kernel for the unit disk. Then we have 

(a)  ( , ) 0F zζ >  for ( , )z T Dζ ∈ × , 

(b)  ( , ) ( ) 1
T

F z dζ σ ζ =∫  for z D , ∈

(c)  ( , ) ( , )F rz F z rζ ζ=  for ( , )z T Tζ ∈ ×  and 
0 1r≤ < , 

(d)  ( , ) 0F zζ →  uniformly as 1z →  and 
* \z T I ζ∈ , where * / | |z z z=  for 

0z ≠ , and I ζ  is an arc centered at ζ . 
For a subset  of the complex plane, we shall use 

the notation  for the space of bounded continuous 
functions on . Let 

X
( )C X

X f  be a bounded function defined 
on ; we write X

{ }sup ( ) : .
X

f f z z X= ∈  

Let 1( )f L T∈  and [ ]u F f=  be the -integral of F

f . We can then extend f  to D  by putting 
( ) ( )f rz u rz=%  for 0 r 1≤ <  and . We shall see 

that the -integral of a continuous function 
z T∈

F f  on the 
boundary of the unit disk behaves very well in the 
closure of D . 
 
Proposition 2.2.  Let 1( )f L T∈  and z . Define T∈ f%  

on D  by 

( ), 1,
( )

( ), 0 1.

f z r
f rz

u rz r

=⎧⎪= ⎨
≤ <⎪⎩

%  

Then f%  is a biharmonic function inside the unit disk. 
 

Proof.  The proposition follows from the biharmonicity 
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of the Poisson biharmonic kernel in the  variable. z
 
Proposition 2.3.  Let  

be a trigonometric polynomial on T . Then we have 

( ) k n
nn k

z T and f z c z
=−

∈ = ∑

| | 2( ) 1 (1 )
2

k n n
nn k

nf rz c r z r
=−

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑% −

T

1

, 

 . 0 1,r z≤ ≤ ∈

Proof.  The case  follows from the definition. 
Assume now that  and that . By 
definition 

1r =
0 r≤ < z T∈

( ) ( , ) ( ) ( )

( , ) ( ).

T

k n
nn k T

f rz F rz f d

c F rz d

ζ ζ σ ζ

ζ ζ σ ζ
=−

=

=

∫

∑ ∫

%

 

We note that 
2 2

2

2 3

4

1 (1 | | )( , ) ( ) ( )
2 | |

1 (1 | | ) ( ).
2 | |

n n

T T

n

T
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rz

ζ ζ σ ζ ζ σ ζ
ζ
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ζ

−
=

−

−
+

−

∫ ∫

∫
 

We first assume that  is nonnegative. As for the 
first integral above, we see from the definition of the 
usual Poisson kernel 

n

( , )P w ζ , for w  and D∈ Tζ ∈ , 
that  

22 2
2

2

2

2

1(1 | | ) ( ) (1 ) ( )
| |

(1 ) ( , ) ( )

(1 )( ) .

n n
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n
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2ζ σ ζ ζ σ ζ
ζ ζ

ζ ζ σ ζ

−−
= −

− −

= −

= −

∫ ∫

∫  

On the other hand, 

4 ( )
1

n

T

d
rz

ζ σ ζ
ζ−

∫  

{ }

, 0

2
0
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0 0

2
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p
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and consequently, 

{ }
2 3

2 2
4

(1 ) ( ) ( ) 1 (1 ) .n n

T

r d rz r n r
rz

ζ σ ζ
ζ
−

= + + −
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Hence 

( , ) ( )n

T

F rz dζ ζ σ ζ∫  

 
{ }2 2

2

1 ( ) (1 ) (1 ) (1 )
2

( ) 1 (1 ) .
2

n

n

rz r r n r
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= − + + + −

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

2
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Now assume that n = −  is a negative integer. 
Similar argument, using the fact that for Tζ ∈  we have 

pnζ ζ= , we see that 

2( , ) ( ) 1 (1 ) ,
2

nn n

T

nF rz d r z rζ ζ σ ζ ⎛ ⎞= + −⎜ ⎟
⎝ ⎠∫  

from which it follows that 

2

( ) ( , ) ( ) ( )

( , ) ( )

1 (1 )
2

T

k n
nn k

T

k n n
nn k

f rz F rz f d
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.
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=−

=−

=

=
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∫

∑ ∫

∑
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This completes the proof. 
 
Proposition 2.4.  Let ( )f C T∈  and . Then [ ]u F f=

f%  is uniformly continuous on D . In particular, the 
functions  converge uniformly to ru f  on T , as 

. 1r →
 
Proof.  It follows from Proposition 2.1(b) that for 
0 r 1≤ <  we have 

( ) ( , ) ( ) ( )

sup ( ) .

T

T T

u rz F rz f d

f fζ

ζ ζ σ ζ

ζ∈

=

≤ =

∫
 )

p

ζ ζ ζ σ ζ∞ +
=

∞ + +
=

∞ ∞

= =

= + +

= + + +

= + + +

⎧ ⎫+
= +⎨ ⎬

− −⎩ ⎭

∑ ∫

∑

∑ ∑
 Hence 

,
TD

f f f C T= ∈% ( ).  (2-1) 

Let ( ) k n
nn k

p z c
=−

= ∑ z  be a trigonometric poly-
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nomial on T . By Proposition 2.3 

2( ) 1 (1 )
2

k n n
nn k

np rz c r z r
=−

⎛ ⎞= +⎜ ⎟
⎝ ⎠

−%

.T

∑ , 

  0 1,r z≤ < ∈

In particular,  is continuous on p% D . Since the 
trigonometric polynomials are dense in , we can 
find a sequence of polynomials {

( )C T

}np  on T  such that 

0n T
p f− →  as . It now follows from (2-1) 

that 
n →∞

0, .n n TD
p f p f n− = − → →%% ∞  

Hence the sequence  converges uniformly to np% f%  

on D . As we already observed, each  is continuous 

on 
np%

D , so that f%  is uniformly continuous on D . In 
particular, if , then continuity of 0 r≤ <1 f%  on D  
yields 

1lim ( ) ( ), ,r f rz f z z T→ = ∈%  

or equivalently, 

0, 1.r T
u f r− → →  

The proof is complete.  
It is now time to state the main result of this paper. 

 
Theorem 2.5.  Let ( )pf L T∈  for 1 . Put 

, and  for 
p≤ < ∞

[ ]u F f= ( ) ( )ru z u rz=

,z T∈  and . Then 0 r≤ <1

(a)   and ( )p
ru L T∈

( ) ( }p pr L T L
u f≤

T
, 

(b)  for 1 , the functions  converge to p≤ < +∞ ru f  
in the mean, that is 

( )
0, 1,pr L T

u f r− → →  

(c)  for , the functions  converge weak-
star to 

p = +∞ ru
f  as . 1r →

 
Proof.  In proving (a), the case  follows readily 
from the definition and Proposition 2.1(b). Assume now 
that 1  and note that 

p = +∞

p≤ < +∞

( ) [ ]( ) ( , ) ( ) ( ),r
T

u z F f rz F rz f d z Dζ ζ σ ζ= = ∫ ∈ , 

so that 

( ) ( ) ( , ) ( ).r
T

u z f F rz dζ ζ σ ζ≤ ∫  

Putting ( , ) ( ) ( )F rz d dζ σ ζ λ ζ= , we have 

( ) 1
T

d λ ζ =∫  in accordance with Proposition 2.1(b). On 

the other hand, the function px xa  is convex for 
1 p≤ < +∞ , and , hence we can apply Jensen's 
formula (see [5], p. 62) to obtain 

0x >

( ) | ( ) | ( )

| ( ) | ( ).

p
p

r
T

p

T

u z f d

f d

ζ λ ζ

ζ λ ζ

⎛ ⎞
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⎝

≤

∫

∫

⎠  (2-2) 

We now integrate both sides of (2-2) to get 

( )
| ( ) | ( )

| ( ) | ( ) ( )

| ( ) | ( , ) ( ) ( )

p

p p
r L T

T

p

T T

p
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u u rz d
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ζ ζ σ ζ σ

×

×

=

≤

≤

∫

∫∫

∫∫

 (2-3) 

It follows from Fubini's theorem and Proposition 
2.1(b, c) that 

| ( ) | ( , ) ( ) ( )p

T T

f F rz d d zζ ζ σ ζ σ
×
∫∫  

( )

| ( ) | ( , ) ( ) ( )
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| ( ) | ( )
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T T
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f F z r d z d
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f d

f

ζ ζ σ σ ζ
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×

=

=

=

=

∫∫

∫ ∫

∫
 

This together with (2-3) implies that 

( ) ( )p pr L T L
u f≤

T
 

completing the proof of part (a). 
As for part (b) we fix 0ε > . Since the trigonometric 

polynomials are dense in ( )pL T , we choose atrigo-
nometric polynomial ( ) ( )pg z L T∈  such that 

{ }
.pL T

f g ε− <  

Putting [ ]v F g= , we have 
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{ } ( )

( ) ( )
.

p p

p p

r r rL T L T

r L T L T

u f u v

v g g f

− ≤ −

+ − + −
 

Since , it follows from part (a) that [u v F f g− = − ]

( ) ( ) ( )
( )p p pr r rL T L T L T

u v u v f g ,ε− = − ≤ − <  

hence 

( ) ( )
2pr r pL T

u f v gε− ≤ + −
L T

. (2-4) 

According to Proposition 2.4, 

( )
0, 1,pr rL T T

v g v g r− ≤ − → →  

which means that for  sufficiently close to 1  we have r

( )
.pr L T

v g ε− ≤  

This together with (2-4) implies that 

( )
3 .pr L T

u f ε− <  

We now manage to prove part (c). Let 1( )g L T∈  
and . It follows from Proposition 2.1(c) and 
Fubini's theorem that 

[ ]v F g=

( ) ( ) ( )

( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) (

( ) ( ) ( ).

r
T

T T

T T

r
T

u z g z d z

)

F rz f d g z d z

F z r g z d z f d

v z f z d z

σ

ζ ζ σ ζ σ

ζ σ ζ σ ζ

σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

=

∫

∫ ∫

∫ ∫

∫

 (2-5) 

Therefore 

( ) ( ) ( ) ( ) ( ) ( )r
T T

u z g z d z f z g z d zσ σ−∫ ∫  

 , ( ( ) ( )) ( ) ( )r
T

v z g z f z d zσ= −∫

in accordance with (2-5). It follows that 

( ) ( ) ( ) ( ) ( ) ( )r
T T

u z g z d z f z g z d zσ σ−∫ ∫  

 1( ) ( )rL T L
f v g∞≤ −

T
. 

But, according to part (b), the right hand side of the 

above inequality tends to zero as r  approaches 1 , so 
that 

1lim ( ) ( ) ( ) ( ) ( ) ( )r r
T T

u z g z d z f z g z d zσ σ→ =∫ ∫ , 

 1( )g L T∈ , 

meaning that the functions  are weak-star convergent 
to 

ru
f  as . 1r →

3. The F-Integrals of Measures 
Let ν  be a Borel measure on the unit circle. The -

integral of 
F

ν  is defined in the following manner: 

( ) [ ]( ) ( , ) ( ), .
T

z F z F z d z Dμ ν ζ ν ζ= = ∈∫  

The following theorem states that the mapping 
[ ]Fν μ ν=a  is injective, moreover, for a finite Borel 

measure ν  on T , the functions rμ  converge weak-star 
to ν  as . 1r →
 
Theorem 3.1.  Let ν  be a finite Borel measure on the 
unit circle T . Then 

(a)  the functions rμ  (or the measures rdμ σ ) 
converge weak-star to ν  as , 1r →

(b)  the mapping [ ]Fν μ ν=a  is injective, 
(c)  if ν  is positive, then 

1 ( )
( ), 0 1.r L T
T rμ ν= < <  

 
Proof.  Let g  be a continuous function on T , and 

[ ]v F g= . As in (2-5), we use Fubini's theorem together 
with Proposition 2.1(c) to obtain 

( ) ( ) ( ) ( ) ( ).r r
T T

z g z d z v z d zμ σ ν=∫ ∫  

Since g  is uniformly continuous on the unit circle, it 
follows from Proposition 2.4 that  uniformly on 

 as . Hence for every 
rv → g

T 1r → ( )g C T∈ , 

1

1

lim ( ) ( ) ( )

lim ( ) ( ) ( ) ( ),

r r
T

r r
T T

z g z d z

v z d z g z d z

μ σ

ν ν

→

→

=

=

∫

∫ ∫
 

from which the result follows. 
To prove (b), we let 0, ( )f C Tμ = ∈  and [ ]u F f= . 

As before, we see that 
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( ) ( ) ( ) ( ) ( ).r r
T T

u z d z z f z d zν μ σ=∫ ∫  

By Proposition 2.4, the functions  are uniformly 
convergent to 

ru
f  on the unit circle, as . Hence for 

every 
1r →

( )f C T∈  we have 

1( ) ( ) lim ( ) ( ) 0,r r
T T

f z d z u z d zν ν→= =∫ ∫  

which means that the measure ν  vanishes identically. 
As for part (c), we see by a direct calculation that 

( )

1 ( )

2 2

( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )

1 (1 ) (1 ) ( ) ( ).
2

r rL T
T

T T

T T

T

z d z

F rz d d z

F rz d z d

r r d T

⎞
⎟
⎠

μ μ σ

ζ ν ζ σ

ζ σ ν ζ

ν ζ ν

=

⎛
= ⎜

⎝

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

= − + + =

∫

∫ ∫

∫ ∫

∫

 

The proof is complete. 
 
Concluding remark.  Let  denote the class of all 
biharmonic functions on the unit disk, and let 

( )B D
( )M T  

denote the class of all finite Borel measures on the unit 
circle. We have already observed that both the -

integral of an 

F

1( )L T  function and the -integral of a 
finite Borel measure on T  are elements of . 
Moreover, the mapping 

F
( )B D

[ ]Fν νa  from ( )M T  to 
 is injective. It is desirable to solve the following 

problem. 
( )B D

 
Open problem.  Let  be an element of . Find 
condition(s) under which there exists a finite Borel 
measure 

u ( )B D

( )M Tν ∈  such that [ ].u F ν=  
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