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Abstract 
After second world war, we have seen a very rapid development of 

Thermoelasticity stimulated by various engineering sciences. As we know, 
structures behave in different fashion under climate variation and the most 
responsible factor for these variations is heat which falls through and causes 
deformation of the body. A considerable progress in the field of aircraft and 
machine structures, mainly with gas and steam turbine and the emergence of new 
topics in chemical and nuclear engineering, have given rise to numerous problems 
in which thermal stresses play an important and frequently even a primary role. 
The concern of the present paper is the problem of an interior Griffith crack 
opened by heated wedge in a strip whose edges are normal to crack axis and the 
medium is assumed to be homogenous and isotropic. Under plane strain condition 
the closed form expressions for the stress intensity factors and the crack shape are 
obtained by use of Fourier transform technique. Two special cases of heat 
distributions are discussed in the end when wedge geometry is prescribed. 
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1. Introduction 
A very rapid development of Thermoelasticity has 

been considered after second world war by various 
engineering sciences. Griffith who was known as father 
 

 
Keywords: Griffith crack; Fourier transform; Heated wedge; 
Isotropic medium 
of fracture mechanics considered the mathematical 

theory of elasticity of crack problems in his two 
pioneering papers published in 1920 and 1924 [11,12]. 

A problem of an interior Griffith crack opened by a 
heated wedge in an infinite strip whose edges are 
parallel to crack axis has been recently published by 
Saraj [1]. Kushwaha has been introduced a new 
approach in investigating the problem of stress field in 
the neighborhood of Griffith crack [2]. The problem of 
stress intensity factors for a Griffith crack opened by 
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thermal stresses in an infinite strip is discussed by 
Kushwaha and Umesh [3]. Problem of crack opening 
due to stresses on crack faces as well as the 
neighborhood of the crack, by Lowengrub [4,6]. Two 
exterior Griffith cracks opened by heated wedge in an 
infinite and isotropic medium is discussed by Kushwaha 
and Saraj [10]. 

A note on Griffith cracks is investigated by 
Lowengrub [5]. An excellent survey of the crack 
problems in the theory of elasticity can be seen by 
Sneddon and Lowengrub [7]. 

The title problem can also be assumed as an infinite 
number of Griffith cracks which are equally spaced 
along y-axis, see Figure 1. We reduce the above 
problem to the problem of an interior crack in an elastic 
medium (Fig. 2). While the Griffith crack occupies the 
spaces bx c (y = 0) with the following boundary 
conditions. 

σxy (± a, y) = 0 ,        0 ≤ ⎜y ⎜< ∞ (1.1) 

Ux (± a, y) = 0 ,        0 ≤ ⎜y ⎜< ∞  (1.2) 

σxy (x, 0) = 0 ,           0 ≤ ⎜x ⎜≤ a (1.3) 

Figure 1. Infinite number of Griffith cracks which are equally 
spaced along Y-axis in a long vertical elastic strip. 

Figure 2. Crack opening due to heat with boundary conditions 
for elasticity problem. 
and the mixed boundary conditions are 

σyy (x, 0) = 0 ,   b < ⎜x ⎜< c (1.4) 
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Where (σxx , σxy , σyy) and (ux , uy) are components of 
stresses and of the displacement vector respectively, 

u0(x) is a wedge shape function, and we assume that 
the thermal and elastic properties of the medium does 
not change with heat variation, and also all the physical 
quantities vanishes as ⎜x ⎜ → ∞. 

Since the problem is linear we assume that stresses 
developed by temperature variation opens out the 
Griffith crack as it is given through the boundary 
conditions (1.1)-(1.5). No heat sources or sinks are 
assumed in the medium and the medium is assumed 
under plane strain condition. 

Throughout the analysis it has been checked that the 
crack faces do not meet other than the crack tips. (see 
Burniston [8], uy (x,0) > 0   b < ⎜x ⎜< c. 

We use the following definition for infinite Fourier 
sine and cosine transform 

dxdyyxyxff p
a

pcs )sin()cos(),()(
00

ζαζα ∫∫
∞

=  (1.6) 

with 

a
pp
πα =  P = 0, 1, 2, 3,… . 

 
2. Formulation 

The physical problem is reduced to the solution of 
the following partial differential equation in absence of 
body forces, 

0=
∂
∂

+
∂
∂

y
xy

x
xx σσ  (2.1) 

0=
∂
∂

+
∂
∂

y
yy

x
xy σσ  (2.2) 

with stress-strain relations as 

σij = 2μ eij + λ(ek k - γT)δij   i, j = x, y (2.3) 

y 

x 

a a 
c 

y 

U0 (x) σyy (x,0)=0  Uy (x,0)=0 

b 
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eij = 
2
1 (ui,j + uj,i), γ = (3λ+2μ)αt   i, j = x, y (2.4) 

where λ and μ are Lame’s constant, αt is the coefficient 
of linear expansion, δij is the kronecker delta and T 
satisfies the Laplace’s equation 

02
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2 =⎟⎟
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for simplicity, μ is taken as the unit of stress. 
Substituting for the stress components in terms of the 
displacement from (2.3) and (2.4) in (2.1)-(2.2) and 
solve for Ux , we get.  

∇4 Ux = 0 (2.6) 

The present problem is solved in two stages. Stage-A 
(Temperature distribution problem) and Stage-B 
(Elasticity problem). 

In Stage-A of the problem, we see that the 
temperature which is distributed over the surface of the 
crack b < x < c due to the heated wedge, causes the 
further opening of the crack, whose solution is obtained 
by solving (2.5). In stage-B of the problem we deal with 
the problem of elasticity in which we apply the method 
of Kushwaha [2] to solve the fourth order homogenous 
partial differential equation in (2.6), which represents 
the solution of elasticity problem, while the solution of 
Laplace’s equation in (2.5) represents the solution of 
temperature distribution with the following conditions. 

⎪⎩

⎪
⎨
⎧

<<

<<
=

axc

bxx
xT

0

0)(
)0,(

θ
 (2.7) 

Ty (x, 0) = f(x)   b < ⎢x⎢< c (2.8) 

Tx (± a, y) = 0   0 < ⎢y ⎢< ∞ (2.9) 

where θ(x) and f(x) are known functions. The other 
component of displacement uy is obtained in terms of  
ux through the equations (2.1)-(2.2) as 
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 (2.10) 

where σ is the Poisson’s ratio of the medium. 

 
3. Reduction to Triple Series Equations 

Stage-A: (Temperature distribution problem) 
We take the finite Fourier cosine transform of the 

Laplace’s equation (2.5) w.r.t. x. Next we solve the 
results equation and after inverting, we get 
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−+= αα  (3.1) 

where A0 is a constant to be determined. 
Since the geometry of the problem is symmetrical, 

therefore the boundary conditions (2.7) and (2.8) on 
using (3.1) yield the result, 
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Stage-B: (Elasticity problem) 

We follow the method of Kushwaha [2] by taking 
finite Fourier sine transform from both sides of the 
equation (2.6), solving the results equations and then 
inverting, we get 

[ ]∑
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where B and E are constants to be determined. 
On solving for the boundary condition (1.3), we get 
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pp B
a

PE )1( 2βπ
−=  (3.5) 

and for the boundary conditions (1.4) and (1.5), on 
using (3.5) yield the following triple series equations. 
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4. Solution of Triple Series Equations 

The trial solution for the triple series equations of 
(3.2)-(3.3) and (3.6)-(3.7) is sought with the help of 
method of Parihar [9]. 

We take the trial solution of (3.2)-(3.3) as follows 
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on using the property 
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the equation (3.2) will be satisfied identically if 

∫ =
c

b
bdttg )()(0 θ  (4.4) 

where (b) is the temperature at the tip “b” of the crack. 
On the substitution of (4.1) in (3.3) and using the 

formula 
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and then inverting the results equation and adjusting the 
terms properly, and using Parihar’s method [9], we get 
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where 
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with 
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where L0 is an arbitrary constant to be determined 
through the conditions (4.4) and (4.6). 

In a similar fashion, we take the trial solution for 
(3.6)-(3.7) as follows 
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and then (3.6) is satisfied identically if 

∫ −=
c
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2
1 β  (4.12) 
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On the substitution of (4.10) in (3.7) and next solving 
the integrals and after inverting, we get 
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and L1 an arbitrary constant to be determined through 
the equations of (4.12)-(4.14). 
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5. Physical Quantities 

The heated wedge which develops the stresses that 
causes the further opening of the crack for the interval 
b < | x | < c is a very important physical quantities, thus 
T(x, 0) can be determined by solving the series in (3.2) 
for the interval b < x < c, as 

∫=
c

x
dttgxT )()0,( 0    b < x < c (5.1) 

where g0 (t) is given by (4.6). 
 
Crack Shape 

The crack opening displacement uy(x, 0) is obtained 
by solving the equation of (3.6) for the interval b < x < c 
as 

∫=
c

x
y dttgxu )()0,( 1

2β  (5.2) 

where g1 (t) is given by (4.13) 
 
Normal Stress Components 

σyy(x,0) is obtained by solving the series equation of 
(3.7) for the intervals 0≤ | x| ≤ b and c ≤ | x| ≤ a thus 
substitution (4.10) in (3.7) and then using (4.13), we get. 
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± signs are for the intervals 0 ≤ | x | ≤ b and c ≤ | x | ≤ a 
i.e. 

[ ] bxcxGbxGx ≤≤= 0),(),()( 2/1
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Stress Intensity Factor 

A very interested physical quantity in fracture 
mechanics are stress intensity factors, which are very 
important to be calculated at the edge of the crack tips. 
They are defined as follows 
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Substituting from (5.3) in (5.6)-(5.7), next by solving 
and then evaluating the limits, we get 

Kb = 0Δ (b) n(b) + t1 (b) (5.8) 
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6. Special Cases 
To emphasize more on the analysis which is done, we 

discuss two cases in which we determine the stress 
intensity factor and then report on the crack shape. 
 
Case-I 

In this case we assume that the flux f(x) on the 
surface of the crack b < x < c, the wedge shape function 
u0 (x) and the temperature distribution θ (x) to be 
constant. i.e. 

f(x) = f0 (Constant) 

u0(x) = u0 (Constant) (6.1) 

θ (x) = 0θ  (Constant) 

To determine the stress intensity factor we first 
obtain g0 (t), which from (4.8) on using (6.1) we get for 
p(x) as 

p(x) = -a f0 (6.2) 

On substitution of (6.2) in (4.6) and next by solving the 
integrals we get 
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where G(m, n) is given by (4.9). The constant L0 can be 
easily determined by integrating (6.3) through (4.4), as 
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Now to get the crack shape we need g1 (t), where p1 
(x) and T(x, 0) in first case on using (6.1) are reduced to 
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substitution of (6.8) in (4.14) and then using (4.13) 
yields the result 
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the constant L1 can be easily determined by integrating 
(6.10) by using (4.12). The stress intensity factors in this 
case on using the conditions of (6.1) are reduced to 

Kb = n(b) 0Δ (b) (6.11) 

Kc = n(c)Δ 0 (c) (6.12) 

where Δ0(b) and Δ0(c) from (4.14) are reduced to 
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the crack shape can be easily determined by integrating 
(6.10) by using (5.2). 
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Case-II 

As in case-I we assume the wedge shape function u0 
(x) and the temperature distribution θ(x) to be constant, 
but the surface of the crack to be insulated, i.e. there is 
no flux f(x) in the interval b < x < c . 

u0(x) = u0 (constant) 
 (6.15) 

θ (x) = 0θ  (constant) 

f (x) = 0 (6.16) 
using (6.16) in (6.2), we get 

p (x) = 0 (6.17) 

the condition of (6.16) reduces g0 (t) from (6.3) to 

g0(t) = )(
0

tq
L
δ

 (6.18) 

where L0 from (6.4) on using (6.16) is reduced to  

L0 =
)

2
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1

2

πψ

θ qcbq  (6.19) 

and similarly the constant L1 can also be obtained on 
using (6.16) in (6.10). Hence the stress intensity factors 
Kb and Kc in this case are reduced to 

Kb = n(b) (b) 0Δ

Kc = n(c) (c) 0Δ
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