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Abstract
In this paper, for a complete lattice £, we introduce interval-valued £-fuzzy
ideal (prime ideal) of a near-ring which is an extended notion of fuzzy ideal
(prime ideal) of a near-ring. Some characterization and properties are discussed.

1. Introduction

Zadeh in [19] introduced the concept of a fuzzy
subset of a non-empty set X as a function from X to
[0,1]. Goguen in [10] generalized the fuzzy subset of X,
to £-fuzzy subset, as a function from X to a lattice L.

Since Rosenfeld [18] in 1971 introduced the concept
of fuzzy subgroups following Zadeh, fuzzy algebra
theory has been developed by many researchers. Liu
[12] defined the fuzzy ideals of a ring and discussed the
operations on fuzzy ideals. Mukherjee and Sen [16],
Malik and Mordeson [16], Mashinchi and Zahedi [14],
Zahedi [21], shown the meaning of the fuzzy prime
ideals and its nature. The notion of fuzzy ideals and its
properties were applied to various areas: distributive
lattice [2], BCK-algebra [17], hyperrings [6,8], near-
rings [1,11], hypernear-rings [7].

In 1975, Zadeh [20] introduced the concept of
interval-valued fuzzy subsets (in short written by i-v
fuzzy sets), where the values of the membership
functions are intervals of numbers instead of the
numbers. In [4], Biswas defined interval-valued fuzzy
subgroups of the same nature of Rosenfeld’s fuzzy
subgroups.

In this paper, for a complete lattice £, we define
Interval-valued £-fuzzy ideals (prime ideals) of a near-
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ring, and we obtain an exact analogue of fuzzy ideals. In
particular, we show there exists a one-to-one
correspondence between the set of all f-invariant i-v £-
fuzzy prime ideals of R and the set of all i-v £-fuzzy
prime ideals of R’, where R and R’ are near-rings and f is
a homomorphism from R onto R'.

2. Basic Definitions
From now on this paper £ is a complete lattice [3],
i.e. there is a partial order < on £ such that, for any S ¢
£, infimum of S and supremum of S exist and these will
be denoted by A\ {s} and \/{s}, respectively. In
seS
particular for any elements a,ber, in f{ab} and
sup{a,b} will be denoted by aab and avb,
respectively. Also, £ is a ditributive lattice with a least
element 0 and a greatest element 1. If a,b € £ ; we write
a>b ifb<a,and a>b if a>b and a#b.

seS

Definition 2.1. Given two eclements a,ber with
a<b, we define the following closed interval set:

[a,b]={ce rja<c<b}.

Suppose @ (£) denotes the family of all closed intervals
of L.
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Definition 2.2. Let I, =[a,,b], |, =[a,,b,] and I; =
[a;,b;] be elements of D (L) then we define

LAl =[a Aay,b Ab,],

v, =[a va,,b vb,],

/_\{li}:[/\{ai}a/_\{bi}],

\VAULES [\/{ai}a\_/{bi}l

i
Wecall I, <1, ifand only if &, <a, and b, <b,.

Definition 2.3. Let X be a non-empty set. An £-fuzzy
subset F defined on X is given by

F={(Xup(X)|xe X}, where g : X > L.

Definition 2.4. Let X be a non-empty set. An interval-
valued £-fuzzy subset F defined on X is given by

F = {00[ k(0 (0] x e X,
where pt and g are two £-fuzzy subsets of X such
that £ (x) < uf (x) forall xe X .

Suppose A (X) = [k (X), 42 (0] TF gk (X) = i (%)
= where 0<c<1, then we have z(x)=[c,c] which
we also assume, for the sake of convenience, to belong
to ®(L£). Thus fig (X) e (L) for all xe X . Therefore

the i-v fuzzy subset F is given by

F={(x, e (x))x € X}, where fip : X = D(L).

Definition 2.5. Let f be a mapping from a set X into a
set Y. Let A be an i-v L-fuzzy subset of X. then the
image of A, i.e., f[A] is the i-v fuzzy subset of Y with
the membership function defined by

V {aa(D}if £71(y) =0
A (Y) = zefl(y)
[0,0]

forallyeY

otherwise

Let B be an i-v £-fuzzy subset of Y. Then the inverse
image of B, i.e., f~![B] is the i-v £-fuzzy subset of X
with the membership function given by
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gy = Ag(f(x)) forallxe X .

Definition 2.6. Let X and Y be any two non-empty sets
and f:X —Y be any function. An i-v £-fuzzy subset

of F of X is called f-invariant if

f(x)=f(y)= ag(x)=Ag(y), wherex,yeX.

Definition 2.7. A non-empty set R with two binary
operations +and- is called a near-ring [5,15] if

1) (R,+) is a group,
2) (R, is a semigroup,
3) x«(y+z)=x-y+x-zforallx,y,zeR.

To be more precise, they are left near-rings because the
left distributive law is satisfied. We will use the word
near-ring to mean left near-ring. We denote xy instead
of X-y. Note that X0=0 and Xx(-y)=-xy but in

general Ox=0 for all xe R[15, Lemma 1.10]. A near-
ring R is called a zero symmetric if 0x=0 for all
XxeR.

Definition 2.8. Let (R,+,) be a near-ring. An ideal of R
is a subset | of R such that

1) (I,+) is a normal subgroup of (R,+),
2) Rlcl,
3) (r+i)s—rsel foralliel and r,seR.

Note that if | satisfies (1) and (2) then it is called a left
ideal of R. If | satisfies (1) and (3) then it is called a
right ideal of R. Let P be an ideal of R. We call P a
prime ideal if for any ideal 1,Jc R, IJ <P then

lcP orlJcP.

i-v £-Fuzzy Ideals in a Near-Ring
In this section first we define interval-valued £-fuzzy
subnear-rings and ideals and then we explain some
results in this connection.

Definition 3.1. Let (R,+,) be a near-ring. An i-v £-

fuzzy subset F of R is called an i-v £-fuzzy subnear-
ring, if the following hold:

1) fie (A fip (Y) S fig (x—y) forall X,y e R ,
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2) ap(X)Afe(y) < fp(x-y)forallx,yeR.

Furthermore F is called an i-v £-fuzzy ideal of R, if F is
an i-v £-fuzzy subnear-ring of R and

3) /&F(X)zﬁF(erX_y)forallxayeR,
4) f1r () < fig (xy) forall X,y R,
5) fe() < fp((x+i)y—xy)forallx,y,ieR.

Note that F is an i-v £-fuzzy left ideal of R if it satisfies
(1), (3) and (4), and F is an i-v £-fuzzy right ideal of R
if it satisfies (1), (2), (3) and (5).

Now, we give an example of an i-v £-fuzzy ideal of a
near-ring.

Example 3.2. Let R={0,a,b,c} be a set with two
binary operations as follows:

O T 9 OO
S O O T|T

+
0
a
b
c

o O o 9| o
D O T OO0

Then (R,+,) is a near-ring. Define an i-v £-fuzzy
subset F by membership function fr:R— @ (L) by
Lr(b) = fip ()< g (@) < f1z(0) . Then F is an i-v £-
fuzzy ideal of R.

Lemma 3.3. For an i-v £-fuzzy ideal F of a near-ring R,
we have

fie (X) = i (=X) < fig (0) forall xe R .

Proposition 3.4. Let F be an i-v £-fuzzy ideal of R. If
A (X=Y) = 1 (0) then fg(X)= [ (Y).

Proof. Assume that iz (X—Y) = £ (0) . Then
He(X)= e (X=y +Y)
> fig (X=Y) A fe (Y)
= ite (0) A i1 (Y)
= fe ().

Similarly, using g (Y —X) = f1g (X=Y) = f1g (0) , we get
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A (Y) = i (X) .

Corollary 3.5. [uf,u¥] is an i-v £-fuzzy ideal of a
near-ring R if and only if uf,uf are £-fuzzy ideals of
R. Now, we define

Fb={xeX|uk(x) >t} and
FY ={xe X|u (x>}

Then 4p is an i-v £-fuzzy ideal of R if and only if for

every t,s where 0<t<s<1,FR,FY #0 are ideals of R.

Definition 3.6. Let F, and F, be two i-v L-fuzzy
subsets of a near-ring R. Then K, NF, and F,0F, are
defined as follows:

HE A, = e (X) A fE, (X),

. \/{[‘FI(Y)/\,&FZ(Z)}
Hror, (X) =4 x=y2

[0,0] if xis not expressible as X = yz.

Lemma 3.7. Let R be a near-ring, we have
1) If F,F, are two i-v £-fuzzy ideals of R (right or

left) then F,NF, is an i-v £L-fuzzy ideal of R

(right or left), respectively;
2) If R is a zero-symmetric and if F is an i-v £-

fuzzy right ideal and F, is an i-v L-fuzzy left
ideal, then FoF, c F N F,.

Proof. (1) It is an immediate consequence of Corollary
3.5 and Definition 3.6.

(2) We assume R is a zero symmetric near-ring. If
,[1,:10,:2 (x) =0, there is nothing to prove. Otherwise

fieor, (0 =\/ e, (Y) A f15, (D)}

X=yz

Since F is an i-v £-fuzzy left ideal, we have
A (2) < fig (Y2) = fig (%),

and since F is an i-v £-fuzzy right ideal, we have
g, (X) = fg (y2) = i1 ((0+Y)2—02)) 2 i1 (Y) -

Therefore
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A or, (X) < L (X) A fg, (X) = lg, ~F, (X) -

Definition 3.8. Let X be a non-empty set and F be an i-v
L-fuzzy subset of X. Then we define

Fiisy = {x € X]ig () 2[t, s} .

The set Fy g is called the “level set” of F.
It is easy to see that Fy o =FR-NFJ .

Now, we obtain the relation between an i-v £-fuzzy
ideal and level ideals. This relation is expressed in terms
of a necessary and sufficient condition.

Theorem 3.9. Let R be a near-ring and F be an i-v £-
fuzzy subset of R. Then F is an i-v £-fuzzy ideal of R if
and only if for every t, s where 0<t<s<L F;#0 is

an ideal of R.

Proof. The proof is similar to the proof of Theorem 3.4
of [7], by considering the suitable modification with
using Definitions 2.4 and 3.1.

Definition 3.10. An i-v £-fuzzy ideal P of a near-ring R
is said to be prime if P is not constant function and for
any i-v L-fuzzy ideals F,F, in R,F0F, c P implies
FFcPorFcP.

Proposition 3.11. Let P be an i-v £-fuzzy prime ideal of
a near-ring R. Define

7= {x e Rlp(X) = 1p(0)},
then = is a prime ideal in R.

Proof. The proof is similar to the proof of Theorem 3.7
in [1].

Proposition 3.12. Let R be a near-ring and F,F, are i-
v L-fuzzy prime ideals of R, then F,nF, is an i-v £-
fuzzy prime ifand only if F, c F, or F, c F.

Proof. The proof is straightforward, in view of the fact
that FoF, c F N F,.

We have the following corollary which plays an
important role in the determination of i-v £-fuzzy prime
ideals.

Corollary 3.13. Let R be a near-ring. Then every ideal
of R is a level ideal of an i-v £-fuzzy ideal of R.
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Proof. Let | be any ideal of a near-ring R and let
lay, 1[5, B>1#][0,0] be elements in D (£). Then the

fuzzy subset F is defined as follows:

(6, 6,] ifxel
g (X) =

[a,a;]  otherwise.

We have | =F, 5, and by Theorem 3.9, it is enough
to prove that F is an i-v £-fuzzy ideal.

An element [¢),a,]#[1,1] in D(L) is called “prime”
if for any [a,,a,],[b,b,]e D(L), [a;,a,]A[b,b,]<
[e,,] implies either [a,,a,]<[e;,a,] or [b;,b,]<

[ag, 5]

Theorem 3.14. Let | be a prime ideal of a near-ring R
and let [a;,a,] a prime element in D (£). Let P be the

fuzzy subset of R defined by

[L1] if xel

[e),c,] otherwise.

fp (X) :{

Then P is an i-v £-fuzzy prime ideal.

Proof. By Corollary 3.13, P is clearly a non-constant i-v
L-fuzzy ideal. Let F, and F, be any i-v £-fuzzy ideals

and let F, ¢ P,F, ¢ P. Then there exist X, y in R, such
that g (X) £ f1p(X) and fig (X) £ fip(X) . This implies
that fp(X) = fp(y)=[e;,a,] and hence x¢R and
y¢R. Since | is prime, there exists r € R such that
xry ¢ | . Now, we have 4F (X)£[e,@,] and aF,(ry)
£[ey,a,] (otherwise 4F,(y)<[a;,a,] and since
[a),a,] is prime, /g (X) A fig, (1Y) £[ey,a,] and hence
(FOFy)(xry) £[ay,a, 1= fp(Xry) so that FoF, ¢ P.
Hence P is an i-v £-fuzzy prime.

Lemma 3.15. Let f be a mapping from a non-empty set
X into a non-empty set Y, and let A, B are i-v L-fuzzy
subsets of X, Y, respectively, such that

fin =[pg, 3 ]: X > D (L) and

g =[ug, 18 1:Y > D (L)

Hp =LHB,HB - :
Then

A =L (uf), f(uR)] and
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g gey =LE ). £ ().

Using Lemma 3.15, the following propositions are
obvious.

Proposition 3.16. Let f be a homomorphism from a near
ring R onto a near-ring R’, and A be any f -invariant i-v
£-fuzzy prime ideal of R. Then f[A] is an i-v £-fuzzy
prime ideal of R'.

Proposition 3.17. Let f be a homomorphism from a near
ring R onto a near-ring R’, and B be any f -invariant i-v
£-fuzzy prime ideal of R’. Then f~![B] is an i-v £-
fuzzy prime ideal of R.

Theorem 3.18. Let f be a homomorphism from a near
ring R onto a near-ring R’, then the mapping A — f[A]

defines a one-to-one correspondence between the set of
all f -invariant i-v £-fuzzy prime ideals of R and the set
of all i-v £-fuzzy prime ideals of R'.
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