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Abstract 
In this paper, for a complete lattice L, we introduce interval-valued L-fuzzy 

ideal (prime ideal) of a near-ring which is an extended notion of fuzzy ideal 
(prime ideal) of a near-ring. Some characterization and properties are discussed. 
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1. Introduction 
Zadeh in [19] introduced the concept of a fuzzy 

subset of a non-empty set X as a function from X to 
[0,1]. Goguen in [10] generalized the fuzzy subset of X, 
to L-fuzzy subset, as a function from X to a lattice L. 

Since Rosenfeld [18] in 1971 introduced the concept 
of fuzzy subgroups following Zadeh, fuzzy algebra 
theory has been developed by many researchers. Liu 
[12] defined the fuzzy ideals of a ring and discussed the 
operations on fuzzy ideals. Mukherjee and Sen [16], 
Malik and Mordeson [16], Mashinchi and Zahedi [14], 
Zahedi [21], shown the meaning of the fuzzy prime 
ideals and its nature. The notion of fuzzy ideals and its 
properties were applied to various areas: distributive 
lattice [2], BCK-algebra [17], hyperrings [6,8], near-
rings [1,11], hypernear-rings [7]. 

In 1975, Zadeh [20] introduced the concept of 
interval-valued fuzzy subsets (in short written by i-v 
fuzzy sets), where the values of the membership 
functions are intervals of numbers instead of the 
numbers. In [4], Biswas defined interval-valued fuzzy 
subgroups of the same nature of Rosenfeld’s fuzzy 
subgroups. 

In this paper, for a complete lattice L, we define 
Interval-valued L-fuzzy ideals (prime ideals) of a near- 
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ring, and we obtain an exact analogue of fuzzy ideals. In 
particular, we show there exists a one-to-one 
correspondence between the set of all f-invariant i-v L-
fuzzy prime ideals of R and the set of all i-v L-fuzzy 
prime ideals of R′, where R and R′ are near-rings and f is 
a homomorphism from R onto R′. 

  
2. Basic Definitions 

From now on this paper L is a complete lattice [3], 
i.e. there is a partial order ≤ on L such that, for any S ⊆ 
L, infimum of S a  supremum S exist and these will 
be denoted by }{s

Ss
∧
∈

 and , respectively. In 

particular for any elements , in  and 
 will be denoted by  and , 

respectively. Also, L is a ditributive lattice with a least 
element 0 and a greatest element 1. If ; we write 

 if 

}{s
Ss
∨
∈

L∈ba, },{ baf
},sup{ ba ba∧ ba∨

L∈ba,
ba ≥ ab ≤ , and  if  and . ba > ba ≥ ba ≠

 
Definition 2.1. Given two elements L∈ba,  with 

ba ≤ , we define the following closed interval set: 

[ ] { }bcacba ≤≤∈= L, . 

Suppose D (L ) denotes the family of all closed intervals 
of L. 
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Definition 2.2. Let ,  and  
 be elements of D (L ) then we define 

],[ 111 baI = ],[ 222 baI = =iI
],[ ii ba

{ } { } { }

{ } { } { } .],[

,],[

,],[

,],[

212121

212121

i
i

i
i

i
i

i
i

i
i

i
i

baI

baI

bbaaII

bbaaII

∨∨∨
∧∧

=

=

∨∨=∨

∧∧=∧

∧  

We call  if and only if  and . 12 II ≤ 12 aa ≤ 12 bb ≤
 

Definition 2.3. Let X be a non-empty set. An L-fuzzy 
subset F defined on X is given by 

})(,{( XxxxF F ∈= μ , where . L→XF :μ

 
Definition 2.4. Let X be a non-empty set. An interval-
valued L-fuzzy subset F defined on X is given by 

( ) ( )[ ]( ){ }XxxxxF U
F

L
F ∈= μμ ,, , 

where  and  are two L-fuzzy  subsets of X such 
that  for all 

L
Fμ U

Fμ
)()( xx U

F
L
F μμ ≤ Xx∈ . 

Suppose . If  
= c where , then we have  which 
we also assume, for the sake of convenience, to belong 
to D (L ). Thus D (L ) for all . Therefore 
the i-v fuzzy subset F is given by 

)](),([)(ˆ xxx U
F

L
FF μμμ = )()( xx U

F
L
F μμ =

10 ≤≤ c ],[)(ˆ ccxF =μ

∈)(ˆ xFμ Xx∈

( ){ }XxxxF F ∈= )(ˆ,μ , where D (L ). →XF :μ̂

 
Definition 2.5. Let f be a mapping from a set X into a 
set Y. Let A be an i-v L-fuzzy subset of X. then the 
image of A, i.e., f [A] is the i-v fuzzy subset of Y with 
the membership function defined by 

{ }
Yy

yfz
y

A
yfz

Af ∈
⎪
⎩

⎪
⎨

⎧ /≠
=

−

∈
∨

−  allfor   
otherwise                   ]0,0[

0)( if )(ˆ
)(ˆ

1

)(
][

1

μ
μ  

Let B be an i-v L-fuzzy subset of Y. Then the inverse 
image of B, i.e.,  is the i-v L-fuzzy subset of X 
with the membership function given by 

][1 Bf −

( )( ) XxxfBBf ∈=−  allfor ˆˆ ][1 μμ . 

 
Definition 2.6. Let X and Y be any two non-empty sets 
and   be any function. An i-v L-fuzzy subset 
of F of X is called f -invariant if 

YXf →:

( ) ( ) ( ) ( ) Xyxyxyfxf FF ∈=⇒= , where,ˆˆ μμ . 

 
Definition 2.7. A non-empty set R with two binary 
operations ⋅+  and  is called a near-ring [5,15] if 

1)  is a group, ),( +R

2)  is a semigroup, ),( ⋅R

3) ( ) Rzyxzxyxzyx ∈⋅+⋅=+⋅ ,,allfor . 

To be more precise, they are left near-rings because the 
left distributive law is satisfied. We will use the word 
near-ring to mean left near-ring. We denote xy instead 
of yx ⋅ . Note that 00 =x  and  but in 
general 

xyyx −=− )(
00 ≠x Rx for all ∈ [15, Lemma 1.10]. A near-

ring R is called a zero symmetric if 00 =x  for all 
Rx∈ . 

 
Definition 2.8. Let  be a near-ring. An ideal of R 
is a subset I of R such that 

),,( ⋅+R

1)  is a normal subgroup of , ),( +I ),( +R

2) , IRI ⊆

3) Irssir ∈−+ )(  for all  and . Ii∈ Rsr ∈,

Note that if I satisfies (1) and (2) then it is called a left 
ideal of R. If I satisfies (1) and (3) then it is called a 
right ideal of R. Let P be an ideal of R. We call P a 
prime ideal if for any ideal ,  then 

 or . 
RJI , ⊆ ⊆

⊆ ⊆
PIJ

PI PJ
 

i-v L-Fuzzy Ideals in a Near-Ring 
In this section first we define interval-valued L-fuzzy 

subnear-rings and ideals and then we explain some 
results in this connection. 

 
Definition 3.1. Let  be a near-ring. An i-v L-
fuzzy subset F of R is called an i-v L-fuzzy subnear-
ring, if the following hold: 

),,( ⋅+R

1) , Ryxyxyx FFF ∈−≤∧ , allfor  )(ˆ)(ˆ)(ˆ μμμ
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2) . Ryxyxyx FFF ∈⋅≤∧ , allfor  )(ˆ)(ˆ)(ˆ μμμ

Furthermore F is called an i-v L-fuzzy ideal of R, if F is 
an i-v L-fuzzy subnear-ring of R and 

3) , Ryxyxyx FF ∈−+= ,allfor )(ˆ)(ˆ μμ

4) , Ryxxyx FF ∈≤ ,allfor )(ˆ)(ˆ μμ

5) . Riyxxyyixi FF ∈−+≤ ,,allfor ))((ˆ)(ˆ μμ

Note that F is an i-v L-fuzzy left ideal of R if it satisfies 
(1), (3) and (4), and F is an i-v L-fuzzy right ideal of R 
if it satisfies (1), (2), (3) and (5). 

Now, we give an example of an i-v L-fuzzy ideal of a 
near-ring. 

 
Example 3.2. Let  be a set with two 
binary operations as follows: 

},,,0{ cbaR =

 
+ 0 a b c  ⋅ 0 a b c
0 0 a b c  0 0 0 0 0
a a 0 c b  a 0 0 0 0
b b c a 0  b 0 0 0 0
c c b 0 a  c 0 0 a a

 
Then  is a near-ring. Define an i-v L-fuzzy 
subset F by membership function D (L ) by 

. Then F is an i-v L-
fuzzy ideal of R. 

),,( ⋅+R
→RF :μ̂

)0(ˆ)(ˆ)(ˆ)(ˆ FFFF acb μμμμ <<=

 
Lemma 3.3. For an i-v L-fuzzy ideal F of a near-ring R, 
we have 

Rxxx FFF ∈≤−= allfor )0(ˆ)(ˆ)(ˆ μμμ . 

 

Proposition 3.4. Let F be an i-v L-fuzzy ideal of R. If 
 then . )0(ˆ)(ˆ FF yx μμ =− )(ˆ)(ˆ yx FF μμ =

 
Proof. Assume that . Then )0(ˆ)(ˆ FF yx μμ =−

.)(ˆ

)(ˆ)0(ˆ

)(ˆ)(ˆ

)(ˆ)(ˆ

y

y

yyx

yyxx

F

FF

FF

FF

μ

μμ

μμ

μμ

=

∧=

∧−≥

+−=

 

Similarly, using , we get 

. 

)0(ˆ)(ˆ)(ˆ FFF yxxy μμμ =−=−

)(ˆ)(ˆ xy FF μμ ≥
 

Corollary 3.5.  is an i-v L-fuzzy ideal of a 
near-ring R if and only if  are L-fuzzy ideals of 
R. Now, we define 

],[ U
F

L
F μμ

U
F

L
F μμ ,

{ }
{ }.)(

and)(

sxXxF

txXxF
U
F

U
s

L
F

L
t

≥∈=

≥∈=

μ

μ
 

Then  is an i-v L-fuzzy ideal of R if and only if for 
every t, s where  are ideals of R. 

Fμ̂
0,,10 /≠≤≤≤ U

s
L

t FFst
 

Definition 3.6. Let  and  be two i-v L-fuzzy 
subsets of a near-ring R. Then  and  are 
defined as follows: 

1F 2F

21 FF ∩ 21oFF

{ }
⎪⎩

⎪
⎨
⎧

=

∧
=

∧=

∨
=

∩

. as eexpressiblnot  is  if]0,0[

)(ˆ)(ˆ
)(ˆ

,)(ˆ)(ˆˆ

21

21

2121

yzxx

zy
x

xx

FF
yzxoFF

FFFF

μμ
μ

μμμ

 

Lemma 3.7. Let R be a near-ring, we have 
1) If  are two i-v L-fuzzy ideals of R (right or 

left) then  is an i-v L-fuzzy ideal of R 
(right or left), respectively; 

21, FF

21 FF ∩

2) If R is a zero-symmetric and if  is an i-v L-
fuzzy right ideal and  is an i-v L-fuzzy left 
ideal, then . 

1F

2F

2121 FFoFF ∩⊆
 

Proof. (1) It is an immediate consequence of Corollary 
3.5 and Definition 3.6. 

(2) We assume R is a zero symmetric near-ring. If 
0)(ˆ

21
=xoFFμ , there is nothing to prove. Otherwise 

{ })(ˆ)(ˆ)(ˆ
2121

zyx FF
yzx

oFF μμμ ∧=∨
=

. 

Since  is an i-v L-fuzzy left ideal, we have 1F

)(ˆ)(ˆ)(ˆ
111

xyzz FFF μμμ =≤ , 

and since  is an i-v L-fuzzy right ideal, we have 1F

)(ˆ))0)0((ˆ)(ˆ)(ˆ
1111

yzzyyzx FFFF μμμμ ≥−+== . 

Therefore 
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)(ˆ)(ˆ)(ˆ)(ˆ
212121

xxxx FFFFoFF ∩=∧≤ μμμμ . 

 
Definition 3.8. Let X be a non-empty set and F be an i-v 
L-fuzzy subset of X. Then we define 

{ }],[)(ˆ],[ stxXxF Fst ≥∈= μ . 

The set  is called the “level set” of F. ],[ stF

It is easy to see that . U
s

L
tst FFF ∩=],[

Now, we obtain the relation between an i-v L-fuzzy 
ideal and level ideals. This relation is expressed in terms 
of a necessary and sufficient condition. 

 
Theorem 3.9. Let R be a near-ring and F be an i-v L-
fuzzy subset of R. Then F is an i-v L-fuzzy ideal of R if 
and only if for every t, s where 0,10 ],[ /≠≤≤≤ stFst  is 
an ideal of R. 

 
Proof. The proof is similar to the proof of Theorem 3.4 
of [7], by considering the suitable modification with 
using Definitions 2.4 and 3.1. 

 
Definition 3.10. An i-v L-fuzzy ideal P of a near-ring R 
is said to be prime if P is not constant function and for 
any i-v L-fuzzy ideals  in  implies 

 or . 
21, FF PoFFR ⊆21,

PF ⊆1 PF ⊆2

 
Proposition 3.11. Let P be an i-v L-fuzzy prime ideal of 
a near-ring R. Define 

{ })0(ˆ)(ˆ PP xRx μμπ =∈= , 

then π is a prime ideal in R. 
 

Proof. The proof is similar to the proof of Theorem 3.7 
in [1]. 

 
Proposition 3.12. Let R be a near-ring and  are i-
v L-fuzzy prime ideals of R, then  is an i-v L-
fuzzy prime if and only if  or . 

21, FF

21 FF ∩

21 FF ⊆ 12 FF ⊆
 

Proof. The proof is straightforward, in view of the fact 
that . 2121 FFoFF ∩⊆

We have the following corollary which plays an 
important role in the determination of i-v L-fuzzy prime 
ideals. 

 
Corollary 3.13. Let R be a near-ring. Then every ideal 
of R is a level ideal of an i-v L-fuzzy ideal of R. 

 

Proof. Let I be any ideal of a near-ring R and let 
 be elements in D (L ). Then the 

fuzzy subset F is defined as follows: 
]0,0[],[],[ 2121 ≠≤ ββαα

⎪⎩

⎪
⎨
⎧ ∈

=
otherwise.],[

 if],[
)(ˆ

21

21

αα

ββ
μ

Ix
xF  

We have ],[ 21 ββFI =  and by Theorem 3.9, it is enough 
to prove that F is an i-v L-fuzzy ideal. 

An element  in D (L ) is called “prime” 
if for any D (L ),  

 implies either  or  
. 

]1,1[],[ 21 ≠αα
∈],[],,[ 2121 bbaa ≤∧ ],[],[ 2121 bbaa

],[ 21 αα ],[],[ 2121 αα≤aa ≤],[ 21 bb
],[ 21 αα

 
Theorem 3.14. Let I be a prime ideal of a near-ring R 
and let  a prime element in D (L ). Let P be the 
fuzzy subset of R defined by 

],[ 21 αα

⎩
⎨
⎧ ∈

=
otherwise.],[

 if]1,1[
)(ˆ

21 αα
μ

Ix
xP  

Then P is an i-v L-fuzzy prime ideal. 
 

Proof. By Corollary 3.13, P is clearly a non-constant i-v 
L-fuzzy ideal. Let  and  be any i-v L-fuzzy ideals 
and let . Then there exist x, y in R, such 
that 

1F 2F
PFPF ⊆/⊆/ 21 ,

)(ˆ)(ˆ
1

xx PF μμ ≤/  and )(ˆ)(ˆ
2

xx PF μμ ≤/ . This implies 

that  and hence ],[)(ˆ)(ˆ 21 ααμμ == yx PP Rx∉  and 
Ry∉ . Since I is prime, there exists Rr∈  such that 

Ixry∉ . Now, we have  and  
 (otherwise  and since 

 is prime, 

],[)(ˆ 211 ααμ ≤/xF )(ˆ 2 ryFμ
],[ 21 αα≤/ ],[)(ˆ 212 ααμ ≤yF

],[ 21 αα ],[)(ˆ)(ˆ 2121
ααμμ ≤/∧ ryx FF  and hence 

 so that . 
Hence P is an i-v L-fuzzy prime. 

)(ˆ],[))(( 2121 xryxryoFF Pμαα =≤/ PoFF ⊆/21

 
Lemma 3.15. Let f be a mapping from a non-empty set 
X into a non-empty set Y, and let A, B are i-v L-fuzzy 
subsets of X, Y, respectively, such that 

→= XU
A

L
AA :],[ˆ μμμ D (L ) and 

→= YU
B

L
BB :],[ˆ μμμ D (L ). 

Then 

)](),([ˆ ][
U
A

L
AAf ff μμμ =  and 
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)](),([ˆ 11
][1

U
B

L
BBf ff μμμ −−=− . 

Using Lemma 3.15, the following propositions are 
obvious. 

 
Proposition 3.16. Let f be a homomorphism from a near 
ring R onto a near-ring R′, and A be any f -invariant i-v 
L-fuzzy prime ideal of R. Then f [A] is an i-v L-fuzzy 
prime ideal of R′. 

 
Proposition 3.17. Let f be a homomorphism from a near 
ring R onto a near-ring R′, and B be any f -invariant i-v 
L-fuzzy prime ideal of R′. Then  is an i-v L-
fuzzy prime ideal of R. 

][1 Bf −

 
Theorem 3.18. Let f be a homomorphism from a near 
ring R onto a near-ring R′, then the mapping  
defines a one-to-one correspondence between the set of 
all f -invariant i-v L-fuzzy prime ideals of R and the set 
of all i-v L-fuzzy prime ideals of R′. 

][AfA→
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