J. Sci. I R. Iran

Vol. 12, No. 2, Spring 2001

APPLICABILITY OF THE WELL OPERATED CONDITIONS FOR THE
SOLUTION OF
MIXED PROBLEM ATTRIBUTED TO
SCHRODINGER EQUATION

G. Kavei' and N. Aliev®

! Material and Energy Research Centre, P.O.Box 14155-4777, Tehran, Islamic Republic of Iran
2 Mathematics Department, Tarbiat Modarress University, Tehran, Islamic Republic of Iran

Abstract
As a sequel of the recent works, we would like to discuss another stage for the
solution of the mixed problem which considers the concepts of well operated
conditions applicable to the solution of mixed problem, i.e. the existence and
uniqueness of the solution must always conformable with some assumptions.

Introduction

It is well known in classical mathematical courses
that the partial differential equations for parabolic or
hyperbolic usually are Cauchy type problems, or mixed
problems (i.e., Cauchy problem with boundary
conditions). For an elliptical equation, the boundary
conditions are considered by some other problems such
as, Dirichlet and Neumann problems or in a specific
case, the Poincaré problem [1-3]. They have suggested
that, for an elliptical equation, conditions of the mixed
problem are local boundary conditions, as petrovskii in
his consideration has pointed out [4]. However, there is
a possibility to apply such problems for a mixed
problem with non-local boundary conditions transfering
the mixed problem to the spectral problem form, [5].
The transformed boundary problem (spectral problem),
under some conditions, will be in the form of the second
type Fredholm’s integral at a half cylinder space [6].

In the final study the existence and uniqueness of the
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solution for the spectral problem has been treated, and
the boundary equations for domain D were defined [7].

Analytic Solution of the Schrédinger Equation

The present study considers existence and uniqueness
of the solution for the Schréodinger equation at half
cylinder space with some assumptions to find a well
operated solution. To obtain this, it is necessary to find
an asymptote for a adjoint problem [the boundary value
problem correlated to mixed problem]. However, the
mixed problem has been recently quoted [6]:

ou(x,t) h?

ih————=+—A u(x,t) - V(x)u(x,t) =0
ot 2u
x=(x1,x2)eDcR2,t>0 (D
and its boundary conditions
u(x0)=y(x), xeD )
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To solve such a problem as proposed by Courant and
Vladimirov [1,2], the Laplace transformation should be
carried out, using a method suggested by Rasulov [8].
The transformed form of the mixed problems could be
written as follow:

Adi(x,), + fl—é‘(im V(X)) (x1) = %y/(x),

xeD 4)
and the transformed boundary condition is:
3| a0 A ot
LA K =
=&, (0. 4)
x €lahl; p=12 5)

using the Helmohtz equation,

A u(x, /1)+

u(x A)=0

where the general solution for the above equation is
proposed in [2] as:

Ur-£,2) = H“{,/Mll flj

where Hél)( 24 /h| §|) is the Hankel function, and

(6)

the asymptote of the Equation (6) obtained by [2] as
following:
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expl-2u/ WA+ 1)/2

—iJ(A=2)72) -]+

A—>o (7)

where A, is the imaginary part of A, for [x-§| — O the
Equation(6) could be written as following:

U(x—E,4) = %1n|x—§| + 8)

Any solution for Equation (4) at a defined region of the
domain D would be written as below [6].

U(x-&2)

H(EN) = J' r[ﬁ(x,/i) ~

1

6u (x, 1)
X

——=U(x-¢, /1)} cos(v,x;)dx +

+J- {g(x’ﬂ)w_
r

0x,

_ou(x,4)

U(x— .f,/i)} cos(v,x, )dx +
2%)

+ h—‘l;.[DV(x)E(x,/%)U(x - &, A)dx +
L2 I y(OU(x—&)dx EeD  (9)
h JD

The solution of (4) and (5), that is (9) should satisfy the
boundary value.

H(E D) = 2L [E(x, A)W -
1
_ou(x,4)
2

Ux-¢, /1)} cos(v, x; )dx
X1
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0x,

_GA) e, l)}cos(v X, )dx +
X2
+ h—é‘j_DV(x)ﬁ(x, U (x - & A)dx +

+Mj y(U(x-&Adx EeT (10)
h D

The above conditions have been used to handle the
problem in the previous work, [6], again, to give a
solution for the mixed problem (1-3) by the reversed
Laplace transformation, the condition proposed by
[1,2,8] in the form of:

c+io
u(x,0) = ﬁ j L iiCn et 11

where ¢>0 and is a constant and #(x,\) is the solution of
the boundary value problem, by these assumptions and
using the following relation:

2 /1/11

AUKx-&EA)+ Ux-&)=0(x-¢) (12)

where 3(x-&) is the Dirac delta function. In this case, the
last term of the right hand side in (10) can be calculated
as following:

%J'Dy/(xw(x—g,;t)dx
= ()[— (O AU 6/1)}

h

=—w<g’>——j V(DAL (x—& D)dx = 248) ""(5)

2 U(-£,2) op(x)
) F{'//() v, ov. U(x f,ﬂ)}dx
—%IDAI//(x)U(x—f,/i)dx (12,)
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By the above conditions the following remarks can be
elucidated:

Remark 1. If w(x)eCH(D)NCA® (D) and the
following equation

oy (x)

=Ay(x)=0 xel
ov

y(x)=

X

is maintained, then, the asymptotic relation of (12,) will
be as following:

4“"[ V(U (=& Ddx =0(A 7 5), EeT

Remark 2. According to Remark 1 for the Equation (9),
Remark 2 will be elucidated:

%L} W)U (x— &, A)dx

v h

1
2~
D
A 24 +) c€

Assume that for >0 the (11), its derivative and
second derivative to x in term of x; and x, are converged
and also (11) is finite for # — 0. Now, if the (11) is
substituted in Equation (1) we could drive an equation.

2 Ou(x,t) +Au(x t)__'uV(x)u(x 1)
h ot

- L o /“{A i, /1)+—[hz/1 V(0 (x, z)}

27

_ L Zﬂl Ty (x)dA = —y/(x)e"’zj efdp
27 J ¢
2 i ,

= Tl//(x)e"&(t) =0 t>0 (13)

This relation concludes that (11) satisfies Equation (1).
If (11) is substituted at boundary conditions (3), the
following relation is possible:
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k=1 | j=1 J ‘xz =Yk (X1)
1 c+io
- J' e*d
270 I c-im
2 | 2 ou (x /1)
| Y el o) e al i )
k=1] j=1 J ‘X2:7/k<xl>
1 c+ioo
- eMa,(x,A)dA = a,(x,1),
27 o0
p=12 x e [a,b] t>0 (14)

that is, (11) also satisfies the boundary conditions.
However for f(A)=A"" which has been pointed by [9],
the reversed Laplace transforniation of the above
relation is:

tn

= for n>-1
J®O= F( n+1)
and
0 0 c+ioo p At
L L for n=0
ra o 2 A

If the first term of asymptotic relation of #(x,A) is on the
form of the above relation, then (11) can be written as
following:

c+ioo
u(x,0) = ! le,_m.[ M (x,A)dA
27 c—io
c+ioo
- LLimHoj R ACIp T (15)
27 c—in A

e., (11) satisfies the initial condition (i.e. (2)). As
pointed in [8], from the asymptotic relation of (7) it is
clear that for A,>0, exponential terms inU(x-£,A) tends
to zero, and when [A\|—o, (11) shows that the upper
part of the Laplace asymptotic line bends towards the
left side of imaginary axis, so that, the variable A on this
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carvture moves:
ifRelA<0 [M—oo and>0then |¢"|=¢""" 0.
This treatment is not possible for the lower part of
the Laplace asymptote line as shown in asymptotic
relation of (7) if A,<0 then, the exponential term of the
U(x-&,1) will not tend to zero. This means that, there
exists a possible specific value just close to imaginary
axis on the lower part (spectral problem). If [A|—0
towards the lower part of the Laplace asymptote line,
the U(x-&,A) tends to zero gently, in other words,
behaves as Fourier coefficient.

Substituting relation (12) at (9) and (10) with xeI’
and <€D, and considering that, the dependent term to

d is zero we obtain a solution for the U(x-&,1). The other
terms of Laplace operator, which U(x-§,A) has those
terms, non of its derivative could be written using
partial integral. To obtain the asymptotic relation for the
last term of Equation (9) in the form of Remark 1, we
should repeat the operation as necessary. The required
asymptotic relation from second term on the right side
of Equation (9) can be obtained by substitution of the
i(x,A) and repeat the same stages, to maintain the
asymptotic relation.

Conclusion

The problem has been considered, by taking an
advantage of Ferdholem’s Integral [6]. In the present
study, the transformed form of the boundary value
problem can be written as relations (4) and (5). The
solution for the tranformed problem proposed as
Equation (9). With the conditions of Remarks 1 and 2 a
well operated solution for the mixed problem would be
elucidated, that is a conformable and unique solution of
the problem.
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