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Abstract 
Here we consider some non-autonomous ordinary differential equations of 

order n and present some results and theorems on the existence of periodic 
solutions for them, which are sufficient conditions, section 1. Also we include 
generalizations of these results to vector differential equations and examinations 
of some practical examples by numerical simulation, section 2. For some special 
cases that extendibility of the solutions can be verified and under other suitable 
conditions, we show that the frequency of the periodic solutions can be arbitrary 
small†. 
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Introduction 
In this paper we consider the following n - th order 

differential equation: 

)(),,,,( )1()( texxxtfx nn =+ −K&  

our goal is to present sufficient conditions for the 
existence of periodic solutions of the above system. Our 
method is based on considering the above system with 
some boundary conditions and constructing one 
operator by using Green’s function. Then we use 
Shauder’s fixed point theorem to show the existence of 
at least one solution that satisfies those conditions. By 
imposing suitable conditions we extend this solution 
periodically in the future. Then we generalized the 
obtained results to the space ℜm (ℜ is the set of real 
 
Keywords: Non-linear system; Periodic solution and Green’s 
function 
numbers) for a system of the form 

)(),,,,( )1()( tEXXXtFX nn =+ −K&  

where  and F, E are vector functions of 
dimension m. Also we present sufficient conditions for 
the existence of periodic solutions for some important 
cases such as 
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and their vector form counterparts. By extendibility of 
the solutions in the future, it is possible to choose the 
period of the function e(l ) arbitrarily large as well as the 
period of the periodic solutions. 
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In addition, we examine some examples numerically. 
In this respect, we use the shooting method to obtain 
proper initial conditions that guarantee periodic 
oscillation of the systems. 

 
Preliminaries and Notes 

In sequel we denote Ttu )(  as 
[ ]
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 and Ttu )(  as below 
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where n is the dimension of the above differential 
equation. Also  is Dirac delta function; G(t, s) 
designate Green’s function on which 
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Inner product between two vectors X, Y denoted as 
YX ⋅  in the usual sense. Let us consider the following 

non-linear equation 

)(),,,,( )1()( texxxtfx nn =+ −K&  (1) 

We assume e(l ) and f are continuous and smooth 
enough such that for any set of initial point 

 the existence and uniqueness of its 
solutions are held and the solutions can be extended in 
the  (τ is a finite positive real number). 

10
0 ),( +ℜ∈ nxt

nℜ×],0[ τ
 

Section 1: Sufficient Conditions 
To establish sufficient conditions for the existence of 

periodic solutions of the system, we require the 
following theorem. 

 
Theorem 1.1. Suppose e(l ) is bounded on τωω <],,0[  
and  is continuous with respect to its 
arguments, then there exists x(t) solution of (1) in [0,ω] 
such that 
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To prove the above Theorem we require the 
following Lemma: 
Lemma 1.1. Given 
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then its corresponding Green’s function with boundary 
conditions (1.1) is as follows 
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and we have 
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Proof. By applying the boundary conditions (1.1) to 
G(l, s) we have 0)!1()!1( 11 =−+− anbn  and for i > 1 
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but by using mathematical induction on the above 
relation we obtain 
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Now from (1.5) and (1.6) the recursive relations of (1.2) 
and (1.3) are obtained. Now we show (1.4). By 
induction again we have if 1≥ω  and if 1)!1( −+− ibin  
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and similarly 
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If ω < 1 then one can show similarly that 
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Therefore, Lemma 1.1 is proved. 
 

Proof of Theorem 1.1. Let G(t, s) be a Green’s function 
as defined in the above Lemma, and define Banach 
space B as follows 
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For M small enough, indeed 
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so Ux(t) is a map from B into itself and completely 
continuous operator. 

Then from Schauder’s theorem it follows that there 

exists at least one fixed point of Ux(l), i.e. there exists 
x(l) on [0,ω] such that 

dssxsxsxsf

seslGlx

n ))}(,),(),(,(

)({),()(

)1(
0

−−

= ∫
K&

ω

 

but this x(t) is a solution of system (1) and hence the 
theorem is proved. 

 
Corollary 1.1. If in addition to assumptions of the 
above theorem we assume e(t) and φ(t) are 2ω-periodic 
and 
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then there exists at least one 2ω-periodic solution for 
system (1) such that 
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Proof. Because of the existence of x(l ) on [0,ω], we can 
extend x(l ) to the closed interval [0,2ω] as follows 
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By using the above assumptions, it is obvious that 
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so z(t) is a solution of (1), that can be periodically 
extended in the future and furthermore we have 

0)(
2

0
=∫

ω
dttz  

 
Remark. If in system (1) we have e(l) = 0, then results 
of theorem 1.1 and the above corollary remain valid. 

Let us now consider some examples. 
 

Example 1.1. Let us consider the following system: 

0),,,()( )1()( =+ −nn xxxftx K&ϕ  (1.7) 
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with conditions of φ(t) is 2ω-periodic and 
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Now assume that  is a polynomial of 
 and its minimum degree is greater than 

one; then there exists α
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and the solutions of the system can be extended in the 
future and if 3/)( μϕ ω =t , then for any pair of ωμ,  
there exists c such that 

cMn ≤μω  

where ( )
ω

)(,),(),( )1( txtxtxfM n−= K& . In fact it suffices 
to choose c << 1 such that above inequality holds. 

 
Example 1.2. Consider the following equation 
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and φ(t) is 2ω-periodic real function of t such that 
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one, ad if the solutions of the system can be extended in 
the future, then for any pair of ωμ,  there exists one 
2ω-periodic solution for the above system. Extendibility 
of the solutions of the above system can be established 
for example by the following Lemma. 

 
Lemma 1.2. For given T > 0 suppose e(t) is bounded 
and 
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on T][0,∈t , then system (1) has no escape time in the 
interval. 

Furthermore, if such conditions hold for any T,T > 0 
then solutions can be extended in the future. 
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Example 1.3. Also for the following system 
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we can obtain similar results for existence of periodic 
solution. For example if ii t μϕ ω =)(  and max3/ =′μ  

 and },,{ 10 −nμμ K i
i

i Mtxf =
ω

))(( )(  and max=′m  

 then sufficient condition for existence 
of at least one periodic solution is 

},,{ 10 −nMM K

cmn n ≤′′ωμ  

Similarly if fi is a polynomial with minimum degree 
greater than one, then for any value of μ there exists one 
periodic solution and if the solutions can be extended in 
the future, then for any values ω there exist 2ω-periodic 
solutions. Extendibility of the solutions of the above 
system for example can be established by Lemma 1.3. 

 
Lemma 1.3. The solutions of system (1) have no escape 
time if there exist K1 and K2 such that 
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Proof. Similar to Lemma 1.2 and definition of a similar 
function V and with accordance to the above condition, 
there exist positive constants k1 and k2 such that 

21 kVkV +≤&  

 
Notes. Given D is the region of origin and assumptions 
of Lemma 1.2, and Lemma 1.3 are held on complement 
of D, Dc then the above result remains valid. Also in 
Lemma 1.3, K1 and K2 can be continuous time 
functions. In fact in this case there exist continuous 
functions k1(t) and k2(t) such that 
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that implies extendibility of the solutions. 
 

Example 1.4. In [3], presented the sufficient conditions 
for the existence of periodic solutions of the generalized 
version of the Reissig’s equation of the general form: 
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by imposing different boundary conditions for our 
conditions and other suitable conditions. With respect to 
our results obtained above, we can present other 
conditions that are weakly respect to [3]. 
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( )2
},1max{3

1
1

1
},1max{3

1

)(

,)(
0,)(

)()(
)()(
)()(

)(
)(
)(
)(

)(
)(

n

n

n

i

ii

tp

uuf
auu

tptp
ufuf
uu

vi
v
iv
iii
ii
i

ωω

ω

β

ββ
αϕ

ω

ϕϕ

−<

<≤
>≤

−=+
−−=
−=

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−

 

then the system (R) has at least one 2ω-periodic solution 
that 
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ω
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Proof. By the last three conditions ((iv),(v),(vi)) and 
obtained results, there exists at least one solution x(t) of 
the system (R) such that boundary conditions 1.1 are 

satisfied for this solution; and by the first three 
conditions ((i),(ii),(iii)), this solution can be extended in 
the future periodically. In fact for the existence of 
desired solution for the system (R) in the [0,ω] we must 
have 
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where ω)(lpk =  that has two distinct real roots such 
that at least one of them is positive. 

Now we generalize the obtained results to the vector 
differential equations as below. 

 
Section 2: Generalization 

Let us consider the following system: 
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. Now we can prove a Theorem similar to 

Theorem 1.1 that establishes sufficient conditions for 
existence of solutions that satisfy certain boundary 
conditions. 
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Theorem 2.1. Let us assume E(t) is bounded on [0,ω] 
such that 
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Proof. Let G(l, s) be as one of Lemma 1 and define 
Banach space B as 
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then from Schauder’s theorem, Γ has at least one fixed 
point on B if 
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i.e. there exists X(t) solution of system (1.1) such that 
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Corollary 2.1. If in addition to the above assumptions 
we assume E(t) and  are 2ω-periodic 
with respect to t and 
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then system (2.1) has at least 2ω-periodic solution such 
that 
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So Z(t) is a solution of (2.1) that can be extended 
periodically in the future and 
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Example 2.1. Similar to example (1.2), let us consider 
the following vector differential equation: 
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and  be polynomials components X))(, )(i
i Xjf  (i) such 

that at least one of them has a minimum degree greater 
than one. Then for any pair of ωμ,  there exists at least 
one 2ω-periodic function. 

By the extendibility of the solutions that can be 
verified by the Lemma 2.1 and the result of Example 
1.1, for any pair of ωμ,  there exists c > 0 that 
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The extendibility of the solutions of the system can be 
established by the following Lemma. 

 
Lemma 2.1. Let there exists T > 0 such that 

0),,,(, )1()1( >−− nn XXXtFX K&  

then the vector system has no escape time in the interval 
[0,T]. 

Furthermore, if such conditions hold for any T then 
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the solutions of the system (2.1) can be extended in the 
future. 
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Example 2.2. Similar to Example 1.3, let us consider 
the following vector differential equation 
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Now in addition to the above assumption, let us assume 
the solutions of the system can be extended in the 
future, then for any values of ω, there exists sufficiently 
small μ such that the above sufficient conditions hold. In 
fact the extendibility of the solutions of the above vector 
system can be established, for example, by the 
following Lemma. 
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constants K1j and K2j such that 
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Proof. By definition of positive definite function V as 
below 
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So there exist positive constants k1 and k2 such that 

21 kVkV +≤&  

that implies extendibility of the solutions in the future. 
Notice that in Lemma 2.1 and 2.2, the conditions can be 
held on the complement of a bounded region of origin. 
Furthermore in Lemma 2.2, K1j and K2j can be 
continuous time functions. In this case the K1 and K2 are 
continuous time functions. 

 
Example 2.3. Similar to Example 1.4, we consider 
vector differential equation of the generalized version of 
the Reissig’s equation: 
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 (V R) 

where ;  are two real valued 
functions and p

mX ℜ∈ ℜ→ℜm
jiif :, ,φ

j(l) is a 2ω-periodic time function. 

 
Theorem 2.2. Suppose P(l) is 2ω-periodic vector 
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function and 
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where  and  
, then the system (V R) has at least one 2ω-

periodic solution that 
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Proof. With respect to the obtained result for the vector 
equations for the existence of at least one periodic 
solution we must have 
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Similar to Theorem 1.2, the last three conditions 
((iv),(v),(vi)), guarantee the existence of X(t) in [0,ω] 
such that boundary conditions (2.2) are satisfied and the 
first three conditions guarantee the extendibility of this 
solution periodically in the future. 
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