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Abstract

Here we consider some non-autonomous ordinary differential equations of
order n and present some results and theorems on the existence of periodic
solutions for them, which are sufficient conditions, section 1. Also we include
generalizations of these results to vector differential equations and examinations
of some practical examples by numerical simulation, section 2. For some special
cases that extendibility of the solutions can be verified and under other suitable
conditions, we show that the frequency of the periodic solutions can be arbitrary

small’.

Introduction
In this paper we consider the following # - th order
differential equation:

xM + f(t,x,x,...,x" D) =e(t)

our goal is to present sufficient conditions for the
existence of periodic solutions of the above system. Our
method is based on considering the above system with
some boundary conditions and constructing one
operator by using Green’s function. Then we use
Shauder’s fixed point theorem to show the existence of
at least one solution that satisfies those conditions. By
imposing suitable conditions we extend this solution
periodically in the future. Then we generalized the
obtained results to the space R™ (R is the set of real

Keywords: Non-linear system; Periodic solution and Green’s
function
numbers) for a system of the form
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XM+ F(, X, X,...,. X" D)= E(t)

where X e R” and F, E are vector functions of
dimension m. Also we present sufficient conditions for
the existence of periodic solutions for some important
cases such as

and

n-1
o[ 1 £H0)=0

i=0

and their vector form counterparts. By extendibility of
the solutions in the future, it is possible to choose the
period of the function e(/) arbitrarily large as well as the
period of the periodic solutions.
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In addition, we examine some examples numerically.
In this respect, we use the shooting method to obtain
proper initial conditions that guarantee periodic
oscillation of the systems.

Preliminaries and Notes
In sequel we denote |u(7)|,. as n[lax]|u(t)|; ()|, as
te|0,T

maxu(t)| and |ju(r)], as below
teR*

(@), = max {0 i) o... D), |

where n is the dimension of the above differential
equation. Also J(¢) is Dirac delta function; G(¢ s)

designate Green’s function on which

GO (t,s)= %

and if Ux(/) is a operator, then

O'Ux(t)

U(i)x(t) = P

Inner product between two vectors X, Y denoted as
X -Y in the usual sense. Let us consider the following
non-linear equation

X 4 f(t,x, %, x D) = e(1) M

We assume e(/) and f are continuous and smooth
enough such that for any set of initial point

(t9,x") e R™! the existence and uniqueness of its
solutions are held and the solutions can be extended in
the [0,7]xR" (z is a finite positive real number).

Section 1: Sufficient Conditions

To establish sufficient conditions for the existence of
periodic solutions of the system, we require the
following theorem.

Theorem 1.1. Suppose e(/) is bounded on [0,w],@w <7
and f(¢,x,x,...,

arguments, then there exists x(f) solution of (1) in [0,w]
such that

x") is continuous with respect to its

x®(0)+xD(@)=0,i=0,...,n—1 (1.1)
To prove the above Theorem we require the
following Lemma:

Lemma 1.1. Given

X =§(t—s)

Aasaraai and Mehri

50

J. Sci. I R. Iran

then its corresponding Green’s function with boundary
conditions (1.1) is as follows

n
Zait”’[ 0<t<s<w
G(l,s)=1 "

Y bt 0<s<t<w
i=1

where, (n-1)!|b|=4%, (n—1)!|ay|=—4 and fori>1
T G (n—=i)! ‘
(n—i)b, = T Z(Z o bl (12)
» __(—l)i s N (n=0)!
(n—i)la; = R Z(l J)'bj (1.3)

and we have

(n—i)a;| < max{l, 0™}, (n—i)l|b,| < max{l, 0™} (1.4)

Proof. By applying the boundary conditions (1.1) to
G(l, s) we have (n—1)!|b|+(n—1)!|a;| =0 and fori>1

(n=pt,
_i —p. =
(n—i)la; +(n—i)lb, = Z(_ 3 b, (1.5)
and by continuity conditions it follows (n—1)!h|-
(n—=1)!ay| =-1 and for i >1

1

—MNa. —=(n=D'b. =—
(n=i)la; —(n=0)b, Zl ]), a;s

1

Z J))| b/

but by using mathematical induction on the above
relation we obtain

i—l

(=D

(n—i)la; —(n—i)\b; = (-1) (1.6)

Now from (1.5) and (1.6) the recursive relations of (1.2)
and (1.3) are obtained. Now we show (1.4). By
induction again we have if @ >1 and if (n—i+1)!|b,_|

<2 then fori>1

(i <2 le 1 L <o
ST &G

Jj=
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and similarly

. o E 1 i
(n—l)!|a[|S 2 {Z(l’_j)!_{—(i—l)!}gw 1

J=1

Therefore for any i we have

(n—i)|b| < 0™

(n=i)l|a;| < ™!

If w <1 then one can show similarly that
(n—)a;| <L,(n—0)!|b;| <1

Therefore, Lemma 1.1 is proved.

Proof of Theorem 1.1. Let G(, s) be a Green’s function
as defined in the above Lemma, and define Banach
space B as follows

B={x(t)eC"[0,0]xO ()| <c.i=0....n-1]
@l =@,

We define operator Ux(/) on B as

Ux(t) = jo G(1,5)e(s)
— £(s,x(5),x(s),..., x" D (s))}ds

and also
UDx(t) = jo‘" GO, 5)e(s)
— £(5,x(5), xX(5),...,x"V(s))ds

Now we can obtain |U (i)x(t)|w as follows

U, <k +M)j:’|G<f> (1, s)|ds < 3k + M)w",
i=0,....n—-1
where [e(t)], =k and |/ (,x(0),%(t),...x" (@) =M.
For M small enough, indeed
3(k+M)max{l,w"}<c
then

UDx()|, <c,i=0,....,n-1

so Ux(¢) is a map from B into itself and completely
continuous operator.
Then from Schauder’s theorem it follows that there
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exists at least one fixed point of Ux(/), i.e. there exists
x() on [0,w] such that

x(h) =[G s)te(s)
— (5, %(8), X(8),...,x" D (s))}ds

but this x(¢) is a solution of system (1) and hence the
theorem is proved.

Corollary 1.1. If in addition to assumptions of the
above theorem we assume e(¢) and ¢(¢) are 2w-periodic
and

e(t+w)=—e(t)
{f(t+a),—u1,. vl ) =—f (LU, . 1),

(uy,.. .51, )R

then there exists at least one 2w-periodic solution for
system (1) such that

2w
jo x(2)dt=0

Proof. Because of the existence of x(/) on [0,w], we can
extend x(/) to the closed interval [0,2w] as follows

(t)_{x(t) 0<t<w
W xr0) —w<i<0

By using the above assumptions, it is obvious that
zZM 4+ f(t,z,2,...,2 D) =e(t)
and

z®00")=2z9(07)
20 (~w) =z (w)

so z(f) is a solution of (1), that can be periodically
extended in the future and furthermore we have

2w
foz(t)dt =0

Remark. If in system (1) we have e(/) = 0, then results
of theorem 1.1 and the above corollary remain valid.
Let us now consider some examples.

Example 1.1. Let us consider the following system:

x4 () £ (3, %,...,x" D) =0 (1.7)
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with conditions of ¢(¢) is 2w-periodic and

U+ @) f (~ttyseosmtt, ) = =) f (w5 51,)s

(uy,...,u,)eR"

Now assume that f(x,X,...,x"™D) is a polynomial of

x,%,...,x" D and its minimum degree is greater than
one; then there exists a; such that

(6@, 5(@),...xD0)] <Y el

i>1

and the solutions of the system can be extended in the
future and if |o(1)|, = /3, then for any pair of u,®

there exists ¢ such that

HO"M <c

where M:|f(x(t),5c(t),...,x(”’l)(t))|w. In fact it suffices

to choose ¢ << 1 such that above inequality holds.

Example 1.2. Consider the following equation

n—1
X+ O] T £i(x?)=0

i=0
where

fiw)= fi(~u),i=0,...,n-2
fn—l (u) = fn—l (_u)

and ¢(?) is 2w-periodic real function of ¢ such that
p(l+w)=o(l)

then if |g, (7)|, = /3 is small enough, indeed if

where M, =| ﬁx(i)(t))|[u then the above system has 2w-

periodic solution, or if at least one of the f;(x() is a
polynomial of x” with minimum degree greater then
one, ad if the solutions of the system can be extended in

the future, then for any pair of w,@ there exists one

2w-periodic solution for the above system. Extendibility
of the solutions of the above system can be established
for example by the following Lemma.

Lemma 1.2. For given 7> 0 suppose e(¢) is bounded
and
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x D £t x,%,...,x"D)>0

on t€[0,T], then system (1) has no escape time in the

interval.
Furthermore, if such conditions hold for any 7,7> 0
then solutions can be extended in the future.

Proof. Let x" D=y and V=3?+1 be a positive
function and |e(r)|, =k/2 . We have

V =2xDe(r)=2x D £ (£, x,%,...,x"D)
<k|x D] <ky?

It is obvious that
|x(n71)(t)|T <ohTI2

hence it follows that
@), <D, T i=1,....n
=1

where ¢ are constants and o =e*T/2 /(i j)!.

Now it follows that if the above assumptions hold for
any 7 e€R then

|x(”’i)(t)|T <w,i=1,...,n

Example 1.3. Also for the following system

n—1
0+ 0,0 f,(x0)=0

i=0

we can obtain similar results for existence of periodic
solution. For example if |p;(¢)|, =4; and 4'/3=max

{tto,..., 1,1} and |ﬁ(x(i)(t))|[U:Mi and m'=max

{M,,...,M,_;} then sufficient condition for existence
of at least one periodic solution is

nu'w"m'<c

Similarly if f; is a polynomial with minimum degree
greater than one, then for any value of u there exists one
periodic solution and if the solutions can be extended in
the future, then for any values w there exist 2w-periodic
solutions. Extendibility of the solutions of the above
system for example can be established by Lemma 1.3.

Lemma 1.3. The solutions of system (1) have no escape
time if there exist K| and K, such that
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n 1/2
|<f(t7y19y2,...,yn)|SKI[Z)}IZ +K2J

i=0

Proof. Similar to Lemma 1.2 and definition of a similar
function V" and with accordance to the above condition,
there exist positive constants k; and &, such that

V<kV+k,

Notes. Given D is the region of origin and assumptions
of Lemma 1.2, and Lemma 1.3 are held on complement
of D, D° then the above result remains valid. Also in
Lemma 1.3, K; and K, can be continuous time
functions. In fact in this case there exist continuous
functions k;(¢) and k,(7) such that

V <k +ky(2)
that implies extendibility of the solutions.

Example 1.4. In [3], presented the sufficient conditions
for the existence of periodic solutions of the generalized
version of the Reissig’s equation of the general form:

n—1

x4 (DD 4 f ()= p()

i=1

(R)

by imposing different boundary conditions for our
conditions and other suitable conditions. With respect to
our results obtained above, we can present other
conditions that are weakly respect to [3].

Theorem 1.2. Suppose p(!) is 2ew-periodic and

iy 9iw=g¢;(-u)
SW)=—f(-u)

(i)

(i) pt+w)=—-p(t)

i) o I<ala>0

v ISPl p<s s
(Vl) |p(t)|w < ﬁ(ﬂ - 3max:‘1,w”}

then the system (R) has at least one 2w-periodic solution
that

20
j x(£)dt=0
0
Proof. By the last three conditions ((iv),(v),(vi)) and

obtained results, there exists at least one solution x(¢) of
the system (R) such that boundary conditions 1.1 are
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satisfied for this solution; and by the first three
conditions ((i),(ii),(iii)), this solution can be extended in
the future periodically. In fact for the existence of
desired solution for the system (R) in the [0,«] we must
have

3(|p()|, +M)max{l,0"}<c

where

M =

n-1
D o, (x4 £ ()| < (n—Dac? + fe
i=1

then we obtain the following inequality

1 \ c k
+ <
3max{lw"} Jn—1 n-1

ac2+(ﬂ—

where k=|p(/)|, that has two distinct real roots such

that at least one of them is positive.
Now we generalize the obtained results to the vector
differential equations as below.

Section 2: Generalization
Let us consider the following system:

XD LR, X, X,...,x"™ D)= E(¢) 2.1
where X (f)eR™ is a vector and F=(f,....f,,)] is a
vector function that

i RxRm SR

and E(t)=(e/(?),...e,, (1)) is a vector function of
dimension m. Similar to system (1), assume each f;, ¢;
are continuous and smooth enough such that existence
and uniqueness of solutions for any set of

(t9, X gse--» X (()""1)) are held and can be extended in the

[0,0]xR"™ . Now we can prove a Theorem similar to
Theorem 1.1 that establishes sufficient conditions for

existence of solutions that satisfy certain boundary
conditions.

Theorem 2.1. Let us assume E(¢) is bounded on [0,w]
such that
x0)+x(@)=0,i=1,...,m, j=0,...,n—1

2.2)

Proof. Let G(/, s) be as one of Lemma 1 and define
Banach space B as
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B={({t)=(X(®),..., X" D@)): @), <c}

I, = max{maxﬂxi ), .,max{‘xi(”_l)(t)‘ }
Now define operator I" on B as
L) =U@)....u" D 0)

where
U ()= J'O“’GO‘) (t,5)E(s) = F(5,X(5),.... X" (s))ds
Now we compute |U ® (t)|w as

UO@, <Ko+ M) [ |GV t.5)ds
<3(Ky+My)max{l,0"}
where
K,= miax{|el- O,

My =max{|; (t,X(z),...,X<n4)(z))|w}

then from Schauder’s theorem, I" has at least one fixed
point on B if

3(K, +M0)max{1,a)” }£ c

i.e. there exists X(#) solution of system (1.1) such that

X(t) = j;” G(t,5)(E(s)— F(s, X (5),..., X"V (s))ds

Corollary 2.1. If in addition to the above assumptions
we assume E(f) and F(t,X,...,.X" ) are 2w-periodic
with respect to ¢ and

E(t+w)=—E(t)
F(t+o,-U,,...-U+n)=—Ft,U-1,...U,)

then system (2.1) has at least 2w-periodic solution such
that

20
IO x,()dt=0,i=1,...,m

Proof. Similarly define

X(1) 0<t<w
- X(t+w) —0<t<L0

Z(¢)={

that satisfies (1.1), i.e.:
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ZW Ly F(t,Z,...Z2" D) =E(t)
and

z(07)=2(0)

2 (~0)=z (o)

So Z(#) is a solution of (2.1) that can be extended
periodically in the future and

20
jo Z(t)dt =0

Example 2.1. Similar to example (1.2), let us consider
the following vector differential equation:

n—1
o, O] [ £,(xD)=0,j=1,....m
i=0

where X e R™; ¢,(f) are 2ew-periodic real functions and
Jij i R™ >R Let us assume

p;(+o)=p;(1)
fi;O)=f; (-U)i=0,...n—2
Jo,; ) ==Ff,,;(ZU)

and f£;,j(X)®) be polynomials components X such
that at least one of them has a minimum degree greater
than one. Then for any pair of u,® there exists at least

one 2w-periodic function.

By the extendibility of the solutions that can be
verified by the Lemma 2.1 and the result of Example
1.1, for any pair of y,® there exists ¢ > 0 that

HoM ymax{l,0"}<c
where 14,/3 =max {|(p ; (t)|a) } and
n—1
M, = m?x{HMi’j}, M, = |fi,j(X(i)1w
7 Li=0

The extendibility of the solutions of the system can be
established by the following Lemma.

Lemma 2.1. Let there exists 7> 0 such that
(XD F(t,.X,X,.. X"D))>0
then the vector system has no escape time in the interval

[0.7].

Furthermore, if such conditions hold for any 7 then
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the solutions of the system (2.1) can be extended in the
future.

Proof. By definition of XD =Y and V(¢) as

V(t)=%(Y,Y)+m

we can compute V' as

V(t)=(Y.Y)<(Y.E)~(Y,F)<k(L(Y.Y)+m)=kV (t)

where k =max{e,(r)|;,i=1,...,m} , that we obtain
|ﬁ”@b<wJ:Qmm—U:me

Furthermore if such conditions hold for any 7 eR*
then the solutions can be extended in the future.

Example 2.2. Similar to Example 1.3, let us consider
the following vector differential equation

n—1
N0 (0 i, (XD)=0,7=1....m
i=0

where X eR™, ¢;(f) are 2w-periodic functions and
Ji,j i R™ >R . Let us assume

D, j (t"'a))fi,j(_U) = _Co(t)fi,j )

then the above system has at least one 2w-periodic
solution if

HoM ymax{l,0"}<c
where

,uj:mlax{|¢)l-’j(t)|w} , y0/3:m]2‘1x{,uj}

n—1

DM,

i=0

M = max

Mi,j:|fi,j(X(i))|w ;

Now in addition to the above assumption, let us assume
the solutions of the system can be extended in the
future, then for any values of w, there exists sufficiently
small x such that the above sufficient conditions hold. In
fact the extendibility of the solutions of the above vector
system can be established, for example, by the
following Lemma.

Lemma 2.2. The sufficient condition for extendibility
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of the solutions of system (2.1) is the existence of
constants Kj; and K,; such that

n

12
|fj(t9Y1""’Yn|SKI]‘[Z(K"YI’)_{—KZJ}

i=1

where X =Y, X'=Y,.. X" D=y,

Proof. By definition of positive definite function V as
below

y=3(1.1)

i=1

we can compute V' as following

n—1

V= i2<Y,-,Y',-> = > AV V) +2(Y,.7,)
i=1 i=1
n-1 .
<G + (Y Y b+ 2(Y,.7,)
i=1
<2V + 2(Y,,.|F[) < 2V +(%,.Y,) + (IFILIF])

So there exist positive constants k; and &, such that
V<kV +k,

that implies extendibility of the solutions in the future.
Notice that in Lemma 2.1 and 2.2, the conditions can be
held on the complement of a bounded region of origin.
Furthermore in Lemma 2.2, K;; and K, can be
continuous time functions. In this case the K| and K, are
continuous time functions.

Example 2.3. Similar to Example 1.4, we consider
vector differential equation of the generalized version of
the Reissig’s equation:

n—1
x4 3 (XTI ()
i=1 (VR)

=p;),j=1....m

where X eR™; f.¢, ;:R" >R are two real valued

functions and p;(/) is a 2w-periodic time function.

Theorem 2.2. Suppose P(/) is 2w-periodic vector
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function and

() ¢,;U)=¢,;(-U)

(i) FU)=-F(-U)

(iii) P(t+w)=—-P(t)

() |¢,; )| < ;U]

M) £, < BIUN By =max {8}, By <

3max{l,®" }
(vi) |p (t)| <L (ﬁ’ -——L )2
J o~ n-1V70 3max{l,w"}

where P())=(p,(!),....p,,(1)) and FU)=(f,(U)....,
fn(U)), then the system (V' R) has at least one 2w-
periodic solution that

20
[[xi(0de=0

Proof. With respect to the obtained result for the vector
equations for the existence of at least one periodic
solution we must have

3(Ky+My)max{l,w"}<c
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where K, :max{|pj (t)|w} and
j

n—1 )
D (XD 4 1 (X)

M, =max
=

)

Similar to Theorem 1.2, the last three conditions
((iv),(v),(vi)), guarantee the existence of X(¢) in [0,w]
such that boundary conditions (2.2) are satisfied and the
first three conditions guarantee the extendibility of this
solution periodically in the future.

< max{(n —1)atjc2 + ﬁjc}
j
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