EXISTENCE OF A STEADY FLOW WITH A BOUNDED VORTEX IN AN UNBOUNDED DOMAIN

B. Emamizadeh^{*}

Department of Mathematics, Iran University of Science and Technology, Tehran, Islamic Republic of Iran

Abstract

We prove the existence of steady 2-dimensional flows, containing a bounded vortex, and approaching a uniform flow at infinity. The data prescribed is the rearrangement class of the vorticity field. The corresponding stream function satisfies a semilinear elliptic partial differential equation. The result is proved by maximizing the kinetic energy over all flows whose vorticity fields are rearrangements of a prescribed function.

Introduction

In this paper we prove the existence of steady 2dimensioal ideal fluid flows occupying Π_+ (the first quadrant) and containing a bounded vortex. Such a flow will be described by a stream function $\psi: \Pi_+ \to \mathbb{R}$. At infinity we will have $\psi \to -\lambda x_1 x_2$ which is the stream function for an irrotational flow with velocity field $-\lambda(x_1, -x_2)$. The vorticity is given by $-\Delta \psi$, where Δ is the Laplacian, and $-\Delta \psi$ vanishes outside a bounded region avoiding the boundary of Π_+ . We will show that ψ satisfies the following semilinear elliptic partial differential equation:

$$-\Delta \psi = \phi \circ \psi \,,$$

almost everywhere in \prod_{+} , where ϕ is an increasing function, unknown *a prior*. In our result the vorticity

Keywords: Rearrangements, Vorticity, Irrotational flows, Elliptic partial differential equations, Variational problem field $\zeta(=-\Delta \psi)$ is a rearrangement of a prescribed non-

negative function ζ_0 having bounded support. The existence theorem is proved by maximizing a functional over the set of rearrangements of ζ_0 vanishing outside bounded sets in Π_+ . This variational principle was adapted by Burton [1] from one for vortex rings in 3 dimensions, proposed by Benjamin [2].

Lack of compactness caused by the unboundedness of the domain of interest is the motivation to use the strategy proposed by Benjamin [2].

Notation and Definitions

Henceforth p denotes a real number in $(2,\infty)$ and $p^* := p/(p-1)$. The upper and the right half planes are designated by \prod_u and \prod_r , respectively, and the first quadrant by \prod_+ . Generic points of \mathbb{R}^2 are denoted by $x = (x_1, x_2), y = (y_1, y_2), z = (z_1, z_2)$, etc. For $x \in \mathbb{R}^2$ we let $\overline{x}, \underline{x}, \overline{x}$ denote the reflections of x about the x_1 -axis, x_2 -axis and the origin, respectively. For $\xi > 0$ we define

 $\prod_{+}(\xi) := \{ x \in \mathbb{R}^2 | 0 < x_1 < \xi, 0 < x_2 < \xi \}.$

^{*} E-mail: be1@sun.iust.ac.ir

Emamizadeh

The ball centered at x with radius r is denoted $B_r(x)$, when the origin is the center we write B_r .

Here we deal with three different Green's functions, namely, the Green's functions for $-\Delta$ with homogeneous Dirichlet boundary conditions on \prod_u , \prod_r and \prod_+ ; it is a standard result that these functions are given as follows

$$\begin{split} G_u(x,y) &\coloneqq \frac{1}{2\pi} \log \frac{|x-\overline{y}|}{|x-y|}, & x, y \in \Pi_u, \quad x \neq y, \\ G_r(x,y) &\coloneqq \frac{1}{2\pi} \log \frac{|x-\underline{y}|}{|x-y|}, & x, y \in \Pi_r, \quad x \neq y, \\ G_+(x,y) &\coloneqq \frac{1}{2\pi} \log \frac{|x-\overline{y}| |x-\underline{y}|}{|x-y| |x-\overline{y}|}, & x, y \in \Pi_+, \quad x \neq y, \end{split}$$

respectively. For measurable functions ζ on \mathbb{R}^2 we define the following integral operators

$$K_{u}\zeta(x) \coloneqq \int_{\prod_{u}} G_{u}(x, y)\zeta(y)dy,$$

$$K_{r}\zeta(x) \coloneqq \int_{\prod_{r}} G_{r}(x, y)\zeta(y)dy,$$

$$K_{+}\zeta(x) \coloneqq \int_{\prod_{+}} G_{+}(x, y)\zeta(y)dy,$$

whenever the integrals exit.

For a measurable set A in \mathbb{R}^2 , we use |A| to denote the 2-dimensional Lebesgue measure of A, and \overline{A} for the topological closure. The strong support of a measurable function ζ , denoted supp (ζ) , is defined as follows

$$\operatorname{supp}(\zeta) := \{ x \in \operatorname{dom}(\zeta) | \zeta(x) > 0 \}.$$

To define the rearrangement classes needed for our variational problem we fix a non-negative, non-trivial function $\zeta_0 \in L^p(\mathbb{R}^2)$) which vanishes outside a bounded set; in addition we assume

$$|\operatorname{supp}(\zeta_0)| = \pi a^2 \tag{1}$$

for some a > 0. The set \mathcal{F} comprises the functions (which we call *rearrangements* of ζ_0) that vanish outside bounded subsets of \prod_+ and that are equimeasurable to ζ_0 . A function ζ is said to be equimeasurable to ζ_0 whenever

$$|\{x \in \prod_{+} | \zeta(x) \ge \alpha\}| = |\{x \in \prod_{+} | \zeta_0(x) \ge \alpha\}|,$$

for every positive α . It is well known that if $\zeta \in \mathcal{F}$ then $\|\zeta\|_{s} = \|\zeta_{0}\|_{s}$,

for $s \in [1, \infty]$. The subset of \mathcal{F} comprising functions vanishing outside $\prod_{+}(\xi)$ is designated by $\mathcal{F}(\xi)$, where it is assumed that $\xi \ge a\pi^{1/2}$ to ensure $\mathcal{F}(\xi) \neq \emptyset$.

Next we define the *kinetic energy*. For $v \in L^p(\prod_+)$ having bounded support and $\lambda \in \mathbb{R}$, we define

$$\Psi(\nu) := \frac{1}{2} \int_{\Pi_+} \nu K_+ \nu,$$

$$\Im(\nu) := \int_{\Pi_+} x_1 x_2 \nu$$

and the kinetic energy

$$\Psi_{\lambda}(\nu) \coloneqq \Psi(\nu) - \lambda \mathfrak{I}(\nu),$$

whenever the integrals exist. Now we are in a position to define the variational problem

$$(P_{\lambda})$$
: $\sup_{\zeta\in\mathcal{F}}\Psi_{\lambda}(\zeta).$

The set of solutions of (P_{λ}) is denoted by \sum_{λ} . For $\xi > a\pi^{1/2}$ the truncated variational problem $(P_{\lambda}(\xi))$ is defined by

$$(P_{\lambda}(\xi))$$
: $\sup_{\zeta \in F(\xi)} \Psi_{\lambda}(\zeta)$,

and $\sum_{\lambda}(\xi)$ denotes the set of solutions.

Proofs of Some Lemmas

Lemma 1. Let $\zeta \in L^p(\prod_+)$ vanish outside a bounded set. Then

(i) $K_+ \zeta \in C^1(\mathbb{R}^2)$.

(ii) $|\nabla K_{+}\zeta(x)| \leq C ||\zeta||_{p}$, for every $x \in \mathbb{R}^{2}$, where C depends on $|supp(\zeta)|$ and p.

(iii) $|K_{+}\zeta(x)| \leq Cmin\{|x_{1}|, |x_{2}|\}\|\zeta\|_{p}$, for every $x \in \prod_{+}$, where *C* is the constant in (ii).

Proof. (i) is an immediate consequence of a result about Newtonian potentials of densities with compact support. Specifically, let

$$N\zeta_e(x) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \log \frac{1}{|x-y|} \zeta_e(y) dy$$

denote the Newtonian potential of the zero-extension of ζ , to all of \mathbb{R}^2 . Since p > 2 and ζ has compact support we can apply Lemmas A.7 an A.9 in [3] to deduce that $N\zeta_e \in C^1(\mathbb{R}^2)$ and

$$\nabla N\zeta_e(x) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \nabla_x \log \frac{1}{|x-y|} \zeta_e(y) dy, \quad \forall x \in \mathbb{R}^2.$$
(2)

Clearly we have

$$K_{+}\zeta_{e}(x) = N\zeta_{e}(x) + N\zeta_{e}(\overline{x}) - N\zeta_{e}(\overline{x}) - N\zeta_{e}(\underline{x}).$$

Hence, $K_+\zeta \in C^1(\mathbb{R}^2)$. For (ii) it obviously suffices to show

$$|\nabla N\zeta_e(x)| \le C \|\zeta\|_p, \quad \forall x \in \mathbb{R}^2.$$
(3)

where *C* is a constant depending on $|\text{supp}(\zeta)|$ and *p*. To do this, we use (2) to deduce

$$|\nabla N\zeta_e(x)| \le \int_{\mathbb{R}^2} \frac{1}{|x-y|} |\zeta(y)| dy, \quad \forall x \in \mathbb{R}^2$$

Now let us fix $x \in \mathbb{R}^2$ and denote the Schwartzrearrangement of $|\zeta|$, about *x*, by ζ^* . Therefore, by a standard inequality, see for example [4], we obtain

$$|\nabla N\zeta_e(x)| \leq \frac{1}{2\pi} \int_{B_l(x)} \frac{1}{|x-y|} \zeta^*(y) dy ,$$

where

$$l := (|\operatorname{supp}(\zeta)|/\pi)^{1/2}$$
.

Hence, by an application of Hölder's inequality we derive

$$|\nabla N\zeta_{e}(x)| \leq \frac{1}{2\pi} \left(\int_{B_{l}(x)} \frac{1}{|x-y|^{p^{*}}} dy \right)^{1/p^{*}} \|\zeta\|_{p} .$$
(4)

Elementary calculations yield

$$\int_{B_{l}(x)} \frac{1}{|x-y|^{p^{*}}} dy \leq C,$$

where *C* depends only on *l* and *p*. So we derive (3). Now to derive (iii) we fix $x \in \prod_+$. Since $K_+\zeta \in C^1(\mathbb{R}^2)$ and vanishes on the boundary of \prod_+ , we can apply the Mean Value Theorem to obtain

$$|K_{+}\zeta(x)| = |K_{+}\zeta(x) - K_{+}\zeta(x_{1},0)| \le x_{2}|\nabla K_{+}\zeta(\hat{x})|,$$

where \hat{x} is a point on the segment joining x to $(x_1, 0)$. Whence from (ii) we deduce that $|K_+\zeta(x)| \le C x_2 ||\zeta||_p$. Similarly, one can show $|K_+\zeta(x)| \le C x_1 ||\zeta||_p$, so we derive (iii) as desired. \diamond **Lemma 2.** Let U be an open and bounded subset of Π_+ . Then for every $q \ge 1, K_+: L^p(U) \to L^q(U)$ is a compact linear operator, in the sense that if $\{\zeta_n\}$ is a sequence of functions, bounded in $L^p(\Pi_+)$ and vanishing outside U, then the restrictions to U of the $K\zeta_n$'s have a subsequence converging in the q-norm.

Proof. The well-defindness of $K_+: L^p(U) \to L^q(U)$ follows from Lemma 1(iii). The linearity of K_+ follows from the definition. To show compactness of K_+ it suffices to show that $K_+: L^p(U) \to W^{1,2}(U)$ is bounded, since then by an application of the Sobolev Embedding Theorem we derive the desired result. Let us now fix $\zeta \in L^p(\prod_+)$ that vanishes outside U. Then by applying Lemma 1(ii), (iii) we infer $||K_+\zeta||_2 \leq C||\zeta||_p$ and $||\nabla K_+\zeta||_2 \leq C||\zeta||_p$, hence

$$\|K_{+}\zeta\|_{W^{1,2}(U)} \le C \|\zeta\|_{p},$$

here *C* stands for different constants. So we are done.◊

The next lemma is an immediate consequence of Lemma 7 in [1].

Lemma 3. Let $\zeta \in L^p(\prod_+)$ vanishes outside a bounded set. Then

$$\nabla K_+ \zeta(x) = O(|x^{-2}|), \quad K_+ \zeta(x) = O(|x^{-1}|), \quad |x| \to \infty.$$

Lemma 4. Let q and U be as in Lemma 2. Then $K_+: L^p(U) \to L^q(U)$ is strictly positive, that is, for every non-trivial function $\zeta \in L^p(\Pi_+)$ vanishing outside U,

$$\int_{\prod_+}\zeta \mathcal{K}_+\zeta>0\;.$$

Proof. Let us fix $\zeta \in L^p(\prod_+)$ vanishing outside U. Then, from Lemma 3(i) in [1], we have

$$-\Delta K_u \zeta = \zeta, \quad in \ \mathcal{D}'(\prod_u),$$

that is, in the sense of distributions. Hence, we also have

$$-\Delta K_u \zeta = \zeta, \quad in \mathcal{D}'(\prod_+),$$

since $K_{+}\zeta(x) = K_{u}\zeta(x) - K_{u}\zeta(x)$ for all $x \in \mathbb{R}^{2}$. Now by Agmon's regularity theory [5] we deduce that $K_{+}\zeta \in W_{loc}^{2,p}(\mathbb{R}^{2})$. In particular, $K_{+}\zeta \in W_{loc}^{2,p}(\overline{\Pi}_{+})$. Therefore, in fact we have $-\Delta K_u \zeta = \zeta$,

almost everywhere in \prod_{+} . Next we let $\Omega(R) := B_R \cap \prod_{+}$; since the boundary of $\Omega(R)$ is Lipschitz we can apply the weak Divergence Theorem, see for example [6], to obtain

$$-\int_{\Omega(R)}\zeta K_{+}\zeta+\int_{\Omega(R)}|\nabla K_{+}\zeta|^{2}=\int_{\partial\Omega(R)}\gamma(K_{+}\zeta)\gamma(\partial_{-}K_{+}\zeta)d\sigma,$$

where γ stands for the trace operator on $\partial \Omega(R)$ and ndenotes the unit outward normal vector to $\partial \Omega(R)$. Since $K_{+}\zeta \in C^{1}(\overline{\Pi}_{+})$ we have

$$\int_{\partial\Omega(R)} \gamma(K_{+}\zeta) \gamma(\partial_{-}K_{+}\zeta) d\sigma = \int_{\partial\Omega(R)} (K_{+}\zeta) (\partial_{-}K_{+}\zeta) d\sigma .$$

Therefore

$$-\int_{\Omega(R)}\zeta K_{+}\zeta + \int_{\Omega(R)} |\nabla K_{+}\zeta|^{2} = \int_{\partial\Omega(R)} (K_{+}\zeta) (\partial_{n}K_{+}\zeta) d\sigma$$

Now from Lemma 3 we infer

.

$$\lim_{R\to\infty}\int_{\partial\Omega(R)} (K_+\zeta) (\partial_- K_+\zeta) d\sigma = 0.$$

Moreover, since $\int_{\prod_{+}} \zeta K_{+} \zeta$ is finite and $|\nabla K_{+} \zeta|$ is bounded in \mathbb{R}^{2} we may apply the Lebesgue Dominated Convergence Theorem to conclude

$$\begin{split} &\lim_{R\to\infty}\int_{\Omega(R)}\zeta K_+\zeta = \int_{\Pi_+}\zeta K_+\zeta,\\ &\lim_{R\to\infty}\int_{\Omega(R)}\left|\nabla K_+\zeta\right|^2 = \int_{\Pi_+}\left|\nabla K_+\zeta\right|^2. \end{split}$$

Therefore, we derive $\int_{\Pi_+} \zeta K_+ \zeta = \int_{\Pi_+} |\nabla K_+ \zeta|^2$ and we are done. \Diamond

The following lemma is a result from Burton's theory [7].

Lemma 5. Suppose $\Phi: L^p(\prod_+(\xi)) \to \mathbb{R}$ is a weakly sequentially continuous, strictly convex functional. Then $\Phi(\zeta)$ attains a maximum relative to $\zeta \in \mathcal{F}(\xi)$, for $\xi \ge a\pi^{1/2}$. Moreover, if $\hat{\zeta}$ is a maximizer and $\psi \in$ $\partial \Phi(\hat{\zeta})$, the subdifferential of Φ at $\hat{\zeta}$, then

$$\hat{\zeta} = \phi \circ \psi ,$$

almost everywhere in $\prod_+(\xi)$, for some increasing function ϕ .

Lemma 6. For every $\lambda > 0$ and $\xi \ge a\pi^{1/2}$, the problem $P_{\lambda}(\xi)$ is solvable. Moreover, if $\zeta \in \sum_{\lambda}(\xi)$, then

$$\zeta = \phi \circ \left(K_+ \zeta - \lambda x_1 x_2 \right), \tag{5}$$

almost everywhere in \prod_+ , for some increasing function ϕ .

Proof. Let us being by noting that $K_+: L^p(\prod_+(\xi)) \rightarrow L^{p^*}(\prod_+(\xi))$ is a symmetric operator, that is,

$$\int_{\prod_+} \nu K_+ w = \int_{\prod_+} w K_+ \nu, \quad \forall \nu, w \in L^p(\prod_+),$$

which readily follows from the symmetry of G_+ . Since K_+ is compact, strictly positive and symmetric it follows that Ψ_{λ} , defined on the set of functions in $L^p(\Pi_+)$ vanishing outside $\Pi_+(\xi)$, is strictly convex and weakly sequentially continuous. Now by applying Lemma 5 we deduce that $P_{\lambda}(\xi)$ is solvable. Next we show that if $\zeta \in \Sigma_{\lambda}(\xi)$, then $K_+\zeta - \lambda x_1 x_2 \in \partial \Psi_{\lambda}(\zeta)$. For this purpose we consider $\overline{\zeta} \in L^p(\Pi_+)$ which vanishes outside $\Pi_+(\xi)$, then we need to show that

$$\Psi_{\lambda}(\overline{\zeta}) \geq \Psi_{\lambda}(\zeta) + \int_{\Pi_{+}} (\overline{\zeta} - \zeta) (K_{+}\zeta - \lambda x_{1}x_{2}),$$

or equivalently

$$\int_{\Pi_+} \left(\overline{\zeta} - \zeta \right) K_+ \left(\overline{\zeta} - \zeta \right) \ge 0 \ ,$$

but this is true since K_+ is strictly positive. Therefore, again by Lemma 5, existence of an increasing function ϕ is ensured so that (5) holds. \Diamond

Results and Discussion

In this section we present our main result (see the theorem below). We begin with some technical lemmas.

Lemma 7. Let $\lambda > 0$. Then there exists $R(\lambda) > 0$ such that

$$K_{+}\zeta(x) - \lambda x_{1}x_{2} \leq 0, \quad |x| \geq R(\lambda), \quad \zeta \in \mathcal{F}.$$

Proof. Let us fix $x \in \prod_+$ and $\zeta \in \mathcal{F}$; we assume $\min\{x_1, x_2\} \ge \alpha$ for some $\alpha > 0$ to be determined later. According to Lemma 1(ii) there exists M > 0, independent of ζ , such that $|\nabla K_+\zeta(x)| \le M$. Therefore, by Lemma 1(iii) we have $|K_+\zeta(x)| \le M \min\{x_1, x_2\}$. Emamizadeh

Hence

$$K_{+}\zeta(x) - \lambda x_{1}x_{2} \leq \min\{x_{1}, x_{2}\} (M - \lambda \alpha).$$

Thus if we assume $\alpha \ge M / \lambda$, then $K_+ \zeta(x) - \lambda x_1 x_2 \le 0$. Hence we can take $R(\lambda) = M / \lambda$.

Lemma 8. Suppose $\zeta \in L^p(\mathbb{R}^2)$ is a non-negative function which is spherically decreasing and vanishes outside B_a . Then there exists a positive constant k such that

$$\int_{\prod_+} \zeta_t K_+ \zeta_t \ge k \log t ,$$

for all sufficiently large t, where $\zeta_t(x) := \zeta(x_1 - t, x_2 - t)$.

Proof. Clearly we can assume $t \ge (1+\sqrt{2})a$. Now we observe that there exists $\beta > 0$ and 0 < b < a such that for all x with $|x| \le b$ we have $\zeta(x) \ge \beta$. Let $B_b(t)$ denote the ball centered at (t,t) with radius b and consider $x \in B_a(t)$ and $y \in B_b(t)$. Hence if we set

$$\gamma_1 \coloneqq |x - \overline{y}|, \gamma_2 \coloneqq |x - \underline{y}|, \gamma_3 \coloneqq |x - y|, \gamma_4 \coloneqq |x - \overline{y}|,$$

then it is clear that

$$\gamma_1 \ge 2t - 2a, \gamma_2 \ge 2t - 2a, \gamma_3 \le 2a, \gamma_4 \le 2\sqrt{2}t + 2a$$
.

Therefore,

$$K_{+}\zeta_{t}(x) \geq \frac{\beta}{2\pi} \int_{B_{b}(t)} \log \frac{(2t-2a)^{2}}{2a(2\sqrt{2t}+2a)} dy =$$
$$\frac{\beta b^{2}}{2} \log \frac{(t-a)^{2}}{a(\sqrt{2t}+a)}$$

Hence

$$\int_{\Pi_+} \zeta_t K_+ \zeta_t \geq \frac{\pi \beta^2 b^4}{2} \log \frac{(t-a)^2}{a(\sqrt{2}t+a)},$$

and we are done. \Diamond

An immediate consequence of Lemma 8 is the following

Corollary. We have

$$\lim_{\xi\to\infty}\sup_{\zeta\in\mathcal{F}(\xi)}\Psi(\zeta)=+\infty.$$

Lemma 9. There exists $\lambda_0 > 0$ and $\xi_0 > a\pi^{1/2}$ such that, if $0 < \lambda \le \lambda_0$, $\xi \ge \xi_0$ and $\zeta_{\lambda,\xi}$ is a maximizer of

$$\begin{aligned} \Psi_{\lambda}(\zeta) \ \ relative \ to \ \zeta \in \mathcal{F}(\xi) \ \ then \\ & \left| \left\{ x \in \prod_{+}(\xi) \middle| K_{+} \zeta_{\lambda,\xi}(x) - \lambda x_{1} x_{2} > 0 \right\} \right| \geq \pi a^{2} \end{aligned}$$

Proof. Let us fix $\alpha > 0$, $\varepsilon > 0$. Then according to the Corollary there exists $\xi_0 > a\pi^{1/2}$ such that if $\xi \ge \xi_0$ then $\sup_{\zeta \in \mathcal{F}(\xi)} \Psi(\zeta) \ge \alpha + \varepsilon$. In particular, $\sup_{\zeta \in \mathcal{F}(\xi_0)} \Psi(\zeta) \ge \alpha + \varepsilon$. Since Ψ is a real-valued functional on $L^p(\prod_+(\xi_0))$ which is weakly sequentially continuous and strictly convex we can apply Lemma 5 to ensure existence of $\hat{\zeta} \in \mathcal{F}(\zeta_0)$ such that $\Psi(\hat{\zeta}) = \sup_{\zeta \in \mathcal{F}(\zeta_0)} \Psi(\zeta)$, whence

$$\Psi(\hat{\zeta}) \ge \alpha + \varepsilon . \tag{6}$$

Now choose $\lambda_0 > 0$ such that $\lambda_0 \Im(\hat{\zeta}) < \varepsilon$. Since $\Psi_{\lambda}(\hat{\zeta}) := \Psi(\hat{\zeta}) - \lambda \Im(\hat{\zeta})$ we can use (6) to obtain

$$\Psi_{\lambda}(\hat{\zeta}) \geq \alpha, \quad 0 < \lambda \leq \lambda_0.$$

This shows that

$$\sup_{\zeta \in \mathcal{F}(\xi)} \Psi_{\lambda}(\zeta) \ge \alpha, \quad 0 < \lambda \le \lambda_0, \quad \xi \ge \xi_0.$$
(7)

Next we set $\alpha = 3aC \|\zeta_0\|_p \|\zeta_0\|_1$, where *C* is the constant in Lemma 1(iii). Hence from (7) we have

$$\sup_{\zeta \in \mathcal{F}(\xi)} \Psi_{\lambda}(\zeta) \ge 3aC \|\zeta_0\|_p \|\zeta_0\|_1, \qquad (8)$$

for all $0 < \lambda \le \lambda_0$ and $\xi \ge \xi_0$. Now we fix $0 < \lambda \le \lambda_0$, $\xi \ge \xi_0$ and let $\zeta_{\lambda,\xi}$ denote a maximizer of $\Psi_{\lambda}(\zeta)$ relative to $\zeta \in \mathcal{F}(\xi)$. Then we have

$$\Psi_{\lambda}(\zeta_{\lambda,\xi}) \leq \|\zeta_0\|_1 \sup_{\prod_+(\xi)} \left(\frac{1}{2}K_+\zeta_{\lambda,\xi}(x) - \lambda x_1 x_2\right).$$

We also have $\Psi_{\lambda}(\zeta_{\lambda,\xi}) \ge 3aC \|\zeta_0\|_p \|\zeta_0\|_1$, from (8), hence

$$\sup_{\Pi_{+}(\xi)} \left(\frac{1}{2} K_{+} \zeta_{\lambda,\xi}(x) - \lambda x_{1} x_{2} \right) > 3aC \|\zeta_{0}\|_{p}.$$
⁽⁹⁾

Since $\frac{1}{2}K_+\zeta_{\lambda,\xi}(x) - \lambda x_1 x_2 \in (\overline{\prod_+(\xi)})$, it attains its maximum at $(x_1^0, x_2^0) \in \overline{\prod_+(\xi)}$, say. Whence, by Lemma 1(iii)

Therefore, from (9) we infer $\min\{x_1^0, x_2^0\} \ge 6a > 2a$. Now we define the set

$$S := \left\{ x \in \prod_{+} \left| x_1 < x_1^0, x_2 < x_2^0 \right\} \cap B_{2a} \left(x_1^0, x_2^0 \right), \right.$$

where $B_{2a}(x_1^0, x_2^0)$ denotes the ball centered at (x_1^0, x_2^0) with radius 2a; clearly $S \subset \overline{\prod}_+(\xi)$. Consider $x \in S$, then

$$K_{+}\zeta_{\lambda,\xi}(x) - \lambda x_{1}x_{2} \ge 1/2K_{+}\zeta_{\lambda,\xi}(x) - \lambda x_{1}^{0}, x_{2}^{0}.$$
(10)

On the other hand, by an application of the Mean Value Theorem and Lemma 1(ii),

$$\begin{aligned} \left| K_{+}\zeta_{\lambda,\xi}(x) - K_{+}\zeta_{\lambda,\xi}(x_{1}^{0}, x_{2}^{0}) \right| &\leq \left| \nabla K_{+}\zeta_{\lambda,\xi}(\hat{x}) \right| x - \left(x_{1}^{0}, x_{2}^{0} \right) \\ &\leq 2aC \left\| \zeta_{0} \right\|_{p}, \end{aligned}$$

where \hat{x} is a point on the segment joining x to (x_1^0, x_2^0) , whence

$$K_{+}\zeta_{\lambda,\xi}(x) \ge K_{+}\zeta_{\lambda,\xi}(x_{1}^{0}, x_{2}^{0}) - 2aC \|\zeta_{0}\|_{p}$$

This, in turn, implies

$$K_{+}\zeta_{\lambda,\xi}(x) \ge K_{+}\zeta_{\lambda,\xi}(x_{1}^{0}, x_{2}^{0}) - 2aC \|\zeta_{0}\|_{p}.$$
 (11)

Thus from (8), (10) and (11) we infer

$$\begin{split} K_{+}\zeta_{\lambda,\xi}(x) - \lambda x_{1}x_{2} &\geq \frac{1}{2} K_{+}\zeta_{\lambda,\xi}(x_{1}^{0}, x_{2}^{0}) - aC \|\zeta_{0}\|_{p} - \lambda x_{1}^{0}x_{2}^{0} \\ &\geq 3aC \|\zeta_{0}\|_{p} - aC \|\zeta_{0}\|_{p} = 2aC \|\zeta_{0}\|_{p}. \end{split}$$

Therefore, $S \subseteq \operatorname{supp}(K_+\zeta_{\lambda,\xi}(x) - \lambda x_1 x_2)$. Hence

$$|\operatorname{supp}(K_+\zeta_{\lambda,\xi}(x)-\lambda x_1x_2)| \geq |S|=\pi a^2,$$

as desired. \Diamond

Theorem. There exists $\lambda_0 > 0$ such that $\sum_{\lambda} \neq \emptyset$, for $\lambda \in (0, \lambda_0)$. Moreover, if $\zeta \in \sum_{\lambda}$ and $\psi := K_+ \zeta$, then ψ satisfies the following elliptic partial differential equation

$$-\Delta \psi = \phi \circ (\psi - \lambda x_1 x_2), \quad a.e. \text{ in } \prod_+, \qquad (12)$$

for some increasing function ϕ , unknown a priori.

Proof. Let ξ_0 and λ_0 be as in Lemma 9. If we fix $\lambda \in (0, \lambda_0)$, then by Lemma 7 there exists $R(\lambda) > 0$ such that

$$K_{+}\zeta_{\lambda,\xi}(x) - \lambda x_{1}x_{2} \leq 0,$$

$$x \in \Pi_{+} \setminus \Pi_{+}(R(\lambda)), \quad \zeta \in \mathcal{F}.$$
(13)

Next we define $\xi^* := \max{\{\xi_0, R(\lambda)\}}$; then according to Lemma 6, $\Psi_{\lambda}(\zeta)$ has a maximizer relative to $\zeta \in \mathcal{F}(\xi^*)$, say ζ_{λ,ξ^*} . For simplicity we write $\hat{\zeta} := \zeta_{\lambda,\xi^*}$. We claim that $\hat{\zeta} \in \Sigma_{\lambda}$. To prove this, suppose $l \ge \xi^*$ and consider $\overline{\zeta} \in \Sigma_{\lambda}(l)$. We will first show that

$$\operatorname{supp}(\overline{\zeta}) \subseteq \Pi_{+}(\xi^{*}), \tag{14}$$

modulo a set of measure zero. By Lemma 6 there sxists an increasing function $\overline{\phi}$ such that

$$\overline{\zeta} = \overline{\phi} \circ \left(K_+ \overline{\zeta} - \lambda x_1 x_2 \right), \tag{15}$$

almost everywhere in $\prod_{+}(l)$. Next we observe that since $\overline{\phi}$ is increasing, $(\overline{\phi})^{-1}(0,\infty]$, the pre-image of $(0,\infty]$ under $\overline{\phi}$, is an interval, say *I*, of the form (c,∞) or $[c,\infty)$, by assuming that $\overline{\phi}$ takes on the value $+\infty$ on the interval $(||K_+\overline{\zeta} - \lambda x_1 x_2||_{\infty,\overline{\prod_+(l)}},\infty)$. This, along with (15), implies

 $\operatorname{supp}(\overline{\zeta}) = (K_+\overline{\zeta} - \lambda x_1 x_2)^{-1}(I),$

modulo a set of measure zero in $\prod_{+}(l)$. Hence $|(K_{+}\overline{\zeta} - \lambda x_{1}x_{2})^{-1}(I)| = \pi a^{2}$. On the other hand, from Lemma 9, we have $|(K_{+}\overline{\zeta} - \lambda x_{1}x_{2})^{-1}(0,\infty)| \ge \pi a^{2}$. Whence $c \ge 0$, and this implies $\operatorname{supp}(\overline{\zeta}) \subseteq \operatorname{supp}(K_{+}\overline{\zeta} - \lambda x_{1}x_{2})$ modulo a set of measure zero in $\prod_{+}(l)$. Finally, according to (13), we also have $\operatorname{supp}(K_{+}\overline{\zeta} - \lambda x_{1}x_{2}) \subseteq \prod_{+}(\xi^{*})$, hence we derive (14). Now from (14) we infer $\Psi_{\lambda}(\widehat{\zeta}) \ge \Psi_{\lambda}(\overline{\zeta})$ and this, in turn, implies that $\overline{\zeta} \in \Sigma_{\lambda}(l)$. Since $l \ge \xi^{*}$ is arbitrary we deduce that $\widehat{\zeta} \in \Sigma_{\lambda}$.

To derive (12) we use Lemma 6 once again to ensure existence of an increasing function $\hat{\phi}$ such that

$$\hat{\zeta} = \hat{\phi} \circ \left(K_+ \hat{\zeta} - \lambda x_1 x_2 \right),$$

almost everywhere in $\Pi_+(\xi^*)$. We obtain (12) by a modification process, that is, define

$$\phi(s) := \begin{cases} \hat{\phi}(s), & s \in dom(\hat{\phi}), \quad s > 0, \\ 0, & s \le 0. \end{cases}$$

therefore, clearly, we have

$$\hat{\zeta} = \phi \circ \left(K_+ \hat{\zeta} - \lambda x_1 x_2 \right),$$

almost everywhere in \prod_{+} . As required. \Diamond

Let us conclude with the following

Remark. A close inspection of the proofs of the Theorem and Lemma 9 confirms that if $\zeta \in \Sigma_{\lambda}$, then

$$\operatorname{supp}(\zeta) \subseteq \left\{ x \in \prod_{+} \left| K_{+} \zeta(x) - \lambda x_{1} x_{2} \ge 2aC \| \zeta_{0} \|_{p} \right\},\right\}$$

modulo a set of measure zero. Hence for almost every $x \in \text{supp}(\zeta)$ we have

$$2aC \|\zeta_0\|_p \le K_+ \zeta(x) - \lambda x_1 x_2 \le K_+ \zeta(x) \\ \le C \min\{x_1, x_2\} \|\zeta_0\|_p,$$

where in the last inequality we have used Lemma 1(iii). Therefore, for almost every $x \in \text{supp}(\zeta)$

 $\min\{x_1, x_2\} \ge 2a$.

This shows that the vortex core essentially avoids the boundary of \prod_{+} .

Similar problems have been considered in Emamizadeh [8,9].

Acknowledgements

The author would like to thank his graduate students M. H. Mehrabi, V. Roomi, A. Assari, H. R. Keshavarz, M. Hosseini, H. Rashtizadeh for fruitful discussions concerning this problem.

References

- 1. Burton, G. R. Steady symmetric vortex pairs and rearrangements. *Proceedings of the Royal Society of Edinburgh*, **108A**, 369-290, (1988).
- Benjamin, T. B. The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics, Applications of methods of functional analysis to problems in mechanics. *Lecture Notes in Mathematics* 503, Springer-Verlag, 8-29, (1979).
- Fraenkel, L. E. An Introduction to Maximum Principles and Symmetry in Elliptic Problems: Cambridge University Press. (In the press).
- Hardy, G. H. Littlewood, Polya, G. Inequalities. Cambridge University Press, (1952).
- Agmon, S. The L^p approaching to the Dirichlet problem. Ann. Scuola Norm. Pisa Cl. Sci., 13(3), 405-448, (1959).
- Grisvard, P. Singularities in Boundary Value Problems. Masson, Springer-Verlag, (1992).
- Burton, G. R. Rearrangements of functions, maximization of convex functionals and vortex rings. *Math. Ann.*, 276, 225-253, (1987).
- Burton, G. R. Emamizadeh, B. A constrained variational problem for steady vortices in a shear flow. *Commun. Partial Diff. Eq.*, 24(7/8), 1341-65, (1999).
- 9. Emamizadeh, B. Steady vortex in a uniform shear flow of an ideal fluid. *Proc. Roy. Soc. Edin.*, **130A**, 801-812, (2000).