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Abstract 
We prove the existence of steady 2-dimensional flows, containing a bounded 

vortex, and approaching a uniform flow at infinity. The data prescribed is the 
rearrangement class of the vorticity field. The corresponding stream function 
satisfies a semilinear elliptic partial differential equation. The result is proved by 
maximizing the kinetic energy over all flows whose vorticity fields are 
rearrangements of a prescribed function. 
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Introduction 
In this paper we prove the existence of steady 2-

dimensioal ideal fluid flows occupying  (the first 
quadrant) and containing a bounded vortex. Such a flow 
will be described by a stream function 

+∏

→∏+:ψ . At 
infinity we will have  which is the stream 
function for an irrotational flow with velocity field 

. The vorticity is given by 

21xxλψ −→

( 21, xx −−λ ) ψΔ− , where Δ is 
the Laplacian, and ψΔ−  vanishes outside a bounded 
region avoiding the boundary of . We will show that +∏
ψ  satisfies the following semilinear elliptic partial 
differential equation: 

ψφψ o=Δ− , 

almost everywhere in , where +∏ φ  is an increasing 
function, unknown a prior. In our result the vorticity  

 
Keywords: Rearrangements, Vorticity, Irrotational flows, 
Elliptic partial differential equations, Variational problem 
field  is a rearrangement of a prescribed non-

negative function  having bounded support. The 
existence theorem is proved by maximizing a functional 
over the set of rearrangements of  vanishing outside 
bounded sets in . This variational principle was 
adapted by Burton [1] from one for vortex rings in 3 
dimensions, proposed by Benjamin [2]. 

( ψζ Δ−= )

0ζ

0ζ

+∏

Lack of compactness caused by the unboundedness 
of the domain of interest is the motivation to use the 
strategy proposed by Benjamin [2]. 

 
Notation and Definitions 

Henceforth p denotes a real number in (2,∞) and 
( )1/: −=∗ ppp . The upper and the right half planes are 

designated by  and , respectively, and the first 
quadrant by . Generic points of 

u∏ r∏

+∏ 2 are denoted by 
( ) ( ) ( 212121 ,,,,, zzzyyyxxx === ) , etc. For x∈ 2 we 

let xxx ,,  denote the reflections of x about the x1-axis, 
x2-axis and the origin, respectively. For 0>ξ  we define 
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The ball centered at x with radius r is denoted ( )xBr , 
when the origin is the center we write BBr. 

Here we deal with three different Green’s functions, 
namely, the Green’s functions for Δ−  with 
homogeneous Dirichlet boundary conditions on , 

 and ; it is a standard result that these functions 
are given as follows 

u∏

r∏ +∏

( )

( )

( ) ,,,,log
2
1:,

,,,,log
2
1:,

,,,,log
2
1:,

yxyx
yxyx
yxyx

yxG

yxyx
yx
yx

yxG

yxyx
yx
yxyxG

rr

uu

≠∏∈
−−

−−
=

≠∏∈
−

−
=

≠∏∈
−
−

=

++ π

π

π

 

respectively. For measurable functions ζ on 2 we 
define the following integral operators 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )∫
∫
∫

+∏ ++

∏

∏

=

=

=

,,:

,,:

,,:

dyyyxGxK

dyyyxGxK

dyyyxGxK

r

u

rr

uu

ζζ

ζζ

ζζ

 

whenever the integrals exit. 
For a measurable set A in 2, we use A  to denote 

the 2-dimensional Lebesgue measure of A, and A  for 
the topological closure. The strong support of a 
measurable function ζ , denoted supp ( , is defined as 
follows 

)ζ

( ) ( ) ( ){ }0dom:supp >∈= xx ζζζ . 

To define the rearrangement classes needed for our 
variational problem we fix a non-negative, non-trivial 
function ζ0∈Lp( 2)) which vanishes outside a bounded 
set; in addition we assume 

( ) 2
0supp aπζ =  (1) 

for some . The set F comprises the functions 
(which we call rearrangements of ζ

0>a
0) that vanish outside 

bounded subsets of  and that are equimeasurable to 
ζ

+∏

0. A function ζ is said to be equimeasurable to ζ0 
whenever 

( ){ } ( ){ }αζαζ ≥∏∈=≥∏∈ ++ xxxx 0 , 

for every positive α. It is well known that if ζ∈F then 

ss 0ζζ = , 

for [ ]∞∈ ,1s . The subset of F comprising functions 
vanishing outside ( )ξ+∏  is designated by ( )ξF , where 
it is assumed that  to ensure . 2/1πξ a≥ ( ) 0/≠ξF

Next we define the kinetic energy. For ( )+∏∈ pLv  
having bounded support and λ∈ , we define 

( )

( ) ∫
∫

+

+

∏

∏ +

=ℑ

=Ψ

νν

ννν

21:

,
2
1:

xx

K
 

and the kinetic energy 

( ) ( ) ( )νλννλ ℑ−=Ψ Ψ: , 

whenever the integrals exist. Now we are in a position 
to define the variational problem 

( ) ( )ζλ
ζ

λ Ψ
F∈

sup:P . 

The set of solutions of ( )λP  is denoted by . For 
 the truncated variational problem 

λ∑
2/1πξ a> ( )( )ξλP  is 

defined by 

( )( )
( )

( )ζξ λ
ζ

λ Ψ
ξF∈

sup:P , 

and ( )ξλ∑  denotes the set of solutions. 

 
Proofs of Some Lemmas 

Lemma 1. Let ( )+∏∈ pLζ  vanish outside a bounded 
set. Then 
(i) (1CK ∈+ζ

2). 

(ii) ( ) pCxK ζζ ≤∇ + , for every x∈ 2, where C 

depends on ( )ζsupp  and p. 

(iii) ( ) { } pxxminCxK ζζ 21 ,≤+ , for every , 
where C is the constant in (ii). 

+∏∈x

 
Proof. (i) is an immediate consequence of a result about 
Newtonian potentials of densities with compact support. 
Specifically, let 

( )
π

ζ
2
1

=xN e ∫ ² ( )dyy
yx eζ−

1log  

denote the Newtonian potential of the zero-extension of 
ζ, to all of 2. Since  and ζ has compact support 
we can apply Lemmas A.7 an A.9 in [3] to deduce that 

(

2>p

1CN e ∈ζ 2) and 
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( )
π

ζ
2
1

=∇ xN e ∫ ² ( ) ∈∀
−

∇ xdyy
yx ex ,1log ζ 2. (2) 

Clearly we have 

( ) ( ) ( ) ( ) ( )xNxNxNxNxK eeeee ζζζζζ −−+=+ . 

Hence, (1CK ∈+ζ
2). For (ii) it obviously suffices to 

show 

( ) ∈∀≤∇ xCxN pe ,ζζ 2. (3) 

where C is a constant depending on ( )ζsupp  and p. To 
do this, we use (2) to deduce 

( ) ≤∇ xN eζ ∫ ² ( ) ∈∀
−

xdyy
yx

,1 ζ 2. 

Now let us fix x∈ 2 and denote the Schwartz-
rearrangement of ζ , about x, by . Therefore, by a 
standard inequality, see for example [4], we obtain 

∗ζ

( ) ( )
( )∫ ∗

−
≤∇

xBe
l

dyy
yx

xN ζ
π

ζ 1
2
1 , 

where 

( )( ) 2/1/supp: πζ=l . 

Hence, by an application of Hölder’s inequality we 
derive 

( )
( ) p

p

xB pe
l

dy
yx

xN ζ
π

ζ

∗

∗ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
≤∇ ∫

/1
1

2
1 . (4) 

Elementary calculations yield 

( )
Cdy

yxxB pl
≤

−∫ ∗

1 , 

where C depends only on l and p. So we derive (3). 
Now to derive (iii) we fix . Since (+∏∈x 1CK ∈+ζ

2) 
and vanishes on the boundary of , we can apply the 
Mean Value Theorem to obtain 

+∏

( ) ( ) ( ) ( )xKxxKxKxK ˆ0, 21 ζζζζ ++++ ∇≤−= , 

where  is a point on the segment joining x to x̂ ( )0,1x . 
Whence from (ii) we deduce that ( ) pxCxK ζζ 2≤+ . 

Similarly, one can show ( ) pxCxK ζζ 1≤+ , so we 
derive (iii) as desired.◊ 

 

Lemma 2. Let U be an open and bounded subset of 
. Then for every +∏ ( ) ( )ULULKq qp →≥ + :,1  is a 

compact linear operator, in the sense that if { }nζ  is a 
sequence of functions, bounded in ( )+∏pL  and 
vanishing outside U, then the restrictions to U of the 
Kζn’s have a subsequence converging in the q-norm. 

 
Proof. The well-defindness of ( ) ( )ULULK qp →+ :  
follows from Lemma 1(iii). The linearity of K+ follows 
from the definition. To show compactness of K+ it 
suffices to show that ( ) ( )UWULK p 2,1: →+  is 
bounded, since then by an application of the Sobolev 
Embedding Theorem we derive the desired result. Let 
us now fix ( )+∏∈ pLζ  that vanishes outside U. Then 
by applying Lemma 1(ii), (iii) we infer pCK ζζ ≤+ 2  

and pCK ζζ ≤∇ + 2 , hence 

( ) pUW CK ζζ ≤+ 2,1 , 

here C stands for different constants. So we are done.◊ 
The next lemma is an immediate consequence of 

Lemma 7 in [1]. 
 

Lemma 3. Let ( )+∏∈ pLζ  vanishes outside a bounded 
set. Then 

( ) ( ) ( ) ( ) ∞→==∇ −
+

−
+ xxOxKxOxK ,, 12 ζζ . 

 
Lemma 4. Let q and U be as in Lemma 2. Then 

( ) ( )ULULK qp →+ :  is strictly positive, that is, for 
every non-trivial function  vanishing 
outside U, 

( +∏∈ pLζ )

)

0>∫
+∏ +ζζK . 

 
Proof. Let us fix  vanishing outside U. 
Then, from Lemma 3(i) in [1], we have 

( +∏∈ pLζ

( )uD ∏′=Δ− inKu ,ζζ , 

that is, in the sense of distributions. Hence, we also have 

( )+∏′=Δ− DinKu ,ζζ , 

since ( ) ( ) ( )xKxKxK uu ζζζ −=+  for all x∈ 2. Now by 
Agmon’s regularity theory [5] we deduce that 

(p
locWK ,2∈+ζ

2). In particular, ( )++ ∏∈ p
locWK ,2ζ . 

Therefore, in fact we have 
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ζζ =Δ− uK , 

almost everywhere in . Next we let 
; since the boundary of 

+∏
( ) +∏∩=Ω RBR : ( )RΩ  is 

Lipschitz we can apply the weak Divergence Theorem, 
see for example [6], to obtain 

( ) ( )
( ) ( )

( )
,2 ∫∫∫ Ω∂ ++Ω +Ω + ∂=∇+−

R nRR
dKKKK σζγζγζζζ  

where γ stands for the trace operator on  and ( )RΩ∂ n  
denotes the unit outward normal vector to ( )RΩ∂ . 

Since ( ++ ∏∈ 1CK ζ )  we have 

( ) ( )
( )

( )( )
( )∫∫ Ω∂ ++Ω∂ ++ ∂=∂
R nR n

dKKdKK σζζσζγζγ . 

Therefore 

( ) ( )
( )( )

( )∫∫∫ Ω∂ ++Ω +Ω + ∂=∇+−
R nRR

dKKKK σζζζζζ 2

. 

Now from Lemma 3 we infer 

( )( )
( )

0lim =∂∫ Ω∂ ++
∞→ R nR

dKK σζζ . 

Moreover, since  is finite and ∫
+∏ +ζζK ζ+∇K  is 

bounded in 2 we may apply the Lebesgue Dominated 
Convergence Theorem to conclude 

( )

( )
.lim

,lim

22 ∫∫
∫∫

+

+

∏ +Ω +
∞→

∏ +Ω +
∞→

∇=∇

=

ζζ

ζζζζ

KK

KK

RR

RR  

Therefore, we derive ∫∫
++ ∏ +∏ + ∇= 2ζζζ KK  and we 

are done.◊ 
The following lemma is a result from Burton’s 

theory [7]. 
 

Lemma 5. Suppose ( )( )→∏Φ + ξpL:  is a weakly 
sequentially continuous, strictly convex functional. Then 

 attains a maximum relative to ( )ζΦ ( )ξζ F∈ , for 

. Moreover, if  is a maximizer and 2/1πξ a≥ ζ̂ ∈ψ  

, the subdifferential of Φ at , then )ˆ(ζΦ∂ ζ̂

ψφζ o=ˆ , 

almost everywhere in , for some increasing 
function 

( )ξ+∏
φ . 

 
Lemma 6. For every 0>λ  and , the problem 2/1πξ a≥

( )ξλP  is solvable. Moreover, if , then ( )ξζ λ∑∈

( )21xxK λζφζ −= +o , (5) 

almost everywhere in , for some increasing 
function 

+∏
φ . 

 
Proof. Let us being by noting that ( )( )→∏++ ξpLK :  

 is a symmetric operator, that is, ( )( ξ+∏∗pL )

( )+∏ +∏ + ∏∈∀= ∫∫
++

pLwKwwK ,, ννν , 

which readily follows from the symmetry of G+. Since 
K+ is compact, strictly positive and symmetric it follows 
that , defined on the set of functions in λΨ ( )+∏pL  
vanishing outside ( )ξ+∏ , is strictly convex and weakly 
sequentially continuous. Now by applying Lemma 5 we 
deduce that ( )ξλP  is solvable. Next we show that if 

( )ξζ λ∑∈ , then . For this 
purpose we consider 

( )ζλζ λΨ∂∈−+ 21xxK
( +∏∈ pLζ )  which vanishes 

outside ( )ξ+∏ , then we need to show that 

( ) ( ) ( )( )∫
+∏ + −−+Ψ≥Ψ 21xxK λζζζζζ λλ , 

or equivalently 

( ) ( ) 0≥−−∫
+∏ + ζζζζ K , 

but this is true since K+ is strictly positive. Therefore, 
again by Lemma 5, existence of an increasing function 
φ  is ensured so that (5) holds.◊ 

 
Results and Discussion 

In this section we present our main result (see the 
theorem below). We begin with some technical lemmas. 

 
Lemma 7. Let 0>λ . Then there exists  such 
that 

( ) 0>λR

( ) ( ) F∈≥≤−+ ζλλζ ,,021 RxxxxK . 

 
Proof. Let us fix  and +∏∈x F∈ζ ; we assume 

{ } α≥21,min xx  for some 0>α  to be determined later. 
According to Lemma 1(ii) there exists , 
independent of 

0>M
ζ , such that ( ) MxK ≤∇ +ζ . Therefore, 

by Lemma 1(iii) we have ( ) { }21, xxminMxK ≤+ζ . 
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Hence 

( ) { } ( )λαλζ −≤−+ MxxminxxxK 2121 , . 

Thus if we assume λα /M≥ , then . 
Hence we can take .◊ 

( ) 021 ≤−+ xxxK λζ
( ) λλ /MR =

 
Lemma 8. Suppose (pL∈ζ 2) is a non-negative 
function which is spherically decreasing and vanishes 
outside Ba. Then there exists a positive constant k such 
that 

tkK tt log≥∫
+∏ +ζζ , 

for all sufficiently large t, where . ( ) ( )txtxxt −−= 21 ,: ζζ
 

Proof. Clearly we can assume ( at 21+≥ ) . Now we 
observe that there exists 0>β  and  such that 
for all x with 

ab <<0
bx ≤  we have . Let ( ) βζ ≥x ( )tBb  

denote the ball centered at ( )tt,  with radius b and 
consider  and ( )tBx a∈ ( )tBy b∈ . Hence if we set 

,:,:,:,: 4321 yxyxyxyx −=−=−=−= γγγγ  

then it is clear that 

ataatat 222,2,22,22 4321 +≤≤−≥−≥ γγγγ . 

Therefore, 

( ) ( )
( )

( )
( )ata

atb

dy
ata

atxK
tBt

b

+
−

=
+

−
≥ ∫+

2
log

2

2222
22log

2
22

)(

2

β

π
βζ

 

Hence 

( )
( )ata

atbK tt +
−

≥∫
+∏ + 2

log
2

242πβζζ , 

and we are done.◊ 
An immediate consequence of Lemma 8 is the 

following 
 

Corollary. We have 

( )
( ) +∞=Ψ

∈
∞→ ζ

ξζ
ξ

F
suplim . 

 
Lemma 9. There exists  and  such 
that, if ,  and 

00 >λ 2/1
0 πξ a>

00 λλ ≤< 0ξξ ≥ ξλζ ,  is a maximizer of 

( )ζλΨ  relative to ( )ξζ F∈  then 

( ) ( ){ } 2
21, 0 axxxKx πλζξ ξλ ≥>−∏∈ ++ . 

 
Proof. Let us fix 0>α , 0>ε . Then according to the 
Corollary there exists  such that if  
then 

2/1
0 πξ a> 0ξξ ≥

( ) ( ) εαζξζ +≥Ψ∈Fsup . In particular, 

( ) ( ) εαζξζ +≥Ψ∈ 0
sup F . Since Ψ is a real-valued 

functional on ( )( )0ξ+∏pL  which is weakly sequentially 
continuous and strictly convex we can apply Lemma 5 
to ensure existence of )  such that ( 0

ˆ ζζ F∈

( ) ( ) ( )ζζ ζζ Ψ=Ψ ∈ 0
supˆ

F , whence 

( ) εαζ +≥Ψ ˆ . (6) 

Now choose  such that . Since 00 >λ ( ) εζλ <ℑ ˆ
0

( ) ( ) ( )ζλζζλ
ˆˆ:ˆ ℑ−Ψ=Ψ  we can use (6) to obtain 

( ) 00,ˆ λλαζλ ≤<≥Ψ . 

This shows that 

( ) ( ) 00 ,0,sup ξξλλαζλξζ ≥≤<≥Ψ∈F . (7) 

Next we set 1003 ζζα paC= , where C is the 
constant in Lemma 1(iii). Hence from (7) we have 

( ) ( ) 1003sup ζζζλξζ paC≥Ψ∈F , (8) 

for all  and . Now we fix , 
 and let 

00 λλ ≤< 0ξξ ≥ 00 λλ ≤<

0ξξ ≥ ξλζ ,  denote a maximizer of ( )ζλΨ  

relative to ( )ξζ F∈ . Then we have 

( )
( )

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −≤Ψ +

∏+

21,10, 2
1sup xxxK λζζζ ξλ

ξ
ξλλ . 

We also have ( ) 100, 3 ζζζ ξλλ paC≥Ψ , from (8), 
hence 

( )
( ) paCxxxK 021, 3

2
1sup ζλζ ξλ

ξ
>⎟

⎠
⎞

⎜
⎝
⎛ −+

∏+

. (9) 

Since ( ) ( )( ξλζ ξλ ++ ∏∈− 21,2
1 xxxK ), it attains its 

maximum at ( ) ( )ξ+∏∈0
2

0
1 , xx , say. Whence, by Lemma 

1(iii) 
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( )
( ) ( )

{ } .,min
2

,
2
1

2
1sup

0
0
2

0
1

0
2

0
1,21,

pxxC

xxKxxxK

ζ

ζλζ ξλξλ
ξ

≤

≤⎟
⎠
⎞

⎜
⎝
⎛ − ++

∏+  

Therefore, from (9) we infer . 
Now we define the set 

{ } aaxx 26,min 0
2

0
1 >≥

{ } 0
2

0
12

0
22

0
11 ,,: xxBxxxxxS a∩<<∏∈= + ( )

)

, 

where  denotes the ball centered at ( 0
2

0
12 , xxB a ( )0

2
0
1 , xx  

with radius 2a; clearly ( )ξ+∏⊂S . Consider Sx∈ , 
then 

( ) ( ) 0
2

0
1,21, ,2/1 xxxKxxxK λζλζ ξλξλ −≥− ++ . (10) 

On the other hand, by an application of the Mean Value 
Theorem and Lemma 1(ii), 

( ) ( ) ( ) ( )
,2

,ˆ,

0

0
2

0
1,

0
2

0
1,,

paC

xxxxKxxKxK

ζ

ζζζ ξλξλξλ

≤

−∇≤− +++  

where  is a point on the segment joining x to x̂ ( )0
2

0
1 , xx , 

whence 

( ) ( ) paCxxKxK 0
0
2

0
1,, 2, ζζζ ξλξλ −≥ ++ . 

This, in turn, implies 

( ) ( ) paCxxKxK 0
0
2

0
1,, 2, ζζζ ξλξλ −≥ ++ . (11) 

Thus from (8), (10) and (11) we infer 

( ) ( )
.23

,
2
1

000

0
2

0
10

0
2

0
1,21,

ppp

p

aCaCaC

xxaCxxKxxxK

ζζζ

λζζλζ ξλξλ

=−≥

−−≥− ++  

Therefore, ( )( )21,supp xxxKS λζ ξλ −⊆ + . Hence 

( )( ) 2
21,supp aSxxxK πλζ ξλ =≥−+ , 

as desired.◊ 
 

Theorem. There exists  such that , for 
. Moreover, if  and , then ψ 

satisfies the following elliptic partial differential 
equation 

00 >λ 0/≠∑λ

),0( 0λλ ∈ λζ ∑∈ ζψ += K:

( ) +∏−=Δ− ineaxx ..,21λψφψ o , (12) 

for some increasing function φ , unknown a priori. 

Proof. Let ξ0 and λ0 be as in Lemma 9. If we fix λ∈ 
(0, λ0), then by Lemma 7 there exists R(λ) > 0 such that 

( )
( )( ) .F∈∏∏∈

≤−

++

+

ζλ

λζ ξλ

,\

,021,

Rx

xxxK
 (13) 

Next we define ( ){ }λξξ R,max: 0=∗ ; then according to 
Lemma 6,  has a maximizer relative to 

, say 
)(ζλΨ

)( ∗∈ ξζ F ∗ξλζ , . For simplicity we write 

. We claim that . To prove this, 

suppose  and consider 

∗= ξλζζ ,:ˆ
λζ ∑∈ˆ

∗≥ ξl )(lλζ ∑∈ . We will first 
show that 

( ) ( )∗+Π⊆ ξζsupp , (14) 

modulo a set of measure zero. By Lemma 6 there sxists 
an increasing function φ  such that 

( )21xxK λζφζ −= +o , (15) 

almost everywhere in . Next we observe that 

since 

)(l+∏

φ  is increasing, ( ) ( ]∞− ,01φ , the pre-image of 
( ]∞,0  under φ , is an interval, say I, of the form ( )∞,c  
or [ )∞,c , by assuming that φ  takes on the value +∞  
on the interval ( )( )∞−

+∏∞+ ,
,21 l

xxK λζ . This, along 

with (15), implies 

( ) ( ) ( )IxxK 1
21supp −

+ −= λζζ , 

modulo a set of measure zero in . Hence )(l+∏

( ) ( ) 21
21 aIxxK πλζ =−
−

+ . On the other hand, from 

Lemma 9, we have ( ) ( ) 21
21 ,0 axxK πλζ ≥∞−
−

+ . 

Whence , and this implies 0≥c ( ) −⊆ +ζζ Ksupp(supp  
 modulo a set of measure zero in . Finally, 

according to (13), we also have 
)21xxλ )(l+∏

−+ζKsupp(  
( )∗+∏⊆ ξλ )21xx , hence we derive (14). Now from (14) 

we infer )()ˆ( ζζ λλ Ψ≥Ψ  and this, in turn, implies that 
)(lλζ ∑∈ . Since  is arbitrary we deduce that 

. 

∗≥ ξl

λζ ∑∈ˆ

To derive (12) we use Lemma 6 once again to ensure 
existence of an increasing function  such that φ̂

( )21
ˆˆˆ xxK λζφζ −= +o , 
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almost everywhere in . We obtain (12) by a 
modification process, that is, define 

( )∗+∏ ξ

( ) ( ) ( )
⎩
⎨
⎧

≤
>∈

=
.0,0

,0,ˆ,ˆ
:

s
sdomsss φφφ  

therefore, clearly, we have 

( )21
ˆˆ xxK λζφζ −= +o , 

almost everywhere in . As required.◊ +∏
Let us conclude with the following 
 

Remark. A close inspection of the proofs of the 
Theorem and Lemma 9 confirms that if , then λζ ∑∈

( ) ( ){ paCxxxKx 021 2supp ζλζζ ≥−∏∈⊆ ++ }, 

modulo a set of measure zero. Hence for almost every 
 we have ( )ζsupp∈x

( ) ( )

{ } ,,min

2

021

210

p

p

xxC

xKxxxKaC

ζ

ζλζζ

≤

≤−≤ ++
 

where in the last inequality we have used Lemma 1(iii). 
Therefore, for almost every  ( )ζsupp∈x

{ } axx 2,min 21 ≥ . 

This shows that the vortex core essentially avoids the 
boundary of . +∏

Similar problems have been considered in 
Emamizadeh [8,9]. 
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