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Abstract
We prove the existence of steady 2-dimensional flows, containing a bounded
vortex, and approaching a uniform flow at infinity. The data prescribed is the
rearrangement class of the vorticity field. The corresponding stream function
satisfies a semilinear elliptic partial differential equation. The result is proved by
maximizing the kinetic energy over all flows whose vorticity fields are

rearrangements of a prescribed function.

Introduction
In this paper we prove the existence of steady 2-
dimensioal ideal fluid flows occupying [1, (the first

quadrant) and containing a bounded vortex. Such a flow
will be described by a stream function w:[[, > R. At

infinity we will have y — —Ax;x, which is the stream
function for an irrotational flow with velocity field
—A(x;,—x,). The vorticity is given by —Aw , where A is
the Laplacian, and —Aw vanishes outside a bounded
region avoiding the boundary of [], . We will show that
w satisfies the following semilinear elliptic partial
differential equation:

Ay =goy,

almost everywhere in [I,, where ¢ is an increasing
function, unknown a prior. In our result the vorticity
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field {(=—Aw) is a rearrangement of a prescribed non-
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negative function ¢, having bounded support. The

existence theorem is proved by maximizing a functional
over the set of rearrangements of ¢, vanishing outside

bounded sets in [[,. This variational principle was

adapted by Burton [1] from one for vortex rings in 3
dimensions, proposed by Benjamin [2].

Lack of compactness caused by the unboundedness
of the domain of interest is the motivation to use the
strategy proposed by Benjamin [2].

Notation and Definitions
Henceforth p denotes a real number in (2,00) and

p*=p/(p-1). The upper and the right half planes are
designated by [, and II,, respectively, and the first
quadrant by [I, . Generic points of R? are denoted by
x=(x,%),y =0, )z=(z,2,), etc. For xeR*> we
let x,x,x denote the reflections of x about the x,-axis,
x,-axis and the origin, respectively. For £ >0 we define
[1L(&)={xeR*0<x <&0<x, <&
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The ball centered at x with radius r is denoted B,(x),
when the origin is the center we write B,.

Here we deal with three different Green’s functions,
namely, the Green’s functions for -A  with
homogeneous Dirichlet boundary conditions on []

u?

[1, and II,; it is a standard result that these functions
are given as follows

G, 5.3) = 5 log =

xyell,, x#y,
-
G(xy)__log | xayel_[rn x¢y=
1 x—=Yy|lx—
G, (x, y)—— M x,yell,, x#y,
==’
respectively. For measurable functions ¢ on R* we

define the following integral operators
K&)=[ G0y (.
KL= G oy (),
K.5()= [ Gl i)y,

whenever the integrals exit.
For a measurable set 4 in R*, we use |4| to denote

the 2-dimensional Lebesgue measure of 4, and A for
the topological closure. The strong support of a
measurable function {, denoted supp (¢), is defined as

follows
supp(¢) = {x e dom({)¢(x) > 0} .

To define the rearrangement classes needed for our
variational problem we fix a non-negative, non-trivial
function (yeL”(R*) which vanishes outside a bounded
set; in addition we assume

|5UPP(§o )l = ma?

for some a>0. The set ¥ comprises the functions
(which we call rearrangements of {;) that vanish outside
bounded subsets of [I, and that are equimeasurable to

)

{o. A function { is said to be equimeasurable to ¢,
whenever

|t e ILIS(x) > erff = [{x e TLJgu(x) > e

for every positive a. It is well known that if (€ Fthen

¢ =loll
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for se[l,0]. The subset of & comprising functions

vanishing outside [],(¢&) is designated by (&), where
it is assumed that &> az''? to ensure F(£)#0.

Next we define the kinetic energy. For ve LP([1,)
having bounded support and AR, we define

1
Y(v):= E-[ll WK, V,
JIv):= II'L X%V

and the kinetic energy
Y, (v)=¥(v)-43(v),

whenever the integrals exist. Now we are in a position
to define the variational problem

(P):sup¥,(S).

§eF

The set of solutions of (P;) is denoted by . For

&>an'’? the truncated variational problem (P;(&)) is
defined by

(P,(S)): sup ¥,(L),
¢er(§)
and X ;(&) denotes the set of solutions.

Proofs of Some Lemmas

Lemma 1. Let e LP([1,) vanish outside a bounded
set. Then

(i) K.¢ eC'(R).
(i) [VK.{(x)<Cl¢l,.
depends on |supp(¢)| and p.
(iii) K¢ (x) < Cmin{lx ||, ST,

where C is the constant in (ii).

for every xeR? where C

, for every xell,,

Proof. (i) is an immediate consequence of a result about
Newtonian potentials of densities with compact support.
Specifically, let

NS, (x)= LRZ o l: L ()dy

denote the Newtonian potential of the zero-extension of
g, to all of R%. Since p>2 and ¢ has compact support

we can apply Lemmas A.7 an A.9 in [3] to deduce that
N¢, e CH(R?) and
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1 1
VNG, (x)= = [V, log——C,(y)dy, VxeR(2)
2z |x— |
Clearly we have

K.£o(x)= N, (x)+ NE, (X) = N, (¥) - NC, (x).-

Hence, K,¢ eC! (R?). For (ii) it obviously suffices to
show

VNG, (x) < Cle],. Vxe R 3)

where C is a constant depending on [supp(¢) and p. To
do this, we use (2) to deduce
1 2
VNZ,(x)|< IRZH|:<y>|dy, vxe R

Now let us fix xeR® and denote the Schwartz-
rearrangement of ||, about x, by ™. Therefore, by a
standard inequality, see for example [4], we obtain

1 1
VNG ()< —[ ——¢" (),
VN, (x) 27r-.-31(X)|x—y|§ (v)dy

where

1= (supp(¢ )|/ 7)"'?.

Hence, by an application of Holder’s inequality we
derive

VNG, (x) < =

1 1/p*
d . 4
i) 0 o

Elementary calculations yield

dy<C,
.[B,(x)lx_ylp* Y

where C depends only on / and p. So we derive (3).
Now to derive (iii) we fix x €[, . Since K, e C' (R?)
and vanishes on the boundary of [], , we can apply the
Mean Value Theorem to obtain

|K+§(x)| = |K+§(x)—K+§(x1 ’O)l < x2|VK+§()2)

where x is a point on the segment joining x to (x;,0).
Whence from (i) we deduce that |K,¢(x)[< C x,[|c], -

Similarly, one can show |K ¢(x)<C x||¢ ||p, SO we

derive (iii) as desired.¢
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Lemma 2. Let U be an open and bounded subset of
[1,. Then for every q21,K :IP(U)—>I{U) is a
compact linear operator, in the sense that if {{,} is a
sequence of functions, bounded in ILP([1,) and

vanishing outside U, then the restrictions to U of the
K{,’s have a subsequence converging in the g-norm.

Proof. The well-defindness of K, :17(U)— L1(U)

follows from Lemma 1(iii). The linearity of K. follows
from the definition. To show compactness of K, it

suffices to show that K, :LP(U)—>W"(U) is

bounded, since then by an application of the Sobolev
Embedding Theorem we derive the desired result. Let

us now fix ¢ eLP([1,) that vanishes outside U. Then
by applying Lemma 1(ii), (iii) we infer |K,¢], <C|¢],
and |[VK <], < C||§’||p , hence

1K Sl = €I, -

here C stands for different constants. So we are done.¢
The next lemma is an immediate consequence of
Lemma 7 in [1].

Lemma 3. Let ¢ € [P([1,) vanishes outside a bounded
set. Then

VK ,{(0)=0(x7) K. S(x)=0(x") l->e0.

Lemma 4. Let q and U be as in Lemma 2. Then
K, :LP(U)—> L1(U) is strictly positive, that is, for
¢er ()

every non-trivial function
outside U,

vanishing

f o>

Proof. Let us fix ¢ elP([1,) vanishing outside U.
Then, from Lemma 3(i) in [1], we have

_AKug = é” in @,(Hu) >
that is, in the sense of distributions. Hence, we also have
-AK,$=¢, inD'(IL),

since K,¢(x)=K,£(x)-K,£(x) for all xeR*. Now by
theory [5] we deduce that
K¢ ewpr ().

Agmon’s regularity
K& Wl ().
Therefore, in fact we have

In particular,
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_AKué’:é/ >

almost everywhere in [[,. Next let
Q(R)=By NI, ; since the boundary of Q(R) is
Lipschitz we can apply the weak Divergence Theorem,
see for example [6], to obtain

K.+ LXR)IVKJF = [ K. Wo-K ¢ o,

w¢e

_.[Q(R)

where y stands for the trace operator on 6Q(R) and n
denotes the unit outward normal vector to OQ(R).

Since K ,{eC! (ﬁ+) we have

LQ(R)y (K& (85K+§)d0:IaQ(R)(K+§ )(5;K+§ Jio .
Therefore

_ IQ(R)éYQé +IQ(R)|VK+§|2 _ LQ(R)(KJ)(@;; K.C Mo

Now from Lemma 3 we infer

lim JaqR)(K+§)(8;K+§)dG 0.

Moreover, since IH ¢K.¢ is finite and |VK, | is

bounded in R* we may apply the Lebesgue Dominated
Convergence Theorem to conclude

lim IQ(R)éTQC = jm K<,

. 2 2
lim | VK.CP = jﬂ+|w<+g|.

R—x0 JQ(R

Therefore, we derive I” K. = J.n VK, (> and we

are done.¢
The following lemma is a result from Burton’s
theory [7].

Lemma 5. Suppose ®:IP([1,(¢))> R is a weakly

sequentially continuous, strictly convex functional. Then
®(&) attains a maximum relative to ¢ e F(E), for

E>an''?. Moreover, if ¢ is a maximizer and y e

8CD(QA' ), the subdifferential of ® at g',: , then

é’;:¢°l//s

almost everywhere in [1,(&), for some increasing
function ¢ .
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Lemma 6. For every A >0 and &> arn''?, the problem
P, (&) is solvable. Moreover, if { €. ,(¢), then

§=¢°(K+§_ﬂx1x2): (5)

almost everywhere in 1., for some increasing
function ¢ .

Proof. Let us being by noting that K, : LP(I1,(&))—
LP"(IT,(&)) is a symmetric operator, that is,

IH+VK+W:IH+WK+V, vv,we LP([1,),

which readily follows from the symmetry of G.. Since
K, is compact, strictly positive and symmetric it follows

that ¥, , defined on the set of functions in LP([1,)
vanishing outside [1, (&), is strictly convex and weakly

sequentially continuous. Now by applying Lemma 5 we
deduce that P;(&) is solvable. Next we show that if

feX, (&), then K, {—Axx,ed¥,(<). this
purpose we consider ¢ e LP([1,) which vanishes
outside [], (&), then we need to show that

For

W)= W)+ [ (=XKL -,
or equivalently
J -9k, €-0)=0.

but this is true since K. is strictly positive. Therefore,
again by Lemma 5, existence of an increasing function
¢ is ensured so that (5) holds.0

Results and Discussion
In this section we present our main result (see the
theorem below). We begin with some technical lemmas.

Lemma 7. Let 1 >0. Then there exists R(1)>0 such
that

K. {(x)-xx, <0, |x|2R(A), {eF.

Proof. Let us fix xe[l, and {eF; we assume
min{x;,x,} >« for some a >0 to be determined later.

According to Lemma 1(ii) there exists M >0,
independent of ¢, such that [VK,{(x) < M . Therefore,

by Lemma 1(iii) we have |K, {(x)<M min{x;x,}.



J. Sci. I R. Iran

Hence
K, {(x)— A xy <min{x;,x,} (M — at) .

Thus if we assume a>M /A, then K,{(x)— Axx, <0.
Hence we can take R(A)=M /1.0

Lemma 8. Suppose (elP(R?) is a non-negative

function which is spherically decreasing and vanishes
outside B,. Then there exists a positive constant k such
that

jH G K¢ > klogt
Sor all sufficiently large t, where &,(x):=¢(x; —t,x, —1).

Proof. Clearly we can assume ¢>(1++/2)a. Now we
observe that there exists f>0 and 0<b<a such that
for all x with |x|<b we have {(x)>p. Let B,(¢)
denote the ball centered at (¢,¢) with radius b and
consider x € B,(¢) and y € B,(¢) . Hence if we set

71 ::|x—)7|,7/2 ::|X_Z|’ 7/3 3:|x_J’|774 ::|X—J__/|,
then it is clear that

71 22t-2a,y,22t-2a,y,<2a,y, <2v2t+2a.

Therefore,

Kifo)z L] g 222

27350 2do2t+24) "
ﬁ_bzlog (t—a)
2 aix/zt +a ’
Hence
pb* (t—a)’
K., > lo S
IH+ sk 2 £ a(N2t+a)

and we are done.0
An immediate consequence of Lemma 8 is the
following

Corollary. We have

limg ,,, sup W(¢)=+o.
ger($)

/2

Lemma 9. There exists Ay, >0 and &, >an'? such

that, if 0<A<2y, §2¢&, and ¢, . is a maximizer of
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¥, (<) relative to & € FIE) then

|{x € H+(§)|K+§/L§(x)—ﬂx1x2 > 0}| >’ .

Proof. Let us fix ¢ >0, £>0. Then according to the
Corollary there exists & >azx!/? such that if &>¢,
then

SUper(s) P(E)Za+e. In  particular,

SUPser(e,) P(§)2a+e. Since W is a real-valued

functional on L (1, (&,)) which is weakly sequentially
continuous and strictly convex we can apply Lemma 5
of Ce#(,) that

\P(é ): SUPser(s,) P(S), whence

to ensure existence such

‘P(;:)Za+g. (6)

Now choose A,>0 such that 103(5 )< & . Since
Y, (é:):: ‘I’(;:)— /?S(;:) we can use (6) to obtain

¥, ()za, 0<i<i.

This shows that

supser(e) Vi(d)2za, 0<A<idy, £24. (M

Next we set a=3aC|{y|l, [Col,, where C is the

constant in Lemma 1(iii). Hence from (7) we have

super(e) ¥2(¢) 2 3aCl¢o |, IS0l » ®

for all 0<A<4, and £>¢;. Now we fix 0<A< 4,
§>¢&, and let ¢, . denote a maximizer of ¥,(¢)

relative to ¢ € F(¢). Then we have
1
‘PA(Q,g)ﬁ "40"1 sup (_K+gl,§(x)_ﬂ‘xlx2)'
.\ 2

We also have ‘PE(Q’M)Z 3aCl|So, [€6ll,» from (8),

hence

sup (% K&y e(x)- ixlx2) >3aClo "p : ©)

I1.($)

Since  $K,{; o(x)-Axx, € (H+ (5)), it attains its

maximum at (x,x9)e [T, (&), say. Whence, by Lemma
1)
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1 1
sup (—K+§ﬂ’§(x)—ixlx2) < _K+§A,§(xf),x3)
M\ 2 2

c .
< minfet ol
Therefore, from (9) we infer min{xlo,xg }2 6a >2a.
Now we define the set
S = {x € H+|xl <x{,x, < xg}m Bza(xlo,xg),

where B,,(x?,x?) denotes the ball centered at (x?,xJ)

with radius 2a; clearly S <1, (£). Consider xeS§,

then
K, G (X)=Anx, 21/2K &5 o (x) = A ,x3. (10)

On the other hand, by an application of the Mean Value
Theorem and Lemma 1(ii),

|K+§,1,§ (x)_KJré’l,f(xlO’ng = |VK+Q,§(3AC)||X_ (xlo,x”
<2aC||¢, »

where % is a point on the segment joining x to (x?,x9),
whence

K.$pe(x)> K+§A,§(x10ax3)_2ac||§0"p .
This, in turn, implies

K.$3:(x)2 K&, (), x9)-2aClgy ], - (11)

Thus from (8), (10) and (11) we infer

1
K& Ax) = Anxy > EK+§/1,§(X10’ x)- aC"%"p - 20X
2 3aq|§o||p - aq|§o||p = 2“Q|§0"p~

Therefore, S < supp(K,¢ 2.e(x)— Jx,x, ). Hence

lsupp(K &, - (x)— A3, )| 28] = 72,
as desired.0

Theorem. There exists Ay >0 such that >, #0, for
A€(0,4y) . Moreover, if { €2, and v =K, (, then y

satisfies
equation

the following elliptic partial differential

Ay =do(y—Axx,), aeinll,, (12)

for some increasing function ¢, unknown a priori.
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Proof. Let & and Ay be as in Lemma 9. If we fix Ae
(0, 4¢), then by Lemma 7 there exists R(4) > 0 such that

K, &5 (%)= Axx, <0,

(13)
xell L\ (R(R), <{efF.

Next we define &* :=max{&,,R(1)}; then according to
Lemma 6, ¥,(¢) has a maximizer relative to
CeF(E), say ¢, - For simplicity we write
£= ¢y We claim that é:ez,l. To prove this,

suppose />&* and consider ¢ €Y 2. We will first
show that

suppl¢ ) < I,(&°),

modulo a set of measure zero. By Lemma 6 there sxists
an increasing function ¢ such that

(14)

C=¢o(K, S -Ix,), (15)

almost everywhere in [], (/). Next we observe that
since ¢ is increasing, (5)71(0,00], the pre-image of
(0,0] under ¢ , is an interval, say I, of the form (c,o)
or [c,), by assuming that ¢ takes on the value +oo
on the interval (”K < —ﬂx1x2||w,m,oo). This, along
with (15), implies

— = -1
supp(¢ )= (K. = Axxy ) (D),
modulo a set of measure zero in [I,(/). Hence

‘(K e —/bclxz)fl(l )‘:72'(12. On the other hand, from
Lemma 9, we have ‘(KJrQ_’—/lxlxz)_l(O,oo)‘Zﬁaz.

Whence ¢ >0, and this implies supp(f )g supp(K +.§_ -
Ax;x,) modulo a set of measure zero in [], (/) . Finally,
to (13), supp(K . —
Axx,) I, (5*), hence we derive (14). Now from (14)
we infer ¥, (é’ )2, (¢) and this, in turn, implies that
ey ,(). Since />¢&" is arbitrary we deduce that
é2 €X;-

To derive (12) we use Lemma 6 once again to ensure

according we also have

existence of an increasing function ¢ such that

5:¢3°(K+§A—/1x1x2)s
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almost everywhere in [] +(5*). We obtain (12) by a
modification process, that is, define

#(s) = {qg(s), se dom(q;l §>0,
0, s<0.

therefore, clearly, we have

{A:¢o(K+cf—/1x1x2),

almost everywhere in [], . As required.¢
Let us conclude with the following

Remark. A close inspection of the proofs of the
Theorem and Lemma 9 confirms that if £ €2, , then

supp(¢) = {x € [ [K £ (x)~ Ay, > 2aC1c, |}

modulo a set of measure zero. Hence for almost every
x € supp({) we have

zaC"é,Ollp = K+§(x)_;i‘xlx2 < K+§(x)
< Cmin{xl,xz}”%"p’

where in the last inequality we have used Lemma 1(iii).
Therefore, for almost every x e supp(¢)

min{x;,x,}>2a.

This shows that the vortex core essentially avoids the
boundary of [1, .
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Similar problems have been considered in
Emamizadeh [8,9].
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