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Abstract 
In an axisymmetric CO2-N2-H2O gas dynamic laser, let Γ denote the 

intersection of the vertical plane of symmetry with the upper part of the 
(supersonic) nozzle. To obtain a maximal small signal gain, some authors have 
tested several families of curves for Γ. To find the most general solution for Γ, an 
application of Pontryagin’s principle led to the conjuncture that the optimal Γ 
must consist of two straight lines of slopes m and 0 smoothly joined by a parabolic 
arc. (The parabolic section will vanish if nonsmooth Γ is allowed.) The conjecture 
was settled in the affirmative for special cases. The present work extends these 
results in the following directions. (i) For the nonsmooth case, Pontryagin’s 
principle produces no singularity and Γ consists of k straight lines of certain 
slopes m and 0. (ii) A “semi-uncoupled” approximation is used to show, in (i), that 
k = 2. (“coupled” stands for the dynamic coupling between vibrational 
temperatures and translational temperature.) (iii) An uncoupled approximation is 
used in the smooth case to show that the general Γ consists of a line segment of 
slope m, a parabolic arc and a horizontal line. (iv) The small signal gain increases 
whenever the slope m and/or the curvature of the parabolic section increase. 
However, the latter two quantities must be bounded to reduce gas detachment 
from the walls or oblique shock waves in the active media. (v) Finally, the optimal 
shapes and gains are numerically calculated for several values of the stagnation 
pressure and molar fractions of the gas mixture. 
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1. Introduction 
Let xi be the vibrational temperature of mode i 

(i = 1,2), in Anderson’s bimodal model [1] of a CO2-N2-
H2O or He gas dynamic laser whose supersonic part is 
axisymmetric with a quasi 1-dimenesional steady state 
 
Keywords: Optimal; Nozzle; Gasdynamic; Laser 

flow. (For a geometrical schematics of a gasdynamic 
laser, see Fig. 1) Let x3 denote the translational 
temperature and let A denote the cross sectional area of 
the supersonic part by planes perpendicular to the 
nozzle axis. Let x4 = A/A*, where A* is the throat area. It 
is assumed that x1, x2, and x3 of a gas molecule are 
functions of s, the distance of the gas molecule in the 
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Figure 1. Simplified schematic of a gasdynamic laser. 

 
 

supersonic part from the throat plane. Our interest is, for 
given reservoir conditions, to study the optimal shape of 
the supersonic part of a laser yielding a maximal small 
signal gain. i.e., knowing the stagnation parameters 
(reservoir temperature, pressure, and molar fractions), as 
well as the temperatures 

xi(0) = T0i ,        (i = 1,2,3), (1) 

at the throat s0 = 0, we must find an interval [0,s1] and 
functions xi : [0, s1] → R+, (i = 1,2,3,4), such that 
g0(x1(s1), x2(s1), x3(s1)) is maximal and that xi(s) 
(i = 1,2,3,4) as above represent the various temperatures 
and the normalized cross sectional area at a point of 
distance s from the throat plane. (The unknown positive 
number s1 denotes the length of the supersonic part.) 
Note that if Γ is the intersection of the vertical plane of 
symmetry with the upper part of the (supersonic) 
nozzle, then y(s) = (h*/2)x4(s) where h* is the throat 
height and (s, y(s)) denotes a point of Γ in the coordinate 
system consisting of the (horizontal) axis of symmetry 
and a vertical axis in the throat plane. 

Such problems were studied before in [2-14] by 
examining various families of functions for x4. In [15] it 
was assumed an uncoupled approximation of 
Anderson’s model and was shown that an optimal 
nozzle must consist of a wedge and a channel smoothly 
joined by parabolic sheets. (If sharp corners are allowed, 
then the parabolic sheets vanish.) In the present work 
these results are extended in the following directions. 
For the nonsmooth case, Pontryagin’s principle 
produces no singularity and nozzle shape consists of k 
straight lines of certain slopes m and 0. A “semi-
uncoupled” approximation is used to show that k = 2. 
An uncoupled approximation is used in the smooth case 
to show that the general Γ consists of a line segment of 
slope m, a parabolic arc and a horizontal line. The small 
signal gain increases whenever m and/or the curvature 
of the parabolic section increase. However, the latter 
two quantities must be bounded to avoid gas detachment 

from the walls or oblique shock waves in the active 
media. Finally, the optimal shapes and gains are 
numerically calculated for several values of the 
stagnation pressure and molar fractions of the gas 
mixture. 

 
2. Governing Equations 

Let t denote the time, with which we will have a very 
short encounter. The main independent variable here is 
the spatial coordinate s and hence the notation  is 
reserved only for df / ds if f is considered as a function 
of s. Let p, ρ, and υ denote the gas pressure, density, and 
velocity, respectively. Also, let e

f&

i and τi denote, 
respectively, the vibrational energy and the 
characteristic relaxation time for mode i, (i = 1,2). The 
following relations between the above variables as well 
as the Mach number M and the small signal gain g0 are 
needed in our arguments: 
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and some constants , , 0>q 0>R 1>γ , 0>iδ  
(i = 1,2,3), 2900 <<η , whose more precise values are 
not needed in our arguments. , and  are 
the mass fractions. 

22
, NCO XX OHX

2

The above relations are taken from [1,5,10,16,17]. In 
particular, (4)-(6) are from [1, pp. 41-43]. Also, (8) is 
taken from [1, p. 63] where η=234 in the room 
temperature. The expressions pτi (i = 1,2) are functions 
of x3. (See[1, pp. 41-42 & 170].) 

In view of (4)-(6), 
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(Here  denotes the derivative of the function .) iE′ iE
We conclude the section by verifying a key result, 

which support the well known fact that the value of 
dx1/dx2 is large enough to produce population inversion 
in the supersonic part. The result asserts that if the gas 

mixture is fixed and the translational temperature x3 in 
the supersonic part is cooled down due to an admissible 
deformation of the nozzle or change of reservoir 
temperature and pressure, then x1 accelerates with 
respect to x2. 

Observe that dx1/dx2, computed from (11), is a 
function of x1, x2, x3, and does not depend explicitly on 
any other variable. In fact 
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Fact 2.1. If dx1/dx2 is regarded as an explicit function of 
x1, x2, and x3, then 
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One way to see this is to rely on numerical 
computation. Here is a direct justification. Since E1 and 
E2 are strictly increasing functions, it follows that, for 
fixed values of x1< x2, the expression [E1(x2) – E1(x1)] / 
[E2(x3) – E2(x2)]is a strictly decreasing function with 
respect to x3 whenever x3< x1< x2. Also, since the 
planner curve Γ with the parametric equations x = E2(u) 
and y = E1(u) is strictly increasing and concave 
downward for ∞<<u0 , it follows that the expression 
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is a strictly decreasing function of x3 when x2 is fixed 
and 230 xx << . (The point c of the mean-value theorem 
strictly increases with x3.) 

From a physical point of view, it is obvious that the 
expression pτ2 / (pτ1) is a strictly decreasing function of 
x3. (This can be mathematically justified by choosing, 
for instance, , i = 1,2 [11,17].) 
Thus the expression 
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is strictly decreasing in x3. 
 

3. Constraints and End Conditions 
The domain in which the governing equations are 

defined lies in the set 

213 xxx << , (15) 

which, being an open set, imposes no constraint on the 
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trajectories 
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Note that in Pontryagin’s principle, the existence of an 
optimal solution is assumed and the task is to describe 
it. Since, without (15), the population inversion is 
impossible, thus we assume it is satisfied automatically. 
We further reduce the domain by assuming 

1>M  (17) 

at the throat and all the points in the supersonic part. 
(The validity of (17) guarantees the continuity of the 
functions defining the governing equations at the throat 
as well as the rest of the supersonic part.) 

The reservoir conditions are assumed to be fixed 
throughout the experiment. Thus, we have the end 
conditions 

022011033 )0()0()0( TxTxTx =<=<= , (18) 

as well as 

1)0(4 =x , (19) 

where the constants T01, T02, and T03 are the various 
temperatures of the gas at the throat s = 0. We also 
assume there exists no interval (0,ε) on which  is 
identically zero; otherwise, it follows from (7), as well 
as the relations, 
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that the translational temperature x3 increases and the 
speed υ as well as the Mach number M decrease; 
something not expected from a nozzle throat. Also, to 
avoid gas detachment from the walls, it is assumed in 

[6, pp. 782-83] that 

*
4 /20 hmx =≤≤ β& , (22) 

where h* is the throat height and m is the maximum 
allowable slope of the curve Γ. (See section I.) This will 
define the set U of the control values in the forthcoming 
section. 

 
4. Optimization in Fully Coupled Models 

(nonsmooth case) 
In this section we ignore oblique shock waves and 

find a vector-valued function x(s) on some interval [0,s1] 
satisfying the above governing equations and end 
conditions such that g0(x1(s1), x2(s1), x3(s1)) is maximal. 
The first theorem shows that x4 is obtained by joining 
finitely many lines of slopes β and 0. In the next section, 
a semi-uncoupled model is introduced to show the 
number of line segments is at most 2. 

 
Theorem 4.1. Assume xi (i = 1,2,3,4) are functions 
defined on some interval [0,s1] satisfying the governing 
equations as well as the end conditions defined in 
sections II and III. Moreover, assume g0(x1(s1), x2(s1), 
x3(s1)) is maximal and that  is piecewise continuous 
and left continuous. (The right limits of  are assumed 
to exist at points of discontinuity.) Then  is piecewise 
constant with values β and 0. In particular, = β on 
the first interval. 

4x&

4x&

4x&

4x&

 
Proof. Let 4xu &=  and U = [0,β]. Then, following the 
version of Pontryagin’s principle stated in [18, pp. 23-
28], and replacing the independent variable t by our 
spatial coordinate s, we further define 
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where x(s) is as in (16), and s0 and s1 denote the throat 
and the end of the supersonic part, respectively. So, the 
optimal pair (x, u) minimizes )(1 eφ , and satisfies the 
system 
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along with the end conditions )6,5,4,3,2(0)( == ieiφ . 
Thus, there exist a nonzero vector λ ∈ R6 with λ1 = 0 or 
–1 and a function P : [0,s1] → R4 such that, for 
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where (x, u) is the optimal solution of (24)-(25). 
Additional equations are obtained via the Hamiltonian 
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The principle also implies that the system of differential 
equations (24)-(27) involving (x, P) ∈ R8 satisfies the 

additional end conditions 
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We show that u has no other value in its range; i.e., 
the solution is a bang-bang one. To prove this, it is 
sufficient to show that  for at most finitely 
many points 
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],0[ 1ss∈ . Since u is piecewise continuous 

and left continuous, there exist a positive integer k and a 
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where xi (i = 1,2,3,4) are evaluated at s = s*. Since s* is a 
relative extremum of P3, it follows that . 
Hence, in view of Fact 2.1 and the fact that F

0)( *
3 =sP&

2 < 0, we 
conclude that  and thus . Therefore, 0)( *

1 =sP 0)( *
2 =sP
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0)( * =sP . Now, by the uniqueness of the solution of 
the system (26), P = 0 on  and by continuity of 
P on all of [0,s

],[ 1 ii cc −

1]. In view of (9) and (32)-(33), λ = 0; a 
contradiction. 

The above argument yields the following facts: 

,0)( ≠sP  for all , (39) ],0[ 1ss∈

11 −=λ , (40) 

0)(3 ≠sP  for all , (41) },,{\],0[ 111 −∈ kccss K

0)()( 33 ≠+ sPsP &  for all ),0( 1ss∈ . (42) 

By omitting those ci’s at which u is continuous (or, 
equivalently, at which P3 does not change sign), we can 
assume without loss of generality that u = β on 
subintervals  for all odd integers i, and u = 0, 
otherwise. 

],( 1 ii cc −

 
5. Uncoupled and Semi-Uncoupled 

Approximations 
To find the optimal shape of the supersonic part of a 

gas-dynamic laser by means of Theorem 4.1, one has to 
find the partition nodes 121 sccc k =<<< L . To find 
ci’s, one has to solve the system (24)-(26) in terms of 
ci’s and determine a set {c1,…,ck} for which  

 is maximal. To simplify the 
computation, the number k of the nodes must be 
reduced. Anderson [1, pp. 48-52] suggests an 
uncoupling of the variables by assuming a zero rate or 
an equilibrium for the vibrational energies in the 
calculation of υ from (2)-(3). Here we introduce a semi-
uncoupled approximation of the model in which only 
one of the vibrational energies is uncoupled and that the 
approximation is used only in a portion of the duct. 

),(( 10 kcxg
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In fact, all experiments show that the vibrational 
temperature and energy of mode 2 have a rapid fall 
shortly after the throat and soon become almost flat 
along the remainder of the duct. (See, for example, [1].) 
Thus it is better to assume there exists s2 < c1 with 

 small enough such that the vibrational energy e21 sc − 2 
is constant on [s2, s1] only for the purpose of calculating 
υ from (2)-(3). An alternative approximation model is to 
assume the vibrational temperature of mode 1 equals the 
translational temperature on [s2, s1]. By Pontryagin’s 
principle, the restriction of (x, u) to the interval [s2, s1] is 

a solution of (24)-(25) satisfying appropriate new end 
conditions, and optimizing the small signal gain. Thus if 
x2 is assumed to be constant (resp. if x1 is assumed to be 
equal to x3) on [s2, s1], then one of the variables x1 or x2 
is uncoupled in the following sense. For some i = 1 or 2 
the variable xi disappears in the calculation of υ and thus 
the functions )4,3,2,1,( =≠ jijFj  are now independent 
of xi. The new function Pi satisfies 
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which implies that Pi never changes the sign. Assume 
without loss of generality that i = 2. If , then P3≥k 3(c1) 
= P3(c2) = 0 and hence in view of (37), P1(c1) and P1(c2) 
have the same sign opposite to that of P2. (Note that 
( ) 0≠sP  for all s ∈ [s2, s1]. See (39).) Now, it follows 

from (38) that both  and  have the same 
sign; a contradiction. This implies that . The case 
k = 1 is rejected by numerical observations. It remains 
k = 2. 
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Note that, in view of (45), the gain increases with the 
opening angle Λ which, due to the gas detachment from 
the walls, is limited via (22). Thus, substituting x4 in 
(24)-(25) yields g(x1(c2), x2(c2), x3(c2)) as a function of 
parameters c1 and c2 provided that the percentages 

,  and  in the gas mixture as well as the 
reservoir temperature T

2COX
2NX OHX

2

0 and pressure p0 are known. 
However, one may let all these parameters vary to 
search for those values yielding higher small signal 
gains. 

 
6. Oblique Shock Waves 

The authors of [16, pp. 427-430] assume 

0≤≤− x&&α  (46) 

to reduce the effect of oblique shock waves. The 
constraint turns  into a differentiable function and 
hence can be no longer obtained as a control function 
via Pontryagin’s principle. Hence we define a new 

4x&
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variable 

45 : xx &=  (47) 

and choose 

5xu &=  (48) 

as our new control function. Thus, x is augmented to a 
vector in R5, and the problem becomes constrained by 

β≤≤ 50 x . (49) 

however, since , we will replace this constraint 
by end conditions 

05 ≤x&

β=)0(5x , (50) 

and 

0)( 15 =sx  (51) 

if necessary. In fact we have replaced the problem with 
four independent problems as follows: Problem (i), 
0 < x5 < β; Problem (ii), 0 < x5 and x5(0) = β; Problem 
(iii), x5 < β and x5(s1) = 0; Problem (iv), x5(0) = β and 
x5(s1) = 0. The defining set for the new control u is =U  

],[ oα− . The end vector e now belongs to  and 
the transversal function P has values in R

12),0[ ∞
5. Here )(eφ  is 

the same as in (23) for Problem (i). For Problem (ii), 
)(eφ  has an additional component β−)( 05 sx ; for 

Problem (iii), )(eφ  has an additional component x5(s1); 
finally, for Problem (iv), )(eφ  has additional 
components β−)( 05 sx  and x5(s1). The vector λ has the 
same number of components as )(eφ  in each case. 
Equations (24)-(27) remain valid, except of course, u 
must be replaced by x5. The component P5 satisfies 

433
1

45 PFPxP −−= −& . (52) 

The Hamiltonian H is accordingly modified, and (32)-
(33) still hold. Moreover, P5(0) = P5(s1) = 0 for Problem 
(i); 75 )0( λ−=P  and P5(s1) = 0 for Problem (ii); 
P5(0) = 0 and 715 )( λ−=sP  for Problem (iii); 

75 )0( λ−=P  and 815 )( λ−=sP  for Problem (iv). 
However, (34)-(36) are changed to 

544
1

44 uPPxxP −−= − && , (53) 

∫=
1 )()()()( 544

s

s
dPusPsx θθθ , (54) 

and 

⎩
⎨
⎧

<−
>

=
.0)(if,
,0)(if,0

)(
5

5

sP
sP

su
α

 (55) 

Again, here, there exists a partition <<<= L100{ cc  
}1sck =  such that on each subinterval (0, s1], either 

P5 = 0 or u has one of the constant values 0 or –α. (We 
assume without loss of generality that u does not have 
the same constant values on adjacent subintervals.) All 
we can show in this case, without any uncoupling 
approximation, is that the normalized area x4 is either 
linear or parabolic on the last subinterval, and if it is 
linear on , then it must be parabolic on 

. To show this, assume P
],( 11 sck−

],( 12 −− kk cc 5 = 0 on . 
By (52)-(54), P

],( 11 sck−

3 = P4 = 0 on . Now, the 
argument leading to (39), implies that P = 0 on 

 and hence everywhere. This, again, implies 
that λ = 0; a contradiction. Next, assume u = 0 on 

. If P

],( 11 sck−

],( 11 sck−

],( 11 sck− 5 = 0 on , uP],( 12 −− kk cc 5 = 0 on  
and hence P

],( 11 sck−

4 = 0 on . Thus, P],( 12 sck− 3 = 0 and, again, 
P = 0 on , which leads to the contradiction 
λ = 0. Hence, u = –α on . 

],( 12 −− kk cc
],( 12 −− kk cc

To simplify the problem, we use an uncoupled 
approximation, but this time on both vibrational 
energies e1 and e2 throughout the interval [s0, s1]. The 
exact nature of the uncoupling is not important to be 
known; the whole idea is to assume the speed υ and the 
pressure p can be calculated from (2)-(3) explicitly in 
terms of x3. To do this, we may, for example, assume 
throughout the supersonic part that x2, or equivalently 
e2, is constant, and that x1 is in equilibrium, or 
equivalently e1 = E1(x3). This is justified by the fact that 
the vibrational temperature of mode 2 has a very slow 
equilibration while that of mode 1 equilibrates fast. (See 
the various experiments in [1].) Then one can calculate 
υ and x4 in terms of x3 and substitute in the governing 
equations. The new governing equations will be of the 
following forms: 

)2,1(),,( 3 == ixxx iii F&  (56) 

),( 3353 xxx F=&  (57) 

,5 ux =&  (58) 
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and the transversal vector P satisfies 7. Discussion 

)2,1(),,( 3 =
∂
∂

−= ixx
x i

i

i
ii

F
PP& , (59) 

),(

),(),(

3352

32
3

2
231

3

1
13

xx

xx
x

xx
x

FP

F
P

F
PP

′−

∂
∂

−
∂
∂

−=&

 (60) 

).( 3335 xFPP −=&  (61) 

We showed that, given a fixed reservoir condition 
and gas mixture, to obtain a greater small signal gain, 
one must increase the nozzle opening angle. However, 
due to the gas detachment from the walls, there is an 
upper bound on the opening angle. We also showed that 
for a given opening angle Λ and a throat height h*, the 
shape of the supersonic part of a GDL yielding a 
maximal small signal gain is described via its 
normalized cross sectional area  as 
follows: The length of the duct is partitioned into k 
subintervals on which x

*
4 /)()( AsAsx =

4(s) is linear with slopes β(=(2/ 
h*)tan(Λ/2)) and 0, alternatively. Then a semi-
uncoupled approximation model was introduced in 
which it was assumed that either the vibrational 
temperature of mode 1 is in equilibrium, or the 
vibrational energy of mode 2 is constant on some 
interval containing the last  subintervals as well as 
a small portion of the first subinterval. (This means that 
we did not assume any zero vibrational rate or infinite-
rate vibrational equilibrium in the area close to the 
throat. Also, only one of these approximations is 
assumed on the last 

1−k

1−k  subintervals.) Using such 
approximating models, we showed that . Based on 
the above theoretical observations, we have calculated 
the small signal gain g

2≤k

0 and the area ratio x4 for opening 
angle 80°, h* = 0.25 mm, p0 = 20 atm, T0 = 1220°K, 

=
2COX  0.1, 05.0

2
=OHX , . We notice that 

k = 2; that is, the nozzle consists of a wedge of opening 
angle 80°and a channel of area ratio 107. The same 
general shape can be obtained if the above initial 
conditions are changed reasonably. If the optimal gain 
and final area ratio are drawn against the various values 
of the opening angle, one can observe that the optimal 
gain increases with the opening angle. 

85.0
2
=NX

As it is seen, the components x4 and P4 are not 
present in the equations and one can continue by an 
argument similar to the one given in the proof of 
Theorem 4.1 that u is either 0 or α−  on each 
subinterval , (i = 1,2,…,k). Assume P],( 1 ii cc − 3(θ) = 0 
for some ],0[ 1s∈θ . By (32) and (59), P1 is always 
negative and hence, in view of (38), P3(θ) > 0. This 
implies that θ is unique. Now, if , then 3≥k =− )( 15 icP  

 for some i = 1,2,…,k and 
some 

0)()()( 355 === θθ PPP &ic
),( 1 ii cc −∈θ . (See (61).) Since θ is unique, k must 

be 3 and then  and . This means that 
x

0)0(5 ≠P 0)( 15 ≠sP

5(0) and x5(s1) are not free and hence x5(0) = β and 
x5(s1) = 0 (i.e., Problem (iv)). Moreover, P3 is negative 
on [0,θ) and positive on (θ,s1]. Thus, P5 is decreasing on 
[0,θ] and increasing on [θ,s1]. This, in turn, implies that 
P5 is positive on [0,c1)U(c2,s1] and negative on (c1, c2). 
Hence, it follows from (55) that 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤++−

≤≤++−+−−

≤≤+

=

, if,1

, if,1)()(

,0 if,1

)(

1212

2111
2

12
1

1

4

2
sscc

cscccscs

css

sx

β

ββα

β

α
β

 

 (62) 

To remove sharp points for oblique shock wave 
considerations, we showed, theoretically, that, in the 
fully uncoupled approximating models, the nozzle is the 
same except that the wedge and the channel are joined 
smoothly by parabolic surfaces. Figure 2 shows the 
small signal gain g0 along the nozzle with opening angle 
80°, h* = 0.25 mm, p0 = 20 atm, T0 = 1220°K, =

2COX  

0.1, 05.0
2
=OHX , 85.0

2
=NX  and α = 20. Also Figure 

3 shows the optimal gain and final area ratio vs. the 
opening angle with the same parameters. The effect of 
the various parameters p0, and the opening angle on the 
optimal gain is shown in Figures 4 and 5. (Here, again, 
α = 20.) We note that the optimal gain decreases as the 
stagnation pressure and/or  increases. In Figure 6, 
the effect of α on the final area ratio is demonstrated. 
For values of 

OHX
2

10≥α , one can assume that +∞=α  and 
the parabolic surfaces virtually disappear. 

and αβ /12 += cc . 
Next, if k = 2, it can be verified that x4 consists of 

either a line of slope β followed by a parabola or a 
parabola followed by a horizontal line. Finally, if k = 1, 
then x4 is a portion of a parabola. 

However, our numerical observations reveal that 
k = 3 and x4 is of the form (62). (See Fig. 2.) 
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Figure 2. Optimal gain and nozzle shape in smooth case. (p0 = 20 atm, T0 = 1220°K,  0.1, 

 0.85,  0.05, Opening angle = 80, h

=
2COX

=
2NX =OHX

2

* = 0.25 mm, β = 6712.) 

 
 
 
 

 
Figure 3. Optimal gain and final area ratio in smooth case versus opening angle. (p0 = 20 atm, 
T0 = 1220°K,  0.1,  0.85, =

2COX =
2NX =OHX

2
 0.05.) 
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Figure 4. Effect of stagnation pressure on the final area ratio in smooth case. (T0 = 1220°K,  

0.1,  0.85,  0.05.) 

=
2COX

=
2NX =OHX

2

 
 
 
 
 

 

Figure 5. Effect of stagnation pressure on the optimal gain in smooth case. (T0 = 1220°K,  

0.1,  0.85,  0.05.) 

=
2COX

=
2NX =OHX

2
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Figure 6. Effect of α on the final area ratio in smooth case. (p0 = 20 atm, T0 = 1220°K,  0.1, 

 0.85,  0.05.) 
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