A GENERALIZATION OF A JACOBSON’S COMMUTATIVITY THEOREM

A. H. Yamini and A. Zaeembashi*

Department of Mathematics, AmirKabir University, Shahid Rajaee University, Tehran, Islamic Republic of Iran

Abstract

In this paper we study the structure and the commutativity of a ring R, in which for each $x, y \in R$, there exist two integers $k \geq o, n > 1$ depending on x, y such that $[x, y]_k$ equals x^n or y^n.

Throughout, R will represent an associative ring with center C, and N the set of all nilpotent elements of R.

A ring R is said to be periodic if for every $x \in R$, $x^n = x^m$ for some distinct positive integers m, n. Any $x \in R$ is called a potent element if $x = x^n$ for some integer $n > 1$. For $x, y \in R$, $[x, y] = [x, y]_1 = xy - yx$ is the usual commutator, and for every positive integer $k > 1$, we define inductively $[x, y]_k = [[x, y]_{k-1}, y]$. Also we define $[x, y]_k = x$.

A ring R is called left (resp. right) s-unital [5] if for each $x \in R$ we have $x \in Rx$ (resp. $x \in xR$). A ring R is called s-unital if for each $x \in R$, $x \in Rx \cap xR$. If R is an s-unital ring, then for any finite subset F of R there exists an element e in R such that $ex = xe = x$ for all x in F (see [5]).

By a remarkable result of Jacobson [3], we know that if for each $x \in R$, $x = x^n$ for some integer $n > 1$, then R is commutative. Here we study the commutativity behavior of a ring R, which satisfies the following property:

(p) for each $x, y \in R$, there exist two integers $k \geq o, n > 1$ depending on x, y such that $[x, y]_k$ equals x^n or y^n.

Note that if R satisfies (p), with $k = o$ for all $x \in R$ (and $y = x$), then by the above mentioned Jacobson’s theorem, R must be commutative. However the ring

$$R = \left\{ \begin{array}{ccc}
o & a & b \\
o & o & c \\
o & o & o \\
\end{array} \right. \quad (a, b, c \text{ are real numbers})$$

is a non commutative ring satisfying (p), in fact in this ring $[x, y]_3 = o = x^3$ for all $x, y \in R$.

In preparation for the proof of our main theorems, first we state and prove the following lemmas.

Lemma 1. Let R be a ring which satisfies (p), then each element of R is either a potent or a nilpotent element. In particular R is a periodic ring.

Proof. Suppose that $x \in R$, and $x \neq x^n$ for all integers $n > 1$, then $o = [x, x]_k = x^n$ for some $m \geq 1$ and $k \geq 1$.

Lemma 2. Let R be a ring which satisfies (p). Then every idempotent element of R is in the center of R.

Proof. Let $e^2 = e \in R$, $x \in R$, and put $a = xe - exe$. It is easy to see that for all $k \geq o$, $[a, e]_k = a$. Therefore by (p), for some $n > 1$, $a = a^n$ or $a = e^n$. Since $a^2 = o$,

E-mail: z7413981@cic.aku.ac.ir
and \(a = e^n = e \) implies that \(a = 0 \), hence in any case \(a = 0 \), i.e., \(xe = exe \). Similarly \(ex = exe \). This shows that \(e \) is a central element.

Lemma 3. Let \(R \) be a ring which satisfies (p), then the commutator ideal of \(R \) is nil.

Proof. Since \(R \) is a periodic ring, hence for each \(x \in R \) there exists an integer \(m \geq 1 \) such that \(x^{2m} = x^m \). Therefore, by Lemma (2) and [2] the commutator ideal of \(R \) is nil.

Lemma 4. If the commutator ideal of \(R \) is nil, then \(N \) is an ideal.

Proof. See [1].

Lemma 5. If \(N \) is a commutative ideal, then \(N^2 \subseteq C \).

Proof. See [5].

Now we are ready to state and prove our fundamental theorem.

Theorem 1. Let \(R \) be a semiprime ring with the following property:

(i) \(R \) satisfies (p).

(ii) \(N \) is commutative (i.e. for all \(a, b \in N \), \(ab = ba \)).

Then \(R \) is a commutative ring.

Proof. By the above Lemmas, \(R \) is a periodic ring and \(N \) is an ideal with \(N^2 \subseteq C \). We claim that \([x, y]^2 = 0 \) for all \(x, y \in N \), since \(x, y \in N \), therefore

\[
[x, y]^2 = [x, y]xy - [x, y]yx = [x, y]xy - [x, y]yx = 0.
\]

Now, since \(N \) is a commutative ideal, \([x, y] \in R, y \in R \). But \(R \) is a semiprime ring, hence \([x, y] = 0 \) for all \(x, y \in N \), \(y \in R \). This shows that \(N \subseteq C \).

On the other hand if \(a^2 = 0 \) then \(N \subseteq C \) implies that \(aRa = Ra^2 = 0 \) and therefore \(a = 0 \), since \(R \) is a semiprime ring. This shows that \(N = \{0\} \) and thus \(R \) is commutative, by Lemma 3.

Theorem 2. Let \(R \) be a left \(s \)-unital ring which satisfies (p), and \(m > 1 \) is a fixed positive integer. The following conditions are equivalent:

(i) \(R \) is a commutative ring.

(ii) For each \(a \in N \), \(y \in R \), \([a, y^m] = 0 \); and for any \(x, y \in R \) if \(m(x, y) = 0 \), then \([x, y] = 0 \).

(iii) For each \(x, y \in R \) \([x^m, y^m] = 0 \) and \(m(x, y) = 0 \) implies that \([x, y] = 0 \).

(iv) For each \(x, y \in R \), \((xy)^m = (yx)^m \) and \(m(x, y) = 0 \) implies that \([x, y] = 0 \).

(v) For each \(x, y \in R \), \((xy)^m = x^m y^m \) and \(m(m - 1)(x, y) = 0 \) implies that \([x, y] = 0 \).

Proof. First of all, for any \(x \in R \), \(x = ex \) for some \(e \in R \) \((R \text{ is left } s \text{-unital})\). Also, by Lemma 1 and [4, Lemma 3], \(e^k = e^{2k} \) for some integer \(k \geq 1 \), and by Lemma 2; \(e^k \in C \), hence \(x = ex = xe^k \in xR \). Therefore \(R \) is an \(s \)-unital ring. Obviously (i) \(\Rightarrow \) (ii) \(\Rightarrow \) (v).

We complete the proof as follows.

(ii) \(\Rightarrow \) (i) Let \(a, b \in N \), then \(b^n = 0 \) for some integer \(n > 1 \) and \(ae = ea = a \), \(be = eb = b \) for some \(e \in R \). By (ii), \([a, (e + b^{n-1})] = 0 \) so \(m(a, b^{n-1}) = 0 \), or in fact \([a, b^{n-1}] = 0 \). By repeating this argument we can see that \([a, b] = 0 \). Thus \(N \) is commutative, and as the Proof of Theorem 1 shows: \([a, y]^2 = 0 \), for all \(a \in N \), \(y \in R \).

Now, let \(a \in N \), \(y \in N \). By Lemma 3, \([a, y] \in N \), hence \(([a, y]_k) = [a, y]^k \) for some integer \(k \geq 0 \), \(n > 1 \), (by (p)). Since \([a, y]^n = 0 \) (by above), hence \([a, y]_{k+1} = 0 \). First, let \(k \geq 1 \). Considering \(a' = [a, y]_{k-1} \), we have \([a', y] = 0 \). On the other hand, \(a' \in N \), by Lemma 3. Therefore, \([a', y]^m = 0 \), by (ii).

Hence, by [4, Lemma 2], \(m y^m [a', y] = 0 \) and so \([a', y] = 0 \), by [4, Lemma 2] and (ii). That is \([a, y]_{k+1} = 0 \). Also, it is obvious that if \(k = 0 \), then \([a, y] = 0 \). This shows that \(N \subseteq C \). Hence for each \(x \in R \); there exists an integer \(n > 1 \) such that \(x - x^n \in C \), by Lemma 1. Therefore, by a well-known result of Herstein [2], \(R \) is a commutative ring.

(iii) \(\Rightarrow \) (ii). See [5, Lemma 2].

(iv) \(\Rightarrow \) (ii). Let \(o \neq a \in N \), \(o \neq y \in R \). By Lemma 1.2, \(ae = ea = a \), \(ye = ey \) for some central idempotent element \(e \in R \). Let \(z = e - a \), \(z' = e + a + a^2 + \ldots \), then by (iv), \((zyz')^m = (zy)w = (ey)w = y^m \).

On the other hand \((zye')^m = zy^m z' \), hence \(zy^m z' = y^m \) and therefore \([z, y^m] = 0 \), or in fact \([a, y^m] = 0 \).

(v) \(\Rightarrow \) (ii). Let \(a \in N \), \(y \in R \) be two nonzero elements of \(R \) such that \(a^m = 0 \). Using the above notations when
\(a\) is replaced by \(a^{n-1}\), we have \(z^ny^m = (z^ny^m)^m = z^my^m, \) by (v). Therefore, \([z^{m-1}, y^m] = 0, \) i.e., \([e - a^{n-1}, y^m] = 0, \) or in fact \(a^{n-1}, y^m] = 0, \) by (v). By repeating this argument, we can easily see that \([a, y^m] = 0.\)

Theorem 3. Let \(R\) be a ring which satisfies (p) and \(N\) a commutative subset of \(R\). Then \(R\) is a subdirect product of commutative nil rings and local rings.

Proof. By a well-known result of Birkhoff, \(R\) is a subdirect product of subdirectly irreducible rings \(R_i, i \in I\). Obviously, each \(R_i\) satisfies (p). Thus \(R_i = N_i\) is a nil ring, or \(R_i\) contains a nonzero potent element. On the other hand, if \(\diamond \neq a_i \in R_i\) is not a nilpotent element, then by Lemma 1, \(a_i = a_i^n\) for some integer \(n > 1\).

Clearly, \(e = a_i^{n-1}\) is an idempotent element which lies in the center of \(R_i\), by Lemma 2. Since \(R_i\) is a subdirectly irreducible ring, \(e = 1\) must be the identity of \(R_i\), and \(a_i\) is a unit of \(R_i\). Since by Lemmas 3,4, \(N_i\) is an ideal of \(R_i\), hence each \(R_i\) is a nil or a local ring.

To complete the proof it suffices to observe that if \(f : R \to R'\) is a ring epimorphism, then \(f(N)\) coincides with \(N'\) the set of all nilpotent elements, of \(R'\). Let \(f(a) = a^n \in N'\) be a nonzero element of \(R'\), then by Lemma 1, \(a \in N\) (otherwise, there exists an integer \(n > 1\) such that \(a = a^n = a^{n^2} = \cdots, \) i.e., \(f(a) = a^n = (a^n^n) = (a^n)^n = \cdots = 0\). This completes the proof.

Corollary 3.1. Let \(R\) be non-nil subdirectly irreducible ring which satisfies (p). Then \(\text{char } R = p^n\), for some prime \(p\).

Proof. By Theorem 3, \(R\) is a local ring with 1. Consider \(2 = 1 + 1\). By Lemma 1, either \(2^n = 0\), or \(2^n = 2\) for some integer \(n > 1\). If \(2^n = 0\), then \(\text{char } R = 0\). But as a division ring with a positive characteristic, \(\text{char } R / N = p\), where \(p\) is a prime number. Therefore, in \(R, p^n = 0\) for some integer \(n > 1\). This completes the proof.

Theorem 4. Let \(R\) be a ring of characteristic zero, which satisfies (p). Then \(R = \oplus_{e \in E} Re + N\), where \(E\) is the set of all idempotent elements of \(R,\) and each \(Re\) is a local ring.

Proof. Let \(x \in R \setminus N\), then by Lemma 1, \(x = x^n\) for some integer \(n > 1\). Clearly \(x^{n-1} = e\) is an idempotent element, and \(x \in Re\). Now, suppose that \(e, e' \in E\). Since according to Lemma 2, \(E \subseteq C,\) we can easily see that

\[(e + e')^n = e + e' + (2^n - 2)ee'\]

for all integers \(n \geq 1\). By Lemma 1, either \((e + e')^n = 0\) or \((e + e')^n = e + e'\) for some integer \(n \geq 1\). If \((e + e')^n = 0\) then by (v), \(e + e' = (2 - 2^n)ee'\). Multiplying the last equation by \(e - e'\), yields \(e = e'\).

If \((e + e')^n = e + e'\), then in view of (v) we have \((2^n - 2)ee' = 0\). But \(\text{char } R = 0\), hence \(ee' = 0\). These observations show that if \(e \neq e'\), then \(Re \cap Re' = 0\). So far, we have seen that \(R = \oplus_{e \in E} Re + N\). To complete the proof we need to show that for each \(e \in E, Re\) is a local ring. Obviously, \(Ne = Re \cap N\) is an ideal of \(R\) (by Lemma 3, 4). Let \(x \in Re, x \in N\) then by Lemma 1, \(x^m = x\) for some integer \(m > 1\). Clearly \(x^{m-1} = e\) is a central idempotent, by Lemma 2, and it is easy to see that \(e = e'\) (otherwise \(e' = 0\)). Therefore \(x\) is a unit of \(Re\) and the proof is completed.

In Theorem 4, if \(N = 0\) then by Lemma 1, \(R\) satisfies the Jacobson’s condition, i.e. for any \(x \in R, x = x^m,\) for some integer \(m > 1\). Therefore, in view of Theorem 4, we have:

Corollary 4.1. If for each \(x \in R,\) there exists an integer \(n = n(x) > 1\) and \(\text{char } R = 0,\) such that \(x = x^m,\) then \(R\) is a direct sum of fields.

Note that \(\text{char } R > 0,\) if \(R\) is a ring with 1, which satisfies the Jacobson’s conditions.

Remarks. Each one of the conditions in Theorem 1 is essential, because:

Example 1. Let \(R = Z_2[x, y]\) with \(xy = yx + 1\). Clearly \(R\) is a semiprime ring and \(N = \{0\}\). But \(R\) does not satisfy (p).

Example 2. Consider the non-commutative ring

\[R = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} | a, b, c \in GF(2) \right\}\]

which satisfies (p).

In this ring, \(N\) is commutative but \(R\) is not semiprime.

Example 3. Let \(R = M_2(Z_2),\) this ring is a non-commutative semiprime ring which satisfies (p), and \(N\) is not commutative, because
Example 4. In Theorem 2, the torsion-freeness restrictions on commutators can not be deleted. For, in the following non-commutative ring

\[
R = \begin{pmatrix}
 a & b & c \\
 b & a & d \\
 c & d & a
\end{pmatrix} \quad |a, b, c, d \in GF(2)
\]

\[x^4 = o \quad \text{or} \quad x^4 = 1, \text{ for all } x \in R.
\]

References