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Abstract 
A general notion of completely monotone functionals on an ordered Banach 

algebra B into a proper H*-algebra A with an integral representation for such 
functionals is given. As an application of this result we have obtained a 
characterization for the generalized completely continuous monotone functions on 
weighted foundation semigroups. A generalized version of Bochner’s theorem on 
foundation semigroups is also obtained. 
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Introduction 
In the present, paper we shall introduce the concept 

of a completely monotone functional on an ordered 
Banach algebra B into a proper H*-algebra A and we 
shall give an integral representation for such functionals 
with respect to A-valued measures on , the space 
of all positive multiplicative linear functionals on B. As 
an application of the theory we shall obtain an integral 
representation for the generalized w-bounded conti-
nuous completely monotone A-valued functions with 
respect to positive A-valued measures on , the space 
of all w-bounded continuous nonnegative semicharac-
ters on a foundation semigroup S with a Borel 
measurable weight function w. We will also give a 
generalization of our earlier version of Bochner’s 
 theorem [4; Theorem 4.2]. 

)(B+Δ

+Γw

 
 

Keywords: Locally compact semigroups; Positive definite 
functions; H*-algebras; Spectral measures 

1. Preliminaries 
Recall that (see, [11], [12], [13], [17]) a proper 

H*-algebra is a Banach algebra A whose norm is a 
Hilbert space norm and which has an involution: 

 on A such that  for 
all 

*xx → ),(),(),,( ** zyxzxyzxy ==
Azyx ∈,, . Let  be the trace 

class of A. It is a Banach algebra with respect to a norm 
},:{)( AyxxyA ∈=τ

(.)τ  which is related to the norm .  of A by 
2* )( aaa =τ  for all Aa ∈ . There is a trace tr defined 

on  such that  for all )(Aτ ),()()( ∗== babatrabtr
Aba ∈, , where (., .) denotes the scalar product on A. if 
bba *=  for some Ab∈  then a is called positive and we 

write . It is obvious that  if and only if 
 for all 
0≥a 0≥a

0),( ≥xax Ax ∈ . A right module H over A is 
called a Hilbert module if there is a -valued 
function ( , ) on H×H with the following properties 

)(Aτ

1.  for all ),(),(),( ϕηϕξϕηξ +=+ .,, H∈ϕηξ  

2.  for all .),(),( * ξηηξ = , H∈ηξ  

3.  for all aa ),(),( ηξηξ = H∈ηξ ,  and each .Aa ∈  

4.  for all 0),( ≥ξξ H∈ξ  and 0),( =ξξ  if and only 
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if .0=ξ  

5. ),(),(),( 2 ηητξξτηξ ≤tr  for all ., H∈ηξ  

6. H is complete in the norm .)),(( 21ξξτξ =  
The function ( , ) is called a generalized scalar 

product. There is a linear structure on H such that H is 
an ordinary Hilbert space with respect to the scalar 
product ),(, ξηηξ tr= . An A-linear operator on H is 
an additive linear mapping  such that 

 for all 
HHT →:

aTaT )()( ξξ = ;, AaH ∈∈ξ  T is bounded in the 
in the sense that ξξ MT ≤  for some  and 
every 

0≥M
.H∈ξ  For each bounded A-linear operator T its 

adjoint T* is A-linear and has the property that 
 for all .),(),( *ηξηξ TT = , H∈ηξ  

By a real ordered Banach algebra we shall mean a 
real Banach algebra Mr with a closed partial order  
satisfying the following: 

≥

(i)  for all z∈M,zyzxyx +≥+⇒≥ r. 

(ii)  .00,0 ≥⇒≥≥ xyyx

(iii) for all nonnegative real numbers α. ,00 ≥⇒≥ axx

Note that an order “ ” on an ordered Banach algebra 
is called closed if for every two sequences (x

≥
n) and (yn) 

in B from  and  and 
(n∈

xx n
n ⎯→⎯ yy n

n ⎯→⎯

nn yx ≥ ) it follows that . A complex 
Banach algebra B of the form M

yx ≥

r ⊕ iMr, where Mr is a 
real ordered Banach algebra, is called an ordered 
Banach algebra. On an ordered Banach algebra B, we 
put  and  }0:{)( ≥∈= bBbBP :)({)(1 BPbBP ∈=

}1=b . A linear functional f on B is called positive if 
 for all . In the case where B is 

commutative, we shall denote by  the space of all 
bounded multiplicative linear functionals on B and by 

 the space of all positive functionals in . 

0)( ≥bf )(BPb ∈
)(BΔ

)(B+Δ )(BΔ
 

Definition 1.1. Let B be a commutative ordered Banach 
algebra. For every n∈   (the set of nonnegative 
integers) we define the operator Δn on B* (the dual of B) 
by 

)()(0 bfbf =Δ  

)()()()();( 110011 bbfbfbbfbfbbf −=Δ−Δ=Δ  

and for every  2≥n

),,;(
),,;(),,;(

111

1111

−−

−−

Δ−
Δ=Δ

nnn

nnnn

bbbbf
bbbfbbbf
K

KK
 

).,2,1;,,,,( 1
* KK =∈∈ nBbbbBf n  A linear functional 

 is called completely monotone if *Bf ∈

0),,;( 1 ≥Δ nn bbbf K  

for all n∈   and  ).(,,, 11 BPbbb n ∈K

An operator-valued transformation L  
(the space of all bounded linear operators on a Hilbert 
space H) is called completely monotone if for every 

→BU : )(H

H∈ξ  the mapping )(,: BbUb b ∈ξξϕξ a  defines a 
completely monotone functional on B. 

We now recall some definitions concerning 
topological semigroups. 

Throughout this paper S will denote a locally 
compact, Hausdorff topological semigroup. 

 
Definition 1.2. On a commutative topological 
semigroup S with  (the space of bounded 
continuous complex-valued functions on S) inductive 
identity, for each n∈

)(SCb

 + we define the operator Δn on by 

),()(0 xfxf =Δ  

)()()()();( 110011 xhfxfxhfxfhxf −=Δ−Δ=Δ  

and for every  2≥n

),,;(
),,;(),,;(

11

1111

−−

−−

Δ−
Δ=Δ

nnn

nnnn

hxhf
hhxfhhxf

K

KK
 

).,2,1,,,,),(( 1 KK =∈∈ nShhxSCf nb  A function 
 is called completely monotone if  

(n∈
)(SCf b∈ 0≥Δ fn

 ) (cf. [5; p. 43]). 
 

Definition 1.3. An operator-valued transformation 
L  is called completely monotone if for 

every 
→ST : )(H

H∈ξ  the mapping 

)(, SxTx x ∈ξξa  

is completely monotone on S. 
 

Definition 1.4. Let B be an ordered commutative 
Banach algebra and H be a Hilbert module over a proper 
H*-algebra A. A linear mapping  is called a 
completely monotone A-functional if for every n∈

ABf →:

 + 
 for every (n + 1)-positive 

elements b,b
K,;( 1bbfnΔ 0), ≥nb

1,…,bn of B where, 

)()(0 bfbf =Δ  

)()()()();( 110011 bbfbfbbfbfbbf −=Δ−Δ=Δ  

and for every  2≥n
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).,,;(

),,;(),,;(

111

1111

−−

−−

Δ−

Δ=Δ

nnn

nnnn

bbbbf

bbbfbbbf

K

KK
 

 
Definition 1.5. Let S be a commutative topological 
semigroup with an identity. A mapping  is 
called completely monotone if  for 
all nonnegative integers n and all  where 

ASf →:
0),,;( 1 ≥Δ nn hhxf K

Shhx n ∈,,, 1 K

)()(0 xfxf =Δ  

)()()()();( 110011 xhfxfxhfxfhxf −=Δ−Δ=Δ  

and for every  2≥n

).,,;(

),,;(),,;(

111

1111

−−

−−

Δ−

Δ=Δ

nnn

nnnn

hhxhf

hhxfhhxf

K

KK
 

 
Definition 1.6. Let B a Banach * algebra and A be a 
proper H*-algebra. A linear mapping  is 
called a positive A-functional if 

ABf →:

0)(
1 1

** ≥∑∑
= =

n

i

n

j
jjii abbfa  

for all b1,…,bn in B and a1,…,an in A. 
 

Definition 1.7. Let S be a *-semigroup. Then a mapping 
AS →:ϕ  is called positive definite if 

0)(1 1
** ≥∑ ∑= =

n
i

n
j jjii axxa ϕ  

for all x1,…,xn in S and a1,…,an in A. 
Recall that a Borel measurable mapping →Sw : + 

(the set of nonnegative real numbers) with 

  and such that w and )()()( ywxwxyw ≤ ),( Syx ∈
w
1

 

are locally bounded (i.e., bounded on compact subsets 
of S) is called a weight function on S. A function 

→Sf :  is called w-bounded if there is a  such 
that 

0>k
)()( xkwxf ≤ , for all  .Sx∈

Recall also that M(S,w) denotes the set of all 
complex, regular, signed measures μ (not necessarily 
bounded) of the form  where μ)( 4321 μμμμμ −+−= i  i 
is a positive regular measure on S with  
i = 1,2,3,4 (see, for example [2], [7], [9]). Note that for 
an element  and a Borel set B, μ (B) is 
well-defined whenever B is relatively compact. For 
every , the equation 

),(1
iSLw μ∈

),( wSM∈μ

),( wSM∈μ

)),(().( SCffwdwfd bSS
∈= ∫∫ μμ  

defines a measure , the space of all 
bounded regular complex measures on S. With the norm 

)(. SMw ∈μ

)),,((. wSMww ∈= μμμ  

where μ.w  denotes the total variation of μ.w , the 
space M(S,w) defines a Banach lattice, and with the 
convolution product 

)),(),,(,,(

)()()())((

00 SCfwSM

ydxdxyff
S S

∈∈

=∗ ∫ ∫
νμ

νμνμ
 (1) 

where C00(S) denotes the set of all functions in Cb(S) 
with compact support, defines a Banach algebra. From 
part (iii) of Theorem 4.6 of [7], we conclude that (1) 
also holds for every w-bounded Borel measurable 
function f on S. 

We also recall (see, for example, [1], [6], [18]) that 
 (or ) denotes the set of all measures 

 for which the mappings 
)(SM a )(~ SL

)(SM∈μ μδ ∗xx a  and 

xx δμ ∗a  (where  denotes the Dirac measure at x) 
from S into M(S) are weakly continuous. As in [7], we 
can define M

xδ

a(S,w) (or ) as the set of measures 
 for which . Then, M

),(~ wSL
),( wSM∈μ )(. SMw a∈μ a(S,w) is 

a closed, two-sided L-ideal of M(S,w). Finally, we call S 
a foundation semigroup if  is 
dense in S. A mapping 

)}(:)({ SMsupp a∈∪ μμ
→S:χ  is called a 

semicharacter if )()()( yxxy χχχ =  for all ., Syx ∈  We 
denote by  the set of all w-bounded continuous 
semicharacters on S, and by  the set of nonnegative 
semicharacters in . If S is commutative and 
foundation, then  is homomorphic to  
whenever  has the compact open topology and 

 has the Gelfand topology. In particular; 
 is a locally compact Hausdorff space (see, Theorem 

2.10 of [8]). 

wΓ
+Γw

wΓ

wΓ )),(( wSM aΔ

wΓ
)),(( wSM aΔ

wΓ

An operator-valued transformation L is 
called w-bounded (continuous, respectively) if for every 

→SU : )(H

H∈ηξ ,  the map: ηξ ,xUx a  is w-bounded 
(continuous, respectively). Finally if L  is 
such that 

→SU : )(H
),( SyxUUU yxxy ∈= , then U is called a 

representation. For further information on the 
representation theory of topological semigroups and 
*-algebras the reader is referred to [7]. 

247 



Vol. 11, No. 3, Summer 2000 Lashkarizadeh Bami J. Sci. I. R. Iran 

2. Generalized Representations and 
Positive-Definite Functions on Weighted 

Foundation Semigroups 
We start this section with the following result which 

is indeed a generalization of our earlier result (Theorem 
4.4 of [7]). 

 
Theorem 2.1. Let S be a foundation *-semigroup with 
identity and with a Borel measurable weight function w 
such that . Let T be a *-
representation of M

)()()( Sxxwxw ∈=∗

a(S,w) by bounded A-linear 
operators on a Hilbert module H over a proper H*-
algebra A such that for every H∈≠ ξ0  there exists a 
measure  such that ),( wSM a∈μ 0≠ξμT . Then there 
exists a unique w-bounded continuous *-representation 
V of S by A-linear operators on H such that 

( ) ( ) ( .),(,,)(,, wSMHxdVT aS x ∈∈= ∫ μηξμξηξη μ )
 (2) 

 
Proof. Recall that by Theorem 1 of [11] H with the 
inner product ..,  where ),(, ξηηξ tr=  defines a 
Hilbert space and by Theorem 4 of [11], the adjoint 
operator T* of T defines a bounded A-linear operator on 
H. So by Theorem 5.4 of [7] there exists a w-bounded 
continuous *-representation V of S by bounded 
operators on the Hilbert space ( )..,,H  such that 

( ).,),,()(,, HwSMxdVT aS x ∈∈= ∫ ηξμμηξηξμ

 (3) 

Now let R(A) denote the space of the right centralizers 
of A. From Lemma 2 of [14] and Theorem 1 of [11] for 
every  we have )(ARU ∈

( ) ( )

( ) .)(,)(,

,,,

∫∫ =′=

′=′=

S xS x xdVtrUxdUV

UTTUtrTtrU

μξημηξ

ηξξηξη μμμ
 

So by Theorem 2 of [16] 

( ) ( ) ( .,),,()(,, HwSMxdVT aS x ∈∈= ∫ ηξμμξηξη μ )  

This proves formula (2). 
We shall now use formula (3) and prove that if  is 

A-linear for every , then  is A-linear 
for every  To see this from (3) for every 

, 

μT

),( wSM a∈μ xV
.Sx∈

),( wSM a∈μ H∈ηξ , , and  we have Aa ∈

( ) ( ) ( )ηξξημξη μμ ),(,)(, aTtraTxdaV
S x ==∫  

( ) ( )

∫∫ ==

==

∗

∗

S xS x xdaVxdVa

aTtraTtr

).()(,)(,

,,)(

μξημξη

ηξηξ μμ
 

Since both the mappings: )(, aVx x ξη→  and 
aVx x )(, ξη→  are w-bounded and continuous and S is 

a foundation semigroup, from Lemma 4.8 of [7] we 
conclude that  ).,()()( AaSxaVaV xx ∈∈= ξξ

The following result is indeed a generalization of our 
earlier version of Bochner’s theorem [4; Theorem 4.2]. 

 
Theorem 2.2. (Generalized Bochner’s theorem on 
foundation semigroups). Let S be a commutative 
foundation topological *-semigroup with identity and 
with a Borel measurable weight function w. Let A be a 
proper H*-algebra over a Hilbert module H. Then a 
mapping  is w-bounded continuous and 
positive definite if and only if there exists a unique 
positive A-valued measure 

)(: AS τϕ →

ϕλ on  such that wΓ

)()()()(
*

Sxdxx
w

∈= ∫Γ χλχϕ ϕ . 

 
Proof. Since ϕ  is w-bounded and continuous, by 
Theorem 1 of [16] there exists a w-bounded weakly 
continuous *-representation V of S by bounded A-linear 
operators on a Hilbert A-module K with some  
such that  and 

K∈0ξ
),()( 00 ξξϕ xTx = )(xwVx ≤  for every 

.Sx∈  
Using the integration theory on page 120 of [13] and 

Lemma 2 of the same reference, we conclude that the 
mapping  given by )(),(: AwSM a τ→Φ

( ) )),()(,)()()( 00 wSMxdVxdx aS x ∈==Φ ∫∫ μμξξμϕμ  

is well-defined. It is also easy to see the Φ defines a 
positive A-functional on the Banach *-algebra Ma(S,w). 
Therefore, by Theorem 3 of [15] there exists a positive 

-valued measure λ on  such that )(Aτ& )),(( wSM aΔ

∫Δ=Φ
)),((

).()(ˆ)(
wSM a

d σλσμμ  

Using Theorem 2.10 of [7], we conclude that 

( ) ( ).),()()()()(
*

wSMxdxdx aSw
∈=Φ ∫ ∫Γ

μλμχμ  

By Fubini’s theorem 

( ) ( ).),()()()()()(
*

wSMxddxxdx aSS w
∈=∫ ∫∫ Γ

μμχλχμϕ  

Since both functions ϕ  and  are ∫Γ→
*

)()(
w

dxx χλχ
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w-bounded and weakly continuous and S is a foundation 
semigroup, we infer that 

).()()()(
*

Sxdxx
w

∈= ∫Γ χλχϕ  

The uniqueness of λ  follows in the same lines as 
those of Theorem 4.2 of [4]. 

 
3. Completely Monotone Functionals on 

Ordered Banach Algebras 
Our starting point of this section is the following: 
 

Theorem 3.1. Let B be a commutative ordered Banach 
algebra with a bounded approximate identity  in 
P

)( αe
1(B). Let k be the set of all completely monotone 

functionals f in B* such that .1≤f  Then K is a convex 
and weak*-compact subset of A*. If  f  is an extreme 
point of K, then  for all  and 

 for all 
0)( ≥af )(BPa∈

)()()( bfafabf = ., Bba ∈  
 

Proof. It is clear that K is a convex and weak*-closed 
subset of the unit ball of B* and so by the Banach 
Alaoglu theorem is weak*-compact. Let f be an extreme 
point of K. Then it is clear that  for all 

. Since P
0)( ≥af

)(BPa∈ 1(B) spans B, to prove that 
 for all )()()( bfafabf = Bba ∈, , it suffices to show 

that  for all  For every 
 we define  by . It is 

easy to see that 

)()()( bfafabf = ).(, 1 BPba ∈
Ba∈ *Bfa ∈ )()()( Bbabfbfa ∈=

),,,,;(),,;)(( 111 abbbfbbbff nnnan KK +Δ=−Δ  

for all n∈  , and  Thus,  is 
also completely monotone. So 

).(,,,, 11 BPbbba n ∈K aff −

,0))(())(( 0 ≥−Δ=− beffbeff aa αα  

and 

,0);)(())(())(( 1 ≥−Δ=−−− beffbeffeff aaa ααα  

for all  From these two inequalities it 
follows that 

).(, 1 BPba ∈

)(1)()(

))(())((0

ααα

αα

aefaefef

effbeff aa

−≤−

=−≤−≤
 

for all α and all  Since (e).(, 1 BPba ∈ α) is a bounded 
approximate identity for B, it follows that 

)).(,()(1))((0 1 BPbaafbff a ∈−≤−≤  (4) 

Using the fact that f is completely monotone, we 

conclude that 

)),(,()()(0 10 BPbaabfabf ∈=Δ≤  

and 

)).(,()()();(0 11 BPbaabfafbaf ∈−=Δ≤  

Thus 

)).(,()()(0 1 BPbaafabf ∈≤≤  (5) 

We shall now consider three cases. 
 
Case 1.  So by (5),  Hence .0)( =af .0)( =abf

)).(,()()(0)( 1 BPbabfafabf ∈==  
Case 2.  Then by (4), .1)( =af

))(,)(()( 1 BPbaabfbf ∈=  and so 
)).(,)(()()()( 1 BPbabfafbfabf ∈==  

Case 3.  In this case we write .1)(0 << af

)(
)(

)(1
))(1(

af
faf

af
ffaff aa +

−
−

−= . 

From (4) it follows that ,))(1()( Kafff a ∈−−  and 
(5) implies that )(affa  also belongs to K. Since f is an 
extreme point of K, it follows that .)( faffa =  So 

)()()( bfafabf =  for all  This completes 
the proof. 

).(, 1 BPba ∈

 
Theorem 3.2. Let B be a commutative ordered Banach 
algebra with a bounded approximate identity (eα) in 
P1(B). Then a linear transformation L(H) (H is 
a Hilbert space) is completely monotone if and only if 
there is a positive operator-valued measure E on 

 such that 

→BU :

)(B+Δ

).,,(,(.))(,
)(

BbHEdbU
Bb ∈∈= ∫

+Δ
ηξηξσηξ σ  (6) 

Moreover, U is a representation if and only if E is a 
spectral measure. 

 
Proof. Let L(H) be completely monotone. 
Without loss of generality, we may assume that 

→BU :

).( BbbUb ∈≤  For every H∈ξ  with 1=ξ  we 
define the linear functional  on B by ξL

).(,)( BbUbL b ∈= ξξξ  

It is clear that  defines a completely monotone 

functional on B with 

ξL

.1≤ξL  By the integral form of 
the Krein-Milman theorem [10; p. 6] and Theorem 3.1, 
there exists a unique regular probability measure μξ,ξ on 
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)(B+Δ  such that 

).()()()(
)( , BbdbbL

B
∈= ∫

+Δ
σμσ ξξξ  

So if H∈≠ ξ0  is arbitrary, then there exists a 

unique positive regular measure μξ,ξ with 2
, ξμ ξξ ≤  

and 

).()()(,
)( , BbdbU

Bb ∈= ∫
+Δ

σμσξξ ξξ  

By the polarization identity for every H∈ηξ ,  and 
 we have Bb∈

( ) ( )(

( ) ( ) ).,,

,,
4
1,

ηξηξηξηξ

ηξηξηξηξηξ

iiUiiiUi

UUU

bb

bbb

−−−+++

−−−++=

Thus 

),,,()()(,
)( , HBbdbU

Bb ∈∈= ∫
+Δ

ηξσμσηξ ηξ  

where 

( )ηξηξηξηξηξηξηξηξηξ μμμμμ iiii ii ++++−−++ −+−= ,,,,, 4
1 . 

Now let B  denote the σ-algebra of all Borel 
subsets of  Define the operator-valued measure 
E on B  by 

))(( B+Δ
).(B+Δ

))(( B+Δ

)).((,,()(,)( , BMHMME +Δ∈∈= Bηξμηξ ηξ  

It is easy to see that E is positive, in the sense that 
0,)( ≥ξξME  for all H∈ξ  and  

Moreover, 
)).(( BM +Δ∈B

).,,(,(.))(,
)(

HBbEdbU
Bb ∈∈= ∫

+Δ
ηξηξσηξ σ  

For simplicity, we abbreviate this equality as 

).()(
)(

BbdEbU
Bb ∈= ∫

+Δ σσ  

Now for every  we denote by  the restriction 
of the Gelfand transform of b to  that is 

 for all  Since by the Gelfand 

representation theorem  separates the 
points of  from the Stone-Weierstrass theorem it 
follows that it is dense in  the space of all 
continuous complex-valued functions on  
vanishing at infinity. Now if U is multiplicative, then 

for every 

Bb∈ b̂
),(B+Δ

)()(ˆ bb σσ = ).(B+Δ∈σ

}:ˆ{ Bbb ∈=P
),(B+Δ

)),((0 BC +Δ
)(B+Δ

Bba ∈,  we have 

.)(ˆ)(ˆ

)()(ˆ)(ˆ

)()(

)()(

∫∫

∫∫

++

++

ΔΔ

ΔΔ

=

===

BB

baabBB

dEbdEa

UUUdEabdEba

σσ

σσ

σσ

σσσ

 

Since for every fixed ,Bb ∈  each of the functions 
 and  

  are bounded and 

linear on P, and P is dense in  then for every 
Borel subset M of  we have 

∫
+Δ )(

)(ˆ
B

dEaba σσa ∫
+Δ )(

)(ˆˆ
B

dEaa σσa

)),(( B+Δ )ˆ()(ˆ
)(

P∈∫
+Δ

adEb
B σσ

)),((0 BC +Δ
)(B+Δ

∫∫

∫

++

+

ΔΔ

Δ
=

)()(

)(

)(ˆ)(1

)(ˆ)(1

BB M

B M

dEadE

dEa

σσ

σ

σσ

σσ
 

where 1M denotes the characteristic function of the set 
M. A similar argument shows that for every two Borel 
subsets M and N of  )(B+Δ

.)(1)(1

)(1)(1

)()(

)(

∫∫

∫

++

+

ΔΔ

Δ
=

B NB M

B NM

dEdE

dE

σσ

σ

σσ

σσ
 

That is ).()()( NEMENME =∩  So E is a spectral 
measure on  The proof is now complete. ).(B+Δ

The following theorem gives a characterization of the 
completely monotone functionals on commutative 
ordered Banach algebras. 

 
Theorem 3.3. Let B be a commutative ordered Banach 
algebra with a bounded approximate identity in P1(B). 
Then a bounded linear mapping U of B into a proper 
H*-algebra A is completely monotone if and only if there 
is a positive -valued measure E on  such 
that 

)(Aτ )(B+Δ

( ) ( ) ).,,((.),)()(,
)(

HBbEdbbU
B

∈∈= ∫
+Δ

ηξηξσηξ σ  

Moreover, U is a positive homomorphism if and only 
if E is a generalized spectral measure. 

 
Proof. For every H∈ξ  with  we define 1),( =ξξtr

).(),())(,()( BbbUbUtrbL ∈== ξξξξξ  

From 

),,;(),()),;(,( 11 nnnn bbbUbbbU KK Δ=Δ ξξξξ  

(b;b1,…bn∈Β, n∈  +) 
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and the fact that U is bounded and completely monotone 
we conclude that  defines a completely linear 
functional on B. So by Theorem 3.2 there exists an 
operator-valued measure E by bounded operators on the 
Hilbert space 

ξL

( ..,,H )  such that 

).(,(.))(),()(
)(

BbEdbbUbL
B

∈== ∫
+Δ

ηξσηξ σξ  

For every  by Lemma 2 of [14] we have )(ART ∈

( )( ) ( )( ) ( )

( ) ( )

( ) ( )( )..,

,.

,,,

)(

)(

∫

∫

+

+

Δ

Δ

=

′=

′=′=

B

B

EtrTdb

TEdb

TbUbUTtrbUtrT

ξησ

ηξσ

ηξξηξη

σ

σ  

Now it is easily seen that the mapping:  
 given by:  

defines a -valued measure on  Therefore, 
by Lemma 2 of [14] and Theorem 2 of [16] we have 

→Δ+ )(B
)(Aτ ))((())(,( BMMEM +Δ∈→ Bξη

)(Aτ ).(B+Δ

( )( ) ( ) ( )( ) ).(.,,
)(

BbEdbbU
B

∈= ∫
+Δ

ξησξη σ  

Thus, the proof is complete. 
 
We are now in a position to state and prove the main 

result of this paper. Note that if H is a right Hilbert 
module over a proper H*-algebra A, then a mapping 

 is called w-bounded and continuous if for 
every 

AST →:
H∈ηξ ,  the mapping  is a 

w-bounded continuous complex-valued function on S. 
),( xTtrx ηξa

 
Theorem 3.4. Let S be a commutative foundation 
semigroup with identity and with a Borel measurable 
weight function w continuous at the identity. Let H be a 
Hilbert module over a proper H*-algebra A. Then a 
mapping  is w-bounded continuous and 
completely monotone if and only if there exists a unique 
positive A-valued measure E on  such that 

AST →:

+Γw

( ) ( ) ( )( ) ( ).,,.,, HSxEdxT
w

x ∈∈= ∫ +Γ
ηξηξχηξ χ  

T is a homomorphism if and only if E is a generalized 
A-valued spectral measure. 

 
Proof. From the continuity of w at the identity of S it 
follows that  has a bounded approximate 
identity in  (see [9]). It is also easy to see 
that the equation 

),( wSM a

)),((1 wSMP a

( )( ) ( ) ( ) ( )( HwSMxdTU aS x ∈∈= ∫ ηξμμηξμηξ ,,,,,

defines a completely monotone A-valued bounded 
functional on the ordered Banach algebra  
Therefore, by Theorem 3.3 there exists a unique positive 
A-valued measure E on  such that 

).,( wSM a

)),(( wSM a+Δ

)

)

 

( )( ) ( ) (( )∫
+Δ

=
)),((

.,ˆ,
wSM a

EdU ηξχμμηξ χ  

( ).),(,, wSMH a∈∈ μηξ  

Now an application of this equality and Theorem 
2.10 of [8] with the aid of Fubini’s theorem gives 

( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( )..,

.,,

∫ ∫

∫ ∫

+

+

Γ

Γ

=

=

S

S

xdEdx

EdxdxU

w

w

μηξχ

ηξμχμηξ

χ

χ

 

Now since both mappings ( ) ( )∫ +Γw
Edxx ηξχ χ .,a  

and xTx ηξ ,a  are w-bounded and continuous and S 
is also a foundation semigroup, we conclude that 

( ) ( ) ( )( ) ( ).,,.,, SxHEdxT
w

x ∈∈= ∫ +Γ
ηξηξχηξ χ  

 
Remark. The following example shows that the 
conclusion of the preceding theorem is not valid in 
general for non-foundation semigroups. 

 
Example 3.5. Let S = [0,1]. Then with the usual 
topology of the real line and the multiplication 

),)(,min( Syxyxxy ∈=  S defines a non-foundation 
semigroup. If we choose  on S, then  
where 1 denotes the function which is identically one on 
S. It is clear that the mapping  (m 
denotes the Lebesgue measure on [0,1]) given by 

1=w },1{=Γ+
w

)),((: 2 mSLST L→

( )( ),,,ˆ 2 mSLfSxfxfTx ∈∈=  

where  denotes the characteristics function on [0,x], 
defines a completely monotone operator-valued transfo-
rmation of S by operators on the Hilbert module 

 (see [3]). If the formula (6) is valid for T, then 
we arrive at the contradiction that  for every x in 
S, where I denotes the identity operator on  

x̂

),(2 mSL
ITx =

).,(2 mSL
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