GENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS*

M. Lashkarizadeh Bami[†]

Department of Mathematics, Institute for Studies in Theoretical physics and Mathematics, Tehran, P. O. Box 19395-1795, Islamic Republic of Iran

Abstract

A general notion of completely monotone functionals on an ordered Banach algebra B into a proper H^* -algebra A with an integral representation for such functionals is given. As an application of this result we have obtained a characterization for the generalized completely continuous monotone functions on weighted foundation semigroups. A generalized version of Bochner's theorem on foundation semigroups is also obtained.

Introduction

In the present, paper we shall introduce the concept of a completely monotone functional on an ordered Banach algebra *B* into a proper H^* -algebra *A* and we shall give an integral representation for such functionals with respect to *A*-valued measures on $\Delta_+(B)$, the space of all positive multiplicative linear functionals on *B*. As an application of the theory we shall obtain an integral representation for the generalized *w*-bounded continuous completely monotone *A*-valued functions with respect to positive *A*-valued measures on Γ_w^+ , the space of all *w*-bounded continuous nonnegative semicharacters on a foundation semigroup *S* with a Borel measurable weight function *w*. We will also give a generalization of our earlier version of Bochner's theorem [4; Theorem 4.2].

Keywords: Locally compact semigroups; Positive definite functions; H^* -algebras; Spectral measures

1. Preliminaries

Recall that (see, [11], [12], [13], [17]) a proper

 H^* -algebra is a Banach algebra A whose norm is a Hilbert space norm and which has an involution: $x \to x^*$ on A such that $(y, x^*, z) = (xy, z) = (x, zy^*)$ for all $x, y, z \in A$. Let $\tau(A) = \{xy : x, y \in A\}$ be the trace class of A. It is a Banach algebra with respect to a norm $\tau(.)$ which is related to the norm $\|.\|$ of A by $\tau(a^*a) = \|a\|^2$ for all $a \in A$. There is a trace tr defined on $\tau(A)$ such that $tr(ab) = tr(ba) = (a, b^*)$ for all $a, b \in A$, where (., .) denotes the scalar product on A. if $a = b^*b$ for some $b \in A$ then a is called positive and we write $a \ge 0$. It is obvious that $a \ge 0$ if and only if $(ax, x) \ge 0$ for all $x \in A$. A right module H over A is called a Hilbert module if there is a $\tau(A)$ -valued function (,) on $H \times H$ with the following properties

- 1. $(\xi + \eta, \varphi) = (\xi, \varphi) + (\eta, \varphi)$ for all $\xi, \eta, \varphi \in H$.
- 2. $(\xi, \eta)^* = (\eta, \xi)$ for all $\xi, \eta \in H$.
- 3. $(\xi, \eta a) = (\xi, \eta)a$ for all $\xi, \eta \in H$ and each $a \in A$.
- 4. $(\xi,\xi) \ge 0$ for all $\xi \in H$ and $(\xi,\xi) = 0$ if and only

^{*} 1991 *Mathematics Subject Classification*. Primary 43 A35, 43 A10; This research was in part supported by grant from IPM. [†] *E-mail: lashkari@math.ui.ac.ir* if $\xi = 0$.

5. $|tr(\xi,\eta)|^2 \le \tau(\xi,\xi)\tau(\eta,\eta)$ for all $\xi,\eta \in H$.

6. *H* is complete in the norm $\|\xi\| = (\tau(\xi,\xi))^{1/2}$.

The function (,) is called a generalized scalar product. There is a linear structure on *H* such that *H* is an ordinary Hilbert space with respect to the scalar product $\langle \xi, \eta \rangle = tr(\eta, \xi)$. An *A*-linear operator on *H* is an additive linear mapping $T: H \to H$ such that $T(\xi a) = (T\xi)a$ for all $\xi \in H, a \in A$; *T* is bounded in the in the sense that $||T\xi|| \le M ||\xi||$ for some $M \ge 0$ and every $\xi \in H$. For each bounded *A*-linear operator *T* its adjoint T^* is *A*-linear and has the property that $(T\xi, \eta) = (\xi, T^*\eta)$ for all $\xi, \eta \in H$.

By a real ordered Banach algebra we shall mean a real Banach algebra \mathcal{M}_r with a closed partial order \geq satisfying the following:

- (i) $x \ge y \Longrightarrow x + z \ge y + z$, for all $z \in \mathcal{M}_r$.
- (ii) $x \ge 0, y \ge 0 \Longrightarrow xy \ge 0$.
- (iii) $x \ge 0 \Rightarrow ax \ge 0$, for all nonnegative real numbers α .

Note that an order " \geq " on an ordered Banach algebra is called closed if for every two sequences (x_n) and (y_n) in *B* from $x_n \xrightarrow{n} x$ and $y_n \xrightarrow{n} y$ and $x_n \geq y_n$ $(n \in \mathbb{N})$ it follows that $x \geq y$. A complex Banach algebra *B* of the form $\mathcal{M}_r \oplus i\mathcal{M}_r$, where \mathcal{M}_r is a real ordered Banach algebra, is called an ordered Banach algebra. On an ordered Banach algebra *B*, we put $P(B) = \{b \in B : b \geq 0\}$ and $P_1(B) = \{b \in P(B) :$ $\|b\| = 1\}$. A linear functional *f* on *B* is called positive if $f(b) \geq 0$ for all $b \in P(B)$. In the case where *B* is commutative, we shall denote by $\Delta(B)$ the space of all bounded multiplicative linear functionals on *B* and by $\Delta_+(B)$ the space of all positive functionals in $\Delta(B)$.

Definition 1.1. Let B be a commutative ordered Banach algebra. For every $n \in \mathbb{Z}_+$ (the set of nonnegative integers) we define the operator Δ_n on B^* (the dual of *B*) by

$$\begin{split} &\Delta_0 f(b) = f(b) \\ &\Delta_1 f(b; b_1) = \Delta_0 f(b) - \Delta_0 f(bb_1) = f(b) - f(bb_1) \end{split}$$

and for every $n \ge 2$

$$\Delta_n f(b; b_1, \dots, b_n) = \Delta_{n-1} f(b; b_1, \dots, b_{n-1}) - \Delta_{n-1} f(bb_n; b_1, \dots, b_{n-1})$$

 $(f \in B^*, b, b_1, \dots, b_n \in B; n = 1, 2, \dots)$. A linear functional

 $f \in B^*$ is called *completely monotone* if

$$\Delta_n f(b; b_1, \dots, b_n) \ge 0$$

for all $n \in \mathbb{Z}_+$ and $b, b_1, \dots, b_n \in P_1(B)$.

An operator-valued transformation $U: B \to \mathcal{L}(H)$ (the space of all bounded linear operators on a Hilbert space *H*) is called *completely monotone* if for every $\xi \in H$ the mapping $\varphi_{\xi}: b \mapsto \langle U_b \xi, \xi \rangle (b \in B)$ defines a completely monotone functional on *B*.

We now recall some definitions concerning topological semigroups.

Throughout this paper *S* will denote a locally compact, Hausdorff topological semigroup.

Definition 1.2. On a commutative topological semigroup *S* with $C_b(S)$ (the space of bounded continuous complex-valued functions on *S*) inductive identity, for each $n \in \mathbb{Z}_+$ we define the operator Δ_n on by

$$\Delta_0 f(x) = f(x)$$

$$\Delta_1 f(x; h_1) = \Delta_0 f(x) - \Delta_0 f(xh_1) = f(x) - f(xh_1)$$

and for every $n \ge 2$

$$\Delta_n f(x; h_1, \dots, h_n) = \Delta_{n-1} f(x; h_1, \dots, h_{n-1}) - \Delta_{n-1} f(xh_n; \dots, h_{n-1}),$$

 $(f \in C_b(S), x, h_1, \dots, h_n \in S, n = 1, 2, \dots)$. A function $f \in C_b(S)$ is called *completely monotone* if $\Delta_n f \ge 0$ $(n \in \mathbb{Z}_+)$ (cf. [5; p. 43]).

Definition 1.3. An operator-valued transformation $T: S \rightarrow \mathcal{L}(H)$ is called *completely monotone* if for every $\xi \in H$ the mapping

$$x \mapsto \langle T_x \xi, \xi \rangle (x \in S)$$

is completely monotone on S.

Definition 1.4. Let *B* be an ordered commutative Banach algebra and *H* be a Hilbert module over a proper H^* -algebra *A*. A linear mapping $f: B \to A$ is called a *completely monotone A-functional* if for every $n \in \mathbb{Z}_+$ $\Delta_n f(b; b_1, \dots, b_n) \ge 0$ for every (n + 1)-positive elements b, b_1, \dots, b_n of *B* where,

$$\begin{aligned} &\Delta_0 f(b) = f(b) \\ &\Delta_1 f(b; b_1) = \Delta_0 f(b) - \Delta_0 f(bb_1) = f(b) - f(bb_1) \end{aligned}$$

and for every $n \ge 2$

$$\begin{split} \Delta_n f(b; b_1, \dots, b_n) &= \Delta_{n-1} f(b; b_1, \dots, b_{n-1}) \\ &- \Delta_{n-1} f(bb_n; b_1, \dots, b_{n-1}). \end{split}$$

Definition 1.5. Let *S* be a commutative topological semigroup with an identity. A mapping $f: S \to A$ is called *completely monotone* if $\Delta_n f(x; h_1, ..., h_n) \ge 0$ for all nonnegative integers *n* and all $x, h_1, ..., h_n \in S$ where

$$\Delta_0 f(x) = f(x)$$

$$\Delta_1 f(x; h_1) = \Delta_0 f(x) - \Delta_0 f(xh_1) = f(x) - f(xh_1)$$

and for every $n \ge 2$

$$\Delta_n f(x; h_1, \dots, h_n) = \Delta_{n-1} f(x; h_1, \dots, h_{n-1})$$
$$-\Delta_{n-1} f(xh_n; h_1, \dots, h_{n-1})$$

Definition 1.6. Let *B* a Banach * algebra and *A* be a proper H^* -algebra. A linear mapping $f: B \to A$ is called a *positive A-functional* if

$$\sum_{i=1}^n \sum_{j=1}^n a_i^* f(b_i^* b_j) a_j \ge 0$$

for all b_1, \ldots, b_n in B and a_1, \ldots, a_n in A.

Definition 1.7. Let *S* be a *-semigroup. Then a mapping $\varphi: S \rightarrow A$ is called *positive definite* if

$$\sum_{i=1}^n \sum_{j=1}^n a_i^* \varphi(x_i^* x_j) a_j \ge 0$$

for all x_1, \ldots, x_n in *S* and a_1, \ldots, a_n in *A*.

Recall that a Borel measurable mapping $w: S \to \mathbb{R}_+$ (the set of nonnegative real numbers) with $w(xy) \le w(x)w(y)$ $(x, y \in S)$ and such that w and $\frac{1}{w}$ are locally bounded (i.e., bounded on compact subsets of *S*) is called a *weight function* on *S*. A function $f: S \to \mathbb{C}$ is called *w*-bounded if there is a k > 0 such that $|f(x)| \le kw(x)$, for all $x \in S$.

Recall also that M(S,w) denotes the set of all complex, regular, signed measures μ (not necessarily bounded) of the form $\mu = \mu_1 - \mu_2 + i(\mu_3 - \mu_4)$ where μ_i is a positive regular measure on *S* with $w \in L^1(S, \mu_i)$ i = 1,2,3,4 (see, for example [2], [7], [9]). Note that for an element $\mu \in M(S,w)$ and a Borel set *B*, $\mu(B)$ is well-defined whenever *B* is relatively compact. For every $\mu \in M(S,w)$, the equation

$$\int_{S} fd(w.\mu) = \int_{S} fwd\mu \qquad (f \in C_{b}(S)),$$

defines a measure $w.\mu \in M(S)$, the space of all bounded regular complex measures on *S*. With the norm

$$\|\mu\|_{w} = \|w.\mu\|$$
 $(\mu \in M(S, w)),$

where $||w.\mu||$ denotes the total variation of $w.\mu$, the space M(S,w) defines a Banach lattice, and with the convolution product

$$\begin{aligned} (\mu * \nu)(f) &= \int_{S} \int_{S} f(xy) d\mu(x) d\nu(y) \\ (\mu, \nu \in, \mathcal{M}(S, w), f \in C_{00}(S)), \end{aligned} \tag{1}$$

where $C_{00}(S)$ denotes the set of all functions in $C_b(S)$ with compact support, defines a Banach algebra. From part (*iii*) of Theorem 4.6 of [7], we conclude that (1) also holds for every w-bounded Borel measurable function f on S.

We also recall (see, for example, [1], [6], [18]) that $M_{a}(S)$ (or $\tilde{L}(S)$) denotes the set of all measures $\mu \in M(S)$ for which the mappings $x \mapsto \delta_x * |\mu|$ and $x \mapsto |\mu| * \delta_x$ (where δ_x denotes the Dirac measure at x) from S into M(S) are weakly continuous. As in [7], we can define $M_a(S,w)$ (or $\tilde{L}(S,w)$) as the set of measures $\mu \in M(S, w)$ for which $w.\mu \in M_a(S)$. Then, $M_a(S, w)$ is a closed, two-sided *L*-ideal of M(S, w). Finally, we call S a foundation semigroup if $\cup \{supp(\mu) : \mu \in M_a(S)\}$ is dense in S. A mapping $\chi: S \to \mathbb{C}$ is called a semicharacter if $\chi(xy) = \chi(x)\chi(y)$ for all $x, y \in S$. We denote by Γ_w the set of all w-bounded continuous semicharacters on S, and by Γ_w^+ the set of nonnegative semicharacters in Γ_w . If S is commutative and foundation, then Γ_w is homomorphic to $\Delta(M_a(S, w))$ whenever Γ_w has the compact open topology and $\Delta(M_a(S, w))$ has the Gelfand topology. In particular; Γ_w is a locally compact Hausdorff space (see, Theorem 2.10 of [8]).

An operator-valued transformation $U: S \to \mathcal{L}(H)$ is called *w*-bounded (continuous, respectively) if for every $\xi, \eta \in H$ the map: $x \mapsto \langle U_x \xi, \eta \rangle$ is *w*-bounded (continuous, respectively). Finally if $U: S \to \mathcal{L}(H)$ is such that $U_{xy} = U_x U_y(x, y \in S)$, then *U* is called a *representation*. For further information on the representation theory of topological semigroups and *-algebras the reader is referred to [7].

2. Generalized Representations and Positive-Definite Functions on Weighted Foundation Semigroups

We start this section with the following result which is indeed a generalization of our earlier result (Theorem 4.4 of [7]).

Theorem 2.1. Let S be a foundation *-semigroup with identity and with a Borel measurable weight function w such that $w(x^*) = w(x) \ (x \in S)$. Let T be a *representation of $M_a(S,w)$ by bounded A-linear operators on a Hilbert module H over a proper H^{*}algebra A such that for every $0 \neq \xi \in H$ there exists a measure $\mu \in M_a(S,w)$ such that $T_{\mu}\xi \neq 0$. Then there exists a unique w-bounded continuous *-representation V of S by A-linear operators on H such that

$$(\eta, T_{\mu}\xi) = \int_{S} (\eta, V_{x}\xi) d\mu(x) \quad (\xi, \eta \in H, \mu \in M_{a}(S, w)).$$
(2)

Proof. Recall that by Theorem 1 of [11] *H* with the inner product $\langle .,. \rangle$ where $\langle \xi, \eta \rangle = tr(\eta, \xi)$ defines a Hilbert space and by Theorem 4 of [11], the adjoint operator T^* of *T* defines a bounded *A*-linear operator on *H*. So by Theorem 5.4 of [7] there exists a *w*-bounded continuous *-representation *V* of *S* by bounded operators on the Hilbert space $(H, \langle .,. \rangle)$ such that

$$\left\langle T_{\mu}\xi,\eta\right\rangle = \int_{S} \left\langle V_{x}\xi,\eta\right\rangle d\mu(x) \quad \left(\mu \in M_{a}(S,w),\xi,\eta \in H\right).$$
(3)

Now let R(A) denote the space of the right centralizers of A. From Lemma 2 of [14] and Theorem 1 of [11] for every $U \in R(A)$ we have

$$trU(\eta, T_{\mu}\xi) = tr(U'\eta, T_{\mu}\xi) = \langle T_{\mu}\xi, U'\eta \rangle$$
$$= \int_{S} \langle V_{x}\xi, U'\eta \rangle d\mu(x) = \int_{S} trU(\eta, V_{x}\xi) d\mu(x).$$

So by Theorem 2 of [16]

$$\left(\eta, T_{\mu}\xi\right) = \int_{S} \left(\eta, V_{x}\xi\right) d\mu(x) \quad \left(\mu \in M_{a}(S, w), \xi, \eta \in H\right).$$

This proves formula (2).

We shall now use formula (3) and prove that if T_{μ} is A-linear for every $\mu \in M_a(S, w)$, then V_x is A-linear for every $x \in S$. To see this from (3) for every $\mu \in M_a(S, w), \xi, \eta \in H$, and $a \in A$ we have

$$\int_{S} \langle \eta, V_{x}(\xi a) \rangle d\mu(x) = \langle \eta, T_{\mu}(\xi a) \rangle = tr(T_{\mu}(\xi a), \eta)$$

$$= tr((T_{\mu}\xi)a,\eta) = tr(T_{\mu}\xi,\eta a^{*})$$
$$= \int_{S} \langle \eta a^{*}, V_{x}\xi \rangle d\mu(x) = \int_{S} \langle \eta, (V_{x}\xi)a \rangle d\mu(x).$$

Since both the mappings: $x \to \langle \eta, V_x(\xi a) \rangle$ and $x \to \langle \eta, (V_x \xi) a \rangle$ are *w*-bounded and continuous and *S* is a foundation semigroup, from Lemma 4.8 of [7] we conclude that $V_x(\xi a) = (V_x \xi) a \ (x \in S, a \in A)$.

The following result is indeed a generalization of our earlier version of Bochner's theorem [4; Theorem 4.2].

Theorem 2.2. (Generalized Bochner's theorem on foundation semigroups). Let *S* be a commutative foundation topological *-semigroup with identity and with a Borel measurable weight function w. Let *A* be a proper H^* -algebra over a Hilbert module *H*. Then a mapping $\varphi: S \rightarrow \tau(A)$ is w-bounded continuous and positive definite if and only if there exists a unique positive A-valued measure λ_{φ} on Γ_w such that

$$\varphi(x) = \int_{\Gamma_w^*} \chi(x) d\lambda_{\varphi}(\chi) \quad (x \in S) \,.$$

Proof. Since φ is w-bounded and continuous, by Theorem 1 of [16] there exists a *w*-bounded weakly continuous *-representation *V* of *S* by bounded *A*-linear operators on a Hilbert *A*-module *K* with some $\xi_0 \in K$ such that $\varphi(x) = (\xi_0, T_x \xi_0)$ and $||V_x|| \le w(x)$ for every $x \in S$.

Using the integration theory on page 120 of [13] and Lemma 2 of the same reference, we conclude that the mapping $\Phi: M_a(S, w) \rightarrow \tau(A)$ given by

$$\Phi(\mu) = \int \varphi(x) d\mu(x) = \int_{S} (\xi_0, V_x \xi_0) d\mu(x) \ (\mu \in M_a S, w))$$

is well-defined. It is also easy to see the Φ defines a positive *A*-functional on the Banach *-algebra $M_a(S,w)$. Therefore, by Theorem 3 of [15] there exists a positive $\dot{\tau}(A)$ -valued measure λ on $\Delta(M_a(S,w))$ such that

$$\Phi(\mu) = \int_{\Delta(M_a(S,w))} \hat{\mu}(\sigma) d\lambda(\sigma).$$

Using Theorem 2.10 of [7], we conclude that

$$\Phi(\mu) = \int_{\Gamma_w^*} \left(\int_S \chi(x) d\mu(x) \right) d\lambda(x) \quad \left(\mu \in M_a(S, w) \right).$$

By Fubini's theorem

$$\int_{S} \varphi(x) d\mu(x) = \int_{S} \left(\int_{\Gamma_{w}^{*}} \chi(x) d\lambda(\chi) \right) d\mu(x) (\mu \in M_{a}(S, w)).$$

Since both functions φ and $x \rightarrow \int_{\Gamma^*} \chi(x) d\lambda(\chi)$ are

w-bounded and weakly continuous and *S* is a foundation semigroup, we infer that

$$\varphi(x) = \int_{\Gamma_w^*} \chi(x) d\lambda(\chi) \quad (x \in S).$$

The uniqueness of λ follows in the same lines as those of Theorem 4.2 of [4].

3. Completely Monotone Functionals on Ordered Banach Algebras

Our starting point of this section is the following:

Theorem 3.1. Let *B* be a commutative ordered Banach algebra with a bounded approximate identity (e_{α}) in $P_1(B)$. Let *k* be the set of all completely monotone functionals *f* in B^* such that $||f|| \le 1$. Then *K* is a convex and weak*-compact subset of A^* . If *f* is an extreme point of *K*, then $f(a) \ge 0$ for all $a \in P(B)$ and f(ab) = f(a) f(b) for all $a, b \in B$.

Proof. It is clear that *K* is a convex and weak*-closed subset of the unit ball of B^* and so by the Banach Alaoglu theorem is weak*-compact. Let *f* be an extreme point of *K*. Then it is clear that $f(a) \ge 0$ for all $a \in P(B)$. Since $P_1(B)$ spans *B*, to prove that f(ab)=f(a)f(b) for all $a,b \in B$, it suffices to show that f(ab)=f(a)f(b) for all $a,b \in P_1(B)$. For every $a \in B$ we define $f_a \in B^*$ by $f_a(b)=f(ab)$ ($b \in B$). It is easy to see that

$$\Delta_n (f - f_a)(b; b_1, ..., b_n) = \Delta_{n+1} f(b; b_1, ..., b_n, a)$$

for all $n \in \mathbb{Z}_+$, and $a, b, b_1, \dots, b_n \in P_1(B)$. Thus, $f - f_a$ is also completely monotone. So

$$(f - f_a)(e_{\alpha}b) = \Delta_0(f - f_a)(e_{\alpha}b) \ge 0,$$

and

$$(f-f_a)(e_\alpha)-(f-f_a)(e_\alpha b)=\Delta_1(f-f_a)(e_\alpha;b)\geq 0,$$

for all $a, b \in P_1(B)$. From these two inequalities it follows that

$$\begin{split} 0 \leq (f-f_a)(e_\alpha b) \leq (f-f_a)(e_\alpha) = \\ f(e_\alpha) - f(ae_\alpha) \leq 1 - f(ae_\alpha) \end{split}$$

for all α and all $a, b \in P_1(B)$. Since (e_α) is a bounded approximate identity for *B*, it follows that

$$0 \le (f - f_a)(b) \le 1 - f(a) \quad (a, b \in P_1(B)).$$
(4)

Using the fact that f is completely monotone, we

conclude that

$$0 \le \Delta_0 f(ab) = f(ab) \quad (a, b \in P_1(B)),$$

and

$$0 \le \Delta_1 f(a;b) = f(a) - f(ab) \quad (a,b \in P_1(B)).$$

Thus

$$0 \le f(ab) \le f(a) \quad (a, b \in P_1(B)).$$
(5)

We shall now consider three cases.

Case 1.
$$f(a) = 0$$
. So by (5), $f(ab) = 0$. Hence
 $f(ab) = 0 = f(a)f(b)$ $(a, b \in P_1(B))$.
Case 2. $f(a) = 1$. Then by (4),
 $f(b) = f(ab)(a, b \in P_1(B))$ and so
 $f(ab) = f(b) = f(a)f(b)(a, b \in P_1(B))$.
Case 3. $0 < f(a) < 1$. In this case we write

$$f = (1 - f(a)) \frac{f - f_a}{1 - f(a)} + f(a) \frac{f_a}{f(a)}.$$

From (4) it follows that $(f - f_a)/(1 - f(a)) \in K$, and (5) implies that $f_a/f(a)$ also belongs to *K*. Since *f* is an extreme point of *K*, it follows that $f_a/f(a) = f$. So f(ab) = f(a)f(b) for all $a, b \in P_1(B)$. This completes the proof.

Theorem 3.2. Let *B* be a commutative ordered Banach algebra with a bounded approximate identity (e_{α}) in $P_1(B)$. Then a linear transformation $U: B \to \mathcal{L}(H)$ (*H* is a Hilbert space) is completely monotone if and only if there is a positive operator-valued measure *E* on $\Delta_+(B)$ such that

$$\langle U_b \xi, \eta \rangle = \int_{\Delta_+(B)} \sigma(b) d \langle E_{\sigma}(.)\xi, \eta \rangle \quad (\xi, \eta \in H, b \in B).$$
(6)

Moreover, U is a representation if and only if E is a spectral measure.

Proof. Let $U: B \to \mathcal{L}(H)$ be completely monotone. Without loss of generality, we may assume that $||U_b|| \le ||b|| \ (b \in B)$. For every $\xi \in H$ with $||\xi|| = 1$ we define the linear functional L_{ξ} on *B* by

$$L_{\xi}(b) = \langle U_{b}\xi, \xi \rangle \quad (b \in B).$$

It is clear that L_{ξ} defines a completely monotone functional on *B* with $||L_{\xi}|| \le 1$. By the integral form of the Krein-Milman theorem [10; p. 6] and Theorem 3.1, there exists a unique regular probability measure $\mu_{\xi,\xi}$ on $\Delta_+(B)$ such that

$$L_{\xi}(b) = \int_{\Delta_{+}(B)} \sigma(b) d\mu_{\xi,\xi}(\sigma) \quad (b \in B)$$

So if $0 \neq \xi \in H$ is arbitrary, then there exists a unique positive regular measure $\mu_{\xi,\xi}$ with $\|\mu_{\xi,\xi}\| \le \|\xi\|^2$ and

$$\langle U_b \xi, \xi \rangle = \int_{\Delta_+(B)} \sigma(b) d\mu_{\xi,\xi}(\sigma) \quad (b \in B).$$

By the polarization identity for every $\xi, \eta \in H$ and $b \in B$ we have

$$\begin{split} \langle U_b \xi, \eta \rangle &= \frac{1}{4} (\langle U_b(\xi + \eta), \xi + \eta \rangle - \langle U_b(\xi - \eta), \xi - \eta \rangle \\ &+ i \langle U_b(\xi + i\eta), \xi + i\eta \rangle - i \langle U_b(\xi - i\eta), \xi - i\eta \rangle). \end{split}$$

Thus

$$\left\langle U_b\xi,\eta\right\rangle = \int_{\Delta_+(B)} \sigma(b)d\mu_{\xi,\eta}(\sigma) \quad (b\in B,\xi,\eta\in H),$$

where

$$\mu_{\xi,\eta} = \frac{1}{4} \Big(\mu_{\xi+\eta,\xi+\eta} - \mu_{\xi-\eta,\xi-\eta} + i\mu_{\xi+i\eta,\xi+i\eta} - i\mu_{\xi+i\eta,\xi+i\eta} \Big).$$

Now let $\mathcal{B}(\Delta_+(B))$ denote the σ -algebra of all Borel subsets of $\Delta_+(B)$. Define the operator-valued measure E on $\mathcal{B}(\Delta_+(B))$ by

$$\langle E(M)\xi,\eta\rangle = \mu_{\xi,\eta}(M) \quad (\xi,\eta\in H, M\in\mathcal{B}(\Delta_+(B)))$$

It is easy to see that *E* is positive, in the sense that $\langle E(M)\xi,\xi\rangle \ge 0$ for all $\xi \in H$ and $M \in \mathcal{B}(\Delta_+(B))$. Moreover,

$$\langle U_b \xi, \eta \rangle = \int_{\Delta_+(B)} \sigma(b) d \langle E_{\sigma}(.)\xi, \eta \rangle \quad (b \in B, \xi, \eta \in H).$$

For simplicity, we abbreviate this equality as

$$U_b = \int_{\Delta_+(B)} \sigma(b) dE_{\sigma} \quad (b \in B).$$

Now for every $b \in B$ we denote by \hat{b} the restriction of the Gelfand transform of b to $\Delta_+(B)$, that is $\hat{b}(\sigma) = \sigma(b)$ for all $\sigma \in \Delta_+(B)$. Since by the Gelfand representation theorem $\mathcal{P} = \{\hat{b}: b \in B\}$ separates the points of $\Delta_+(B)$, from the Stone-Weierstrass theorem it follows that it is dense in $C_0(\Delta_+(B))$, the space of all continuous complex-valued functions on $\Delta_+(B)$ vanishing at infinity. Now if U is multiplicative, then for every $a, b \in B$ we have

$$\begin{split} \int_{\Delta_{+}(B)} \hat{a}(\sigma) \hat{b}(\sigma) dE_{\sigma} &= \int_{\Delta_{+}(B)} \hat{a} \hat{b}(\sigma) dE_{\sigma} = U_{ab} = U_{a} U_{b} \\ &= \int_{\Delta_{+}(B)} \hat{a}(\sigma) dE_{\sigma} \int_{\Delta_{+}(B)} \hat{b}(\sigma) dE_{\sigma}. \end{split}$$

Since for every fixed $b \in B$, each of the functions $\hat{a} \mapsto \int_{\Delta_+(B)} \widehat{ab}(\sigma) dE_{\sigma}$ and $\hat{a} \mapsto \int_{\Delta_+(B)} \hat{a}(\sigma) dE_{\sigma}$ $(\Delta_+(B)), \int_{\Delta_+(B)} \hat{b}(\sigma) dE_{\sigma} (\hat{a} \in \mathcal{P})$ are bounded and linear on \mathcal{P} , and \mathcal{P} is dense in $C_0(\Delta_+(B))$, then for every Borel subset M of $\Delta_+(B)$ we have

$$\begin{split} \int_{\Delta_{+}(B)} \mathbf{1}_{M}(\sigma) \hat{a}(\sigma) dE_{\sigma} &= \\ \int_{\Delta_{+}(B)} \mathbf{1}_{M}(\sigma) dE_{\sigma} \int_{\Delta_{+}(B)} \hat{a}(\sigma) dE_{\sigma} \end{split}$$

where 1_M denotes the characteristic function of the set M. A similar argument shows that for every two Borel subsets M and N of $\Delta_+(B)$

$$\begin{split} \int_{\Delta_{+}(B)} \mathbf{1}_{M}(\sigma) \mathbf{1}_{N}(\sigma) dE_{\sigma} &= \\ &\int_{\Delta_{+}(B)} \mathbf{1}_{M}(\sigma) dE_{\sigma} \int_{\Delta_{+}(B)} \mathbf{1}_{N}(\sigma) dE_{\sigma}. \end{split}$$

That is $E(M \cap N) = E(M)E(N)$. So *E* is a spectral measure on $\Delta_{\perp}(B)$. The proof is now complete.

The following theorem gives a characterization of the completely monotone functionals on commutative ordered Banach algebras.

Theorem 3.3. Let B be a commutative ordered Banach algebra with a bounded approximate identity in $P_1(B)$. Then a bounded linear mapping U of B into a proper H^* -algebra A is completely monotone if and only if there is a positive $\tau(A)$ -valued measure E on $\Delta_+(B)$ such that

$$\big(\xi,\eta U(b)\big) = \int_{\Delta_+(B)} \sigma(b) d\big(\xi,\eta E_{\sigma}(.)\big) (b \in B, \xi,\eta \in H).$$

Moreover, U is a positive homomorphism if and only if E is a generalized spectral measure.

Proof. For every $\xi \in H$ with $tr(\xi, \xi) = 1$ we define

$$L_{\xi}(b) = tr(\xi, \xi U(b)) = \langle \xi U(b), \xi \rangle \quad (b \in B).$$

From

$$\Delta_n(\xi,\xi U(b;b_1,\ldots,b_n)) = (\xi,\xi)\Delta_n U(b;b_1,\ldots,b_n)$$

 $(b; b_1, ..., b_n \in B, n \in \mathbb{Z}_+)$

and the fact that *U* is bounded and completely monotone we conclude that L_{ξ} defines a completely linear functional on *B*. So by Theorem 3.2 there exists an operator-valued measure *E* by bounded operators on the Hilbert space $(H, \langle ., \rangle)$ such that

$$L_{\xi}(b) = \left\langle \xi U(b), \eta \right\rangle = \int_{\Delta_{+}(B)} \sigma(b) d \left\langle E_{\sigma}(.)\xi, \eta \right\rangle \ (b \in B).$$

For every $T \in R(A)$ by Lemma 2 of [14] we have

$$\begin{split} trT(\eta,\xi U(b)) &= tr(T'\eta,\xi U(b)) = \langle \xi U(b),T'\eta \rangle \\ &= \int_{\Delta_+(B)} \sigma(b) d \langle E_{\sigma}(.)\xi,T'\eta \rangle \\ &= \int_{\Delta_+(B)} \sigma(b) d \ trT(\eta,E_{\sigma}(.)\xi). \end{split}$$

Now it is easily seen that the mapping: $\Delta_+(B) \rightarrow \tau(A)$ given by: $M \rightarrow (\eta, E(M)\xi)$ $(M \in \mathcal{B}(\Delta_+(B)))$ defines a $\tau(A)$ -valued measure on $\Delta_+(B)$. Therefore, by Lemma 2 of [14] and Theorem 2 of [16] we have

$$(\eta, \xi U(b)) = \int_{\Delta_+(B)} \sigma(b) d(\eta, E_{\sigma}(.)\xi) \quad (b \in B).$$

Thus, the proof is complete.

We are now in a position to state and prove the main result of this paper. Note that if *H* is a right Hilbert module over a proper H^* -algebra *A*, then a mapping $T: S \to A$ is called *w*-bounded and continuous if for every $\xi, \eta \in H$ the mapping $x \mapsto tr(\xi, \eta T_x)$ is a *w*-bounded continuous complex-valued function on *S*.

Theorem 3.4. Let *S* be a commutative foundation semigroup with identity and with a Borel measurable weight function *w* continuous at the identity. Let *H* be a Hilbert module over a proper H^* -algebra *A*. Then a mapping $T: S \rightarrow A$ is *w*-bounded continuous and completely monotone if and only if there exists a unique positive *A*-valued measure *E* on Γ^+_w such that

$$(\xi,\eta T_x) = \int_{\Gamma_w^+} \chi(x) d\bigl(\xi, E_{\chi}(.)\eta\bigr) \quad (x \in S, \, \xi, \eta \in H\,).$$

T is a homomorphism if and only if *E* is a generalized *A*-valued spectral measure.

Proof. From the continuity of w at the identity of S it follows that $M_a(S, w)$ has a bounded approximate identity in $P_1(M_a(S, w))$ (see [9]). It is also easy to see that the equation

$$(\xi, \eta U(\mu)) = \int_{S} (\xi, \eta T_x) d\mu(x) \quad (\mu \in M_a(S, w), \xi, \eta \in H)$$

defines a completely monotone *A*-valued bounded functional on the ordered Banach algebra $M_a(S, w)$. Therefore, by Theorem 3.3 there exists a unique positive *A*-valued measure *E* on $\Delta_+(M_a(S, w))$ such that

Now an application of this equality and Theorem 2.10 of [8] with the aid of Fubini's theorem gives

$$\begin{aligned} (\xi, \eta U(\mu)) &= \int_{\Gamma_w^+} \int_S \chi(x) d\mu(x) d\big(\xi, E_\chi(.)\eta\big) \\ &= \int_S \int_{\Gamma_w^+} \chi(x) d\big(\xi, E_\chi(.)\eta\big) d\mu(x). \end{aligned}$$

Now since both mappings $x \mapsto \int_{\Gamma_w^+} \chi(x) d\langle \xi, E_{\chi}(.)\eta \rangle$

and $x \mapsto \langle \xi, \eta T_x \rangle$ are *w*-bounded and continuous and *S* is also a foundation semigroup, we conclude that

$$(\xi,\eta T_x) = \int_{\Gamma_x^+} \chi(x) d(\xi, E_\chi(.)\eta) \quad (\xi,\eta \in H, x \in S).$$

Remark. The following example shows that the conclusion of the preceding theorem is not valid in general for non-foundation semigroups.

Example 3.5. Let S = [0,1]. Then with the usual topology of the real line and the multiplication $xy = \min(x, y)(x, y \in S)$ *S* defines a non-foundation semigroup. If we choose w = 1 on *S*, then $\Gamma_w^+ = \{1\}$, where 1 denotes the function which is identically one on *S*. It is clear that the mapping $T: S \to \mathcal{L}(L^2(S, m))$ (*m* denotes the Lebesgue measure on [0,1]) given by

$$T_x f = \hat{x} f$$
 $(x \in S, f \in L^2(S, m))$

where \hat{x} denotes the characteristics function on [0,x], defines a completely monotone operator-valued transformation of *S* by operators on the Hilbert module $L^2(S,m)$ (see [3]). If the formula (6) is valid for *T*, then we arrive at the contradiction that $T_x = I$ for every *x* in *S*, where *I* denotes the identity operator on $L^2(S,m)$.

References

- Baker, A. C. and Baker, J. W. algebra of measures on locally compact semigroups III, *J. London Math. Soc.*, 4, 688-695, (1972).
- Baker, J. W. Measure algebras on semigroups In: *The* Analytical and Topological Theory of Semigroups-Trends and Developments, (Ed.), Hoffmann, K. H. et al., de Gruyter, pp. 221-252, (1990).

- 3. Baker, J. W. and Lashkarizadeh Bami, M. On the representations of certain idempotent topological semigroups, *Semigroup Forum*, **44**, 245-254, (1992).
- Baker, J. W. and Lashkarizadeh Bami, M. Representations and positive-definite functions on topological semigroups, *Glasgow Math. J.*, 38, 99-1110, (1996).
- Dunkl, C. F. and Ramirez, D. E. Representations of commutative semitopological semigroups, *Lecture Notes in Mathematics*, 435 Berlin, Springer-Verlag, New York, (1975).
- Dzinotyiweyi, H. A. M. The analogue of the group algebra for topological semigroups, Pitman, Boston, Mass., London, (1984).
- Lashkarizadeh Bami, M. Representations of foundation semigroups and their algebras, *Canadian J. Math.*, **37**, 24-47, (1985).
- Lashkarizadeh Bami, M. Bochner's theorem and the Hausdorff moment theorem on foundation semigroups, *Ibid.*, 37, 584-809, (1985).
- 9. Lashkarizadeh Bami, M. Function algebras on weighted topological semigroups, *Math. Japonica*, 47, (2), 217-

227, (1998).

- 10. Phelps, R. P. Lectures on Choquet's theorem, Princeton, (1960).
- Saworotnow, P. P. A generalized Hilbert space, *Duke Math. J.*, **35**, 191-197, (1968).
- Saworotnow, P. P. Representation of a topological group on a Hilbert module, *Ibid.*, **37**, 145-150, (1970).
- 13. Saworotnow, P. P. Bochner-Raikov theorem for a generalized positive definite function, *Ibid.*, **38**, 117-121, (1971).
- Saworotnow, P. P. Generalized positive linear functionals on a Banach algebra with an involution, *Proc. Amer. Math. Soc.*, **31**, 229-304, (1972).
- Saworotnow, P. P. Integral as a certain type of a positive definite function, *Ibid.*, 35, 93-95, (1972).
- Saworotnow, P. P. Semigroups with positive definite structure, *Ibid.*, 40, 421-425, (1973).
- Saworotnow, P. P. and Friedell, J. C. Trace-class for an arbitrary H^{*}-algebra, *Ibid.*, 26, 95-100, (1970).
- Sleijpen, G. L. G. Convolution of measure algebras on semigroups, Ph. D. Thesis, Catholic University, Toernooiveld, Nijmegen, The Netherlands, (1976).