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Abstract
A general notion of completely monotone functionals on an ordered Banach
algebra B into a proper H -algebra A with an integral representation for such
functionals is given. As an application of this result we have obtained a
characterization for the generalized completely continuous monotone functions on
weighted foundation semigroups. A generalized version of Bochner’s theorem on

foundation semigroups is also obtained.

Introduction

In the present, paper we shall introduce the concept
of a completely monotone functional on an ordered
Banach algebra B into a proper H™-algebra A and we
shall give an integral representation for such functionals
with respect to A-valued measures on A_ (B), the space

of all positive multiplicative linear functionals on B. As
an application of the theory we shall obtain an integral
representation for the generalized w-bounded conti-
nuous completely monotone A-valued functions with
respect to positive A-valued measures on T, , the space
of all w-bounded continuous nonnegative semicharac-
ters on a foundation semigroup S with a Borel
measurable weight function w. We will also give a
generalization of our earlier version of Bochner’s
theorem [4; Theorem 4.2].
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functions; H*-algebras; Spectral measures

1. Preliminaries
Recall that (see, [11], [12], [13], [17]) a proper

H -algebra is a Banach algebra A whose norm is a
Hilbert space norm and which has an involution:
Xx— x* on A such that (y,x*,z)=(xy,z)=(x,zy*) for

all x,y,zeA. Let 7(A)={xy:x,ye A} be the trace
class of A. It is a Banach algebra with respect to a norm
7(.) which is related to the norm |.| of A by
r(a*a) =| a | for all ae A. There is a trace tr defined
on 7(A) such that tr(ab)=tr(ba)=(a,b*) for all
a,be A, where (., .) denotes the scalar product on A. if

a=b*b for some b e A then a is called positive and we
write a>0. It is obvious that a>0 if and only if
(ax,x)>0 for all xe A. A right module H over A is

called a Hilbert module if there is a z(A)-valued
function (, ) on HxH with the following properties

L E+ne)=(9)+(np) foral &npeH.

2. (&) =(n¢&) forall £,neH.

3. (&,ma)=(&,n)a forall £,meH and each ae A
4. (£,E)20 forall £eH and (&,£)=0 if and only
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if £=0.
5. [tr(&,n)° < 7(&,&)e(n ) Torall EneH.

6. H is complete in the norm ||&]| = (z(&, &))V2.

The function (,) is called a generalized scalar
product. There is a linear structure on H such that H is
an ordinary Hilbert space with respect to the scalar
product (&,77)=tr(n,£) . An A-linear operator on H is

an additive linear mapping T:H —H such that
T(&a)=(T&)a forall £eH,ae A; Tis bounded in the
in the sense that [T¢&|<M|&| for some M >0 and
every £eH. For each bounded A-linear operator T its

adjoint T  is A-linear and has the property that
(TE,n)=(&T*n) forall &,neH.

By a real ordered Banach algebra we shall mean a
real Banach algebra 94 with a closed partial order >
satisfying the following:

(i) x2y=>x+z>y+1z, forall ze M,

(i) x=0,y>0=xy >0.

(iii) x>0= ax >0, for all nonnegative real numbers .
Note that an order “>" on an ordered Banach algebra

is called closed if for every two sequences (x,) and (y,)

in B from and y,——y and

Xy =Y, (neN) it follows that x>y. A complex
Banach algebra B of the form %, @ i, where %, is a
real ordered Banach algebra, is called an ordered
Banach algebra. On an ordered Banach algebra B, we
put P(B)={beB:b>0} and P(B)={beP(B):
[bl|=1. A linear functional f on B is called positive if
f(b)=0 for all beP(B). In the case where B is
commutative, we shall denote by A(B) the space of all

bounded multiplicative linear functionals on B and by
A, (B) the space of all positive functionals in A(B) .

Xy — > X

Definition 1.1. Let B be a commutative ordered Banach
algebra. For every neZ, (the set of nonnegative
integers) we define the operator A, on B” (the dual of B)
by

Ay f(b)=f(b)

Ay f(biby) =Ag f(b) - Aq F(bly) = f(b) - f (bby)
and for every n>2

Ay f (50, by) = Apy T (0;by, ... By y)
— A, F(oby;by,... by y)

(f eB*,b,by,...,b, eB;n=12,...). A linear functional
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f € B* is called completely monotone if
A, f(b;by,...,0,) =0

forallneZ,and b,b,...,b, € B (B).
An operator-valued transformation U:B— £(H)

(the space of all bounded linear operators on a Hilbert
space H) is called completely monotone if for every
&eH the mapping ¢, b (Upé,&)(beB) defines a

completely monotone functional on B.

We now recall some definitions
topological semigroups.

Throughout this paper S will denote a locally
compact, Hausdorff topological semigroup.

concerning

Definition 1.2. On a commutative topological
semigroup S with C(S) (the space of bounded

continuous complex-valued functions on S) inductive
identity, for each ne’Z . we define the operator A, on by

Ao f(x) = f(x),
A OGh) = A F ()= A f (xhy) = F0) - f(xhy)

and for every n>2
A TG, h)=A T (Gh,... hay)
—An f(xhy;... h ),
(f €Cy(S),x,hy,...,h, eS,n=12,...). A function
f €C,(S) is called completely monotone if A,f >0
(neZ.) (cf. [5; p. 43)).

Definition 1.3. An operator-valued transformation
T:S—£(H) is called completely monotone if for

every £ e H the mapping

X <Tx§’§>(x €9)
is completely monotone on S.

Definition 1.4. Let B be an ordered commutative
Banach algebra and H be a Hilbert module over a proper
H-algebra A. A linear mapping f:B— A is called a

completely monotone A-functional if for every neZ.
A, f(b;by,... ,b,)>0 for every (n+ 1)-positive
elements b,by,...,b, of B where,

Ay f (b) = T (b)
Ay f(bib) =Agf (D) —Aq f(bby) = f(b)— f(bby)

and for every n>2
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A F(;by,....0,) = A, 1 F(bby,....b, o)
— A,y f(bby:by,...byy).

Definition 1.5. Let S be a commutative topological
semigroup with an identity. A mapping f:S— A is
called completely monotone if A, f(x;h,...,h,)>0 for
all nonnegative integers nand all x,h;,...,h, € S where

A f(X) = F(x)
A () = Ag T (X)=Ag F (xPy) = £ ()~ f (xhy)
and for every n>2
AL f(hy,... b)) = A, f(Xh,....h )
— A, F(xhyihy ).

Definition 1.6. Let B a Banach * algebra and A be a
proper H’-algebra. A linear mapping f:B— A is
called a positive A-functional if

n n
> > arf(bby)a; =0

i=1 j=1
for all by,...,b,in Band ay,...,a, in A.

Definition 1.7. Let S be a »-semigroup. Then a mapping
¢:S — A is called positive definite if

Y2 ae(x))a; 20

for all x4,...,x,inSand ay,...,a, in A.
Recall that a Borel measurable mapping w:S >R,
(the set of nonnegative real numbers) with

w(xy) <w(x)w(y) (x,yeS) and such that w and 1
w

are locally bounded (i.e., bounded on compact subsets
of S) is called a weight function on S. A function
f:S — C is called w-bounded if there is a k>0 such
that | f (x)| < kw(x) , forall xeS.

Recall also that M(S,w) denotes the set of all
complex, regular, signed measures u (not necessarily
bounded) of the form u = 14 — i, +1(15 — 114) Where p;
is a positive regular measure on S with we L}(S, z;)
i=1,2,3,4 (see, for example [2], [7], [9]). Note that for
an element 4 eM(S,w) and a Borel set B, x(B) is
well-defined whenever B is relatively compact. For
every ueM(S,w), the equation
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[ fdwa) = [ fwdu  (f €Cy(9)),

defines a measure w.zeM(S), the space of all
bounded regular complex measures on S. With the norm

(1eM(S,w)),

where |w.|| denotes the total variation of w.., the

space M(S,w) defines a Banach lattice, and with the
convolution product

(u*v)(F) = [ [ FOm)du()dv(y)

(u,v e, M(S,w), T € Cyy(S)),

2

o))

where Cy(S) denotes the set of all functions in Cy(S)
with compact support, defines a Banach algebra. From
part (iii) of Theorem 4.6 of [7], we conclude that (1)
also holds for every w-bounded Borel measurable
function fon S.

We also recall (see, for example, [1], [6], [18]) that

M, (S) (or E(S)) denotes the set of all measures
ueM(S) for which the mappings x> &, *|u| and
X > |u|* S, (where &, denotes the Dirac measure at x)
from S into M(S) are weakly continuous. As in [7], we
can define My(S,w) (or [(S,w)) as the set of measures
e M(S,w) for which w..ze M,(S). Then, M,(S,w) is
a closed, two-sided L-ideal of M(S,w). Finally, we call S
a foundation semigroup if U{supp(u):uzeM,(S)} is
dense in S. A mapping y:S—>C is called a
semicharacter if y(xy) = y(x)x(y) forall x,yeS. We
denote by I, the set of all w-bounded continuous
semicharacters on S, and by T the set of nonnegative
semicharacters in T,,. If S is commutative and
foundation, then T, is homomorphic to A(M,(S,w))
whenever T,, has the compact open topology and
A(M,(S,w)) has the Gelfand topology. In particular;
T, is a locally compact Hausdorff space (see, Theorem

2.10 of [8]).
An operator-valued transformation U:S — £(H) s

called w-bounded (continuous, respectively) if for every
&neH  the map: x> (U,&7n) is w-bounded
(continuous, respectively). Finally if U:S — £(H) is
such that U, =U,U, (x,yeS), then U is called a
representation. For further information on the

representation theory of topological semigroups and
*-algebras the reader is referred to [7].
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2. Generalized Representations and
Positive-Definite Functions on Weighted
Foundation Semigroups

We start this section with the following result which
is indeed a generalization of our earlier result (Theorem
4.4 of [7]).

Theorem 2.1. Let S be a foundation *-semigroup with
identity and with a Borel measurable weight function w
such that w(x*)=w(x)(xeS). Let T be a =*-

representation of M,(S,w) by bounded A-linear
operators on a Hilbert module H over a proper H'-
algebra A such that for every 0= &< H there exists a

measure e M,(S,w) such that T,&=0. Then there

exists a unique w-bounded continuous *-representation
V of S by A-linear operators on H such that

(1.7,8)= [, AV, Eu0) (e Hopae Mo (S, W)
@

Proof. Recall that by Theorem 1 of [11] H with the
inner product (.,.) where (&,;)=tr(n,&) defines a

Hilbert space and by Theorem 4 of [11], the adjoint
operator T~ of T defines a bounded A-linear operator on
H. So by Theorem 5.4 of [7] there exists a w-bounded
continuous =*-representation V of S by bounded

operators on the Hilbert space (H,{.,.)) such that

(T.&m)=[ (V& mdu(x) (ueM,y(S,w),&neH)
(3)

Now let R(A) denote the space of the right centralizers
of A. From Lemma 2 of [14] and Theorem 1 of [11] for
every U e R(A) we have

U (. 7,8)=rUn T,)= (T,&U")
= [( & U mdu(x) = [trU (7., € )daa(x).
So by Theorem 2 of [16]
(2T.8)= [, IVE)du() (1€ M, (S,W),EneH).

This proves formula (2).
We shall now use formula (3) and prove that if T, is

A-linear for every peM,(S,w), then V, is A-linear

for every xeS. To see this from (3) for every
ueM,(S,w), &neH ,and ae A we have

[ (mVy(G)du(x) = (n.T,(ca)) = tr(T, (%), n)
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=tr((T,£)a,n)=tr(T,¢,ma")
= [((ma Vi &)du(x) = [ (1, (V&)a)du(x).

Since both the mappings: x— (7,V,(¢)) and
x — (n,(V,&)a) are w-bounded and continuous and S is

a foundation semigroup, from Lemma 4.8 of [7] we
conclude that V, (&) = (V,£)a (xe S,a e A).

The following result is indeed a generalization of our
earlier version of Bochner’s theorem [4; Theorem 4.2].

Theorem 2.2. (Generalized Bochner’s theorem on
foundation semigroups). Let S be a commutative
foundation topological *-semigroup with identity and

with a Borel measurable weight function w. Let A be a
proper H -algebra over a Hilbert module H. Then a
mapping ¢:S — 7(A) is w-bounded continuous and

positive definite if and only if there exists a unique
positive A-valued measure 4, on I, such that

p(x) = Ir; 2(x)d2,(7) (xeS).

Proof. Since ¢ is w-bounded and continuous, by

Theorem 1 of [16] there exists a w-bounded weakly
continuous =-representation V of S by bounded A-linear

operators on a Hilbert A-module K with some &, € K
such that ¢(x) =(&,T,&) and |V,|[<w(x) for every

XeS.

Using the integration theory on page 120 of [13] and
Lemma 2 of the same reference, we conclude that the
mapping ®: M, (S,w) — z(A) given by

D (1) = [p(X)duu(x)=[{(6 V&0 )du(X) (€M ,S, W)

is well-defined. It is also easy to see the ® defines a
positive A-functional on the Banach *-algebra M,(S,w).

Therefore, by Theorem 3 of [15] there exists a positive
7(A) -valued measure 4 on A(M,(S,w)) such that

D) = [,y (. A(@)HA).

Using Theorem 2.10 of [7], we conclude that
() = [ ([ 700du0O B0 (=M, (8, W)
By Fubini’s theorem

Jsp00du(0=[ ([} 7008202) Bu() (e o (8 w)).

Since both functions ¢ and x—>J'r*;((x)d/1(;g) are
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w-bounded and weakly continuous and S is a foundation
semigroup, we infer that

p(x) = Ir; 2(x)dA(x) (xeS).

The uniqueness of A follows in the same lines as
those of Theorem 4.2 of [4].

3. Completely Monotone Functionals on
Ordered Banach Algebras
Our starting point of this section is the following:

Theorem 3.1. Let B be a commutative ordered Banach
algebra with a bounded approximate identity (e,) in

P.(B). Let k be the set of all completely monotone
functionals f in B” such that ||f||<1. Then K is a convex

and weak*-compact subset of A", If f is an extreme
point of K, then f(a)>0 for all aeP(B) and

f (ab)=f(a) f (b) forall a,beB.

Proof. It is clear that K is a convex and weak*-closed
subset of the unit ball of B" and so by the Banach
Alaoglu theorem is weak*-compact. Let f be an extreme
point of K. Then it is clear that f(a)>0 for all

acP(B). Since Py(B) spans B, to prove that
f(ab)="f(a)f(b) for all a,beB, it suffices to show
that f(ab)=f(a)f(b) for all abePR(B). For every
acB we define f, eB" by f,(b)=f(ab) (beB). Itis
easy to see that

A (f = f)b;by,...,b))=A,, f(5b,,...,b,,2),
for all neZ., and a,b,b,,...b,eR(B). Thus, f—-f, is
also completely monotone. So

(f — fa)(e,0) = Ao (f - f4)(e,b) 20,
and

(f = fa)(e,) - (f = fa)(e,b) = Ay (f - f,)(e,;0) 20,

for all a,beR(B). From these two inequalities it
follows that

0<(f-fa)e,b)<(f-"f)e,)=
f(e,)— f(ae,) <1- f(ae,)
for all « and all a,be R (B). Since (e,) is a bounded
approximate identity for B, it follows that
0<(f—f,)(b)<1-f(a) (abeP(B)). 4)

Using the fact that f is completely monotone, we
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conclude that

0<A,f(ab)=f(ab) (abeP(B)),
and

0<Af(ab)=f(a)-f(ab) (abeP(B)).
Thus

0<f(ab)< f(a) (abeP(B)). (5)

We shall now consider three cases.

Case 1. f(a)=0. Soby (5), f(ab)=0. Hence
f(ab)=0=f(a)f(b) (a,bePR(B)).
Case 2. f(a)=1. Then by (4),
f(b)= f(ab)(a,b e R(B)) and so
f(ab) = f (b) = f(a) f (b)(a,b € P,(B)).
Case 3. 0< f(a)<1. In this case we write

_ f- 1:a 1:a

f _(1—f(a))1_ f(a)+ f(a) @

From (4) it follows that (f — f,)/(1- f (a)) e K, and
(5) implies that f,/f(a) also belongs to K. Since f is an
extreme point of K, it follows that f,/f(a)=f. So

f(ab)=f(a)f(b) for all a,be P, (B). This completes
the proof.

Theorem 3.2. Let B be a commutative ordered Banach
algebra with a bounded approximate identity (e,) in
P1(B). Then a linear transformation U : B — £(H) (H is
a Hilbert space) is completely monotone if and only if
there is a positive operator-valued measure E on
A, (B) such that

Ungm) =], o®d(E,()En) (EneH beB). (6)

Moreover, U is a representation if and only if E is a
spectral measure.

Proof. Let U:B — £(H) be completely monotone.
Without loss of generality, we may assume that
[Upl <]l (b€ B). For every &eH with ||&|=1 we

define the linear functional L, on B by
L:(b) =(Up&,&) (beB).
It is clear that L, defines a completely monotone

functional on B with |L.|<1. By the integral form of

the Krein-Milman theorem [10; p. 6] and Theorem 3.1,
there exists a unique regular probability measure 2 : on
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A, (B) such that
L:(b) = L 0 0)du (o) (beB).

So if 0=&eH s arbitrary, then there exists a

unique positive regular measure sz with [u | <€
and

Us.) =], 0Oz 2(0) (b<B).

By the polarization identity for every &,7eH and
b e B we have

(Ubffﬂ) = %((Ub(éf+'7)a~f+77>—<ub(§—'7)af—77>

+i{Up (& +in) & +in)— iUy (& ~in) & —in)).

Thus

Upéim =, 5o@dus,(@) (beBEneH),

where

1 . .
Hen = Z(ﬂ§+77,§+77 “Hepeg + I/u§+i77,§+i77 - |ﬂ§+i77,§+in)'

Now let (A, (B)) denote the o-algebra of all Borel
subsets of A, (B). Define the operator-valued measure
E on 3(A,(B)) by

(EM)E.7)=ptg ,(M) (§,meH,M e (A, (B)).

It is easy to see that E is positive, in the sense that
(E(M)¢,&E)=0 for all £eH and M ead(A,(B)).
Moreover,

(Upé,n) :IAJB)G(b)d(EU(')g' n) (beB,&neH).
For simplicity, we abbreviate this equality as

U, = L(B)a(b)dEa (beB).

Now for every be B we denote by b the restriction
of the Gelfand transform of b to A, (B), that is

6(a)=a(b) for all o eA,(B). Since by the Gelfand

representation theorem @z{ﬁ:b e B} separates the
points of A, (B), from the Stone-Weierstrass theorem it
follows that it is dense in C,(A, (B)), the space of all
continuous complex-valued functions on A, (B)
vanishing at infinity. Now if U is multiplicative, then
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for every a,b e B we have

J.AAB)é(J)B(a)dEU = _[AJB)ab(a)dEa U, =U,U,
=, (& 2(0)dE, [, D(e)dE,.

Since for every fixed b € B, each of the functions

ar> L (@)dE, and ar> jA a(o)dE,,

(BB [, o
linear on @ and ®is dense in Cy(A, (B)), then for every
Borel subset M of A, (B) we have

+(B)
B(O')dEU (2 @) are bounded and

J-AJr(B)lM (U)é(O')dE‘7 =

1, (o)dE a(c)dE,

J.A+(B) "IA+(B)

where 1), denotes the characteristic function of the set
M. A similar argument shows that for every two Borel
subsets M and N of A_ (B)

-[A+(B)1M (O—)lN (G)dEU =

jMB)lM (o)dE, jMB)lN (o)dE,.

That is E(M nN)=E(M)E(N). So E is a spectral
measure on A, (B). The proof is now complete.

The following theorem gives a characterization of the
completely monotone functionals on commutative
ordered Banach algebras.

Theorem 3.3. Let B be a commutative ordered Banach
algebra with a bounded approximate identity in Py(B).
Then a bounded linear mapping U of B into a proper
H"-algebra A is completely monotone if and only if there
is a positive 7(A)-valued measure E on A, (B) such

that

EnI®)=], o o0dE7E() (0B &neH).

+(B)

Moreover, U is a positive homomorphism if and only
if E is a generalized spectral measure.

Proof. For every £ e H with tr(&,£) =1 we define
L:(b) =tr(5,5U (b)) = (U (b).£) (beB).

From
A (8,8U(B3Dy,...by)) = (£, 5)AU (biby,... by)

(b;by,...bne B, neZy)



J. Sci. 1. R. Iran

and the fact that U is bounded and completely monotone
we conclude that L. defines a completely linear

functional on B. So by Theorem 3.2 there exists an
operator-valued measure E by bounded operators on the
Hilbert space (H,(.,.)) such that

Le(0) =(U0).7) =, o oO)(E,()S,7) (b€ B).

(8)

For every T € R(A) by Lemma 2 of [14] we have
T (n,8U(b)) =tr(T'n,dU (b)) = (SU(b). T'm)
=\ (&7 ®O)(E,()5.Tn)

- jMB)a(b)d trT (17,E,()S).

Now it is easily seen that the mapping: A, (B)—
7(A) given by: M — (7, E(M)E) (M ea(A,(B))
defines a 7(A)-valued measure on A, (B). Therefore,
by Lemma 2 of [14] and Theorem 2 of [16] we have

(. 20b)=], ) oOXE, () (b<B)

Thus, the proof is complete.

We are now in a position to state and prove the main
result of this paper. Note that if H is a right Hilbert
module over a proper H™-algebra A, then a mapping
T:S— A is called w-bounded and continuous if for
every &£,meH the mapping x—tr(&,nT,) is a

w-bounded continuous complex-valued function on S.

Theorem 3.4. Let S be a commutative foundation
semigroup with identity and with a Borel measurable
weight function w continuous at the identity. Let H be a
Hilbert module over a proper H’-algebra A. Then a
mapping T:S— A is w-bounded continuous and
completely monotone if and only if there exists a unique
positive A-valued measure E on T’ such that

(&nT)=[. z00d(E.E,(On) (xeS,&meH)

T is a homomorphism if and only if E is a generalized
A-valued spectral measure.

Proof. From the continuity of w at the identity of S it
follows that M,(S,w) has a bounded approximate

identity in P, (M,(S,w)) (see [9]). It is also easy to see
that the equation

(&nU ()= (€T )du(x) (ueMqy(S W), &neH)
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defines a completely monotone A-valued bounded
functional on the ordered Banach algebra M, (S,w).

Therefore, by Theorem 3.3 there exists a unique positive
A-valued measure Eon A, (M ,(S,w)) such that

EMIE)=[, 0 sy A E, On)

(&meH, peM,(S,w)).

Now an application of this equality and Theorem
2.10 of [8] with the aid of Fubini’s theorem gives

(& U (u)) = fm J.s 200du(x)d (¢, Ez(')’7)
- Is.[ X (x)d(&,E,, () Ha(x)

Now since both mappings x> [ z(x)d(&,E,()n)

and x> (&,nT,) are w-bounded and continuous and S
is also a foundation semigroup, we conclude that

(€T = 2d(EE,(On) (§neH, xes)

Remark. The following example shows that the
conclusion of the preceding theorem is not valid in
general for non-foundation semigroups.

Example 3.5. Let S=[0,1]. Then with the usual
topology of the real line and the multiplication
Xy =min(x,y)(x,yeS) S defines a non-foundation

semigroup. If we choose w=1 on S, then I} ={1},

where 1 denotes the function which is identically one on
S. It is clear that the mapping T:S — £(L2(S,m)) (m

denotes the Lebesgue measure on [0,1]) given by
T f =xf (xeS, f eL2(S,m)),

where X denotes the characteristics function on [0,x],
defines a completely monotone operator-valued transfo-
rmation of S by operators on the Hilbert module
L2(S,m) (see [3]). If the formula (6) is valid for T, then

we arrive at the contradiction that T, =1 for every x in
S, where | denotes the identity operator on L2(S, m).
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