THE DUALITY OF THE \mathcal{L}^{∞} -REPRESENTATION ALGEBRA $\mathfrak{R}(S)$ OF A FOUNDATION SEMIGROUP S AND FUNCTION ALGEBRAS

M. Lashkarizadeh Bami*

Department of Mathematics, University of Isfahan, Isfahan, Islamic Republic of Iran

Abstract

In the present paper for a large family of topological semigroups, namely foundation semigroups, for which topological groups and discrete semigroups are elementary examples, it is shown that $\Re(S)$ is the dual of a function algebra.

Introduction

The notation of the L^{∞} -representation Banach algebra of a commutative topological semigroup S was introduced and extensively studied by Dunkl and Ramirez in [3]. Recall that an L^{∞} -representation of S is a triple (Ω, μ, T) where μ is a complete probability measure on the set Ω , and $s \mapsto T_s$ is a homomorphism of S into the unit ball of $L^{\infty}(\Omega, \mu)$ (where $L^{\infty}(\Omega, \mu)$ has the pointwise multiplication) and is weak-* (i.e., $\sigma(L^{\infty}(\Omega, \mu), L^1(\Omega, \mu))$ continuous (see [3]). The *representation algebra* $\Re(S)$ is defined to be the set of all functions

 $s \mapsto \int_{\Omega} (T_s g) d\mu$

of *S* into \mathbb{C} , where (Ω, μ, T) is an L^{∞} -representation of *S* and $g \in L^{1}(\Omega, \mu)$. It is shown in [4] that $\Re(S)$ is a Banach algebra of bounded continuous complex-valued functions on *S*, with pointwise multiplication and the norm

$$||f||_{\Re} = \inf\{||g||_1 : f(s) \equiv \int_{\Omega} Tgd\mu\}.$$

Keywords: Topological semigroups; representations; measure algebras; function algebras

We denote by $\Re_+(S)$ the set of all $f \in \Re(S)$ such that $f(s) = \int T_s g d\lambda (s \in S)$ for some L^{∞} -representation

 (Ω, λ, T) and some $0 \le g \in L^1(\Omega, \lambda)$.

It is well-known that in general $\Re(S)$ is not the dual of any Banach space (see [3], Example 2.2.1). In the present paper we prove, for a large class of topological semigroups, the so-called foundation semigroups, that $\Re(S)$ is the dual of a function algebra. As an application of this result we give a version of the Bochner-Eberlein theorem on $\Re(S)$. We also prove an analogue of one of our earlier results in [5] on the *- semisimplicity of the Banach *-algebras M(S) and $M_a(S)$ of a foundation *-semigroup S (not necessarily commutative) in terms of *-representations, by proving that the commutative measure algebras M(S) and $M_a(S)$ of a commutative foundation semigroup S are semisimple if and only if $\Re(S)$ separates the points of S. It should be noted that in the case where S in a topological semigroup (not necessarily commutative) with an involution, a representation algebra F(S) is defined by Lau in [8] which satisfies the inclusion $F(S) \subset \Re(S)$ whenever S is commutative with an involution. In the Example 4.2 of [8] Lau has shown that for the additive group Z of integer numbers with the involution $n^* = n(n \in \mathbb{Z})$ this inclusion in proper. Note that a mapping * on a topological semigroup S is called an involution if $x^{**}=x$ and $(xy)^* = y^* x^*$ for every x, $y \in S$.

**E-mail: lashkari@math.ui.ac.ir*

1991 Mathematics Subject Classification. Primary: 43A65, 43A30, 46J10.

Preliminaries

Throughout this article, S will denote a locally compact Hausdorff topological semigroup. Let M(S)denote the space of all bounded complex regular measures on S and δ_x be the Dirac measure at x. We denote by $M_a(S)$ the space of all measures $\mu \in M(S)$ such that the mappings: $x \to \delta_x * |\mu|$ and $x \to |\mu| * \delta_x$ of S into M(S) are weakly continuous. A topological semigroup S is called a foundation semigroup if $\bigcup \{ \operatorname{supp}(\mu): \mu \in M_a(S) \}$ is dense in S. A nonzero complex-valued function χ on S is called a *semicharacter* if $\chi(xy) = \chi(x)\chi(y)$ for every *x*, $y \in S$. If *S* is a foundation semigroup then by Theorem 4.4 of [1] \hat{S} is homeomorphic to $\widehat{M_{a}(S)}$ (the maximal ideal space of $M_a(S)$) whenever \hat{S} has the compact open topology and $\widehat{M}_{a}(\widehat{S})$ has the Gelfand topology. We denote by \widehat{S} the set of all bounded continuous semicharacters on S. In particular, \hat{S} with the pointwise multiplication and the compact open topology is a locally compact Hausdorff topological semigroup. Moreover the Gelfand transform $\hat{\mu}$ of $\mu \in M_a(S)$ is given by $\hat{\mu}(\chi) = \int_{S} \chi(x) d\mu(x) \quad (\chi \in \hat{S}) .$

\Re(S) as the Dual of a Function Algebra

We commence with the following theorem in which we assume familiarity with the notion of function algebras.

Theorem 1. Let *S* be a commutative foundation semigroup. Then $(\Re(S), \|.\|_{\Re})$ is the dual of the function algebra the L^{∞} -representation Banach algebra of the completion of $\widehat{M_a(S)}$ in the Banach algebra $C_0(\hat{S})$.

Proof. For simplicity we denote the completion of $\widehat{M_a(S)}$ in $C_0(\hat{S})$ by *A*. So by the Gelfand representation theorem, *A* defines a function algebra on \hat{S} . For every $f \in \Re(S)$ we define the linear functional τ_f on $\widehat{M_a(S)}$ by

$$\tau_f(\hat{\mu}) = \int_S f(x) d\mu(x) \quad (\mu \in M_a(S)).$$

We claim that $\|\tau_f\| \leq \|f\|_{\Re}$ $(f \in \Re(S))$. To see this, let $f \in \Re(S)$ and suppose $\varepsilon > 0$ is given. Then there exists an L^{∞} -representation (Ω, T, λ) and $g \in L^1(\Omega, \lambda)$ such that $\|g\|_1 < \|f\|_{\Re} + \varepsilon$ and

$$f(x) = \int_{\Omega} T_x g d\lambda \quad (x \in S) \; .$$

Define $\widetilde{T}: M_{q}(S) \to L^{\infty}(\Omega, \lambda)$ by

$$\langle \widetilde{T}\mu, h \rangle = \int_{S} \left(\int_{\Omega} T_{x} h d\lambda \right) d\mu(x) \quad (\mu \in M_{a}(S), h \in L^{1}(\Omega, \lambda))$$

where \langle , \rangle denotes the pairing between $L^{\infty}(\Omega, \mu)$ and $L^{1}(\Omega, \mu)$. As in the proof of Theorem 3 of [7] we have $\|\widetilde{T}_{\mu}\|_{\infty} \leq \|\widehat{\mu}\|_{u} \quad (\mu \in M_{a}(S))$, where $\| . \|_{u}$ denotes the norm of $C_{0}(\widehat{S})$. Thus for every $(\mu \in M_{a}(S))$

$$\left|\tau_{f}(\hat{\mu})\right| = \left|\left\langle \widetilde{T}\mu, g\right\rangle\right| \leq \left\|\widetilde{T}_{\mu}\right\|_{\infty} \left\|g\right\|_{1} \leq \left\|\hat{\mu}\right\|_{u} \left(\left\|f\right\|_{\mathfrak{R}} + \varepsilon\right).$$

Since $\varepsilon > 0$ was arbitrary, we conclude that $\|\tau_f\| \le \|f\|_{\Re}$ and hence our claim is established. Since $M_a(S)$ is dense in A, we can extend τ_f uniquely to a bounded linear functional $\tilde{\tau}_f$ on A such that

$$\left\| \widetilde{\tau}_{f} \right\| \leq \left\| f \right\|_{\mathfrak{R}} \tag{1}$$

Now suppose that $\Phi \in A^*$, the dual of *A*. So by the Hahn-Banach Theorem and the Riesz representation theorem there exists $\lambda \in M(\hat{S})$ such that $\|\lambda\| = \|\Phi\|$ and

$$\Phi(\hat{\mu}) = \int_{S} \hat{\mu}(\chi) d\lambda(\chi) \quad (\mu \in M_{a}(S)) .$$

Putting $d\lambda = gd\nu$ for some probability measure ν on \hat{S} and $g \in L^1(\hat{S}, \nu)$ with $||g||_1 = ||\lambda||$ and using Fubini's theorem we obtain

$$\Phi(\hat{\mu}) = \int_{\hat{S}} \left[\int_{S} \chi(x) d\mu(x) \right] g(\chi) d\nu(\chi)$$

=
$$\int_{S} \left[\int_{\hat{S}} \chi(x) g(\chi) d\nu(\chi) \right] d\mu(x)$$
 (2)

Now we define f_0 on S by

$$f_0(x) = \int_{\hat{S}} \chi(x) g(\chi) d\nu(\chi) \quad (x \in S)$$

Since as in the proof of Lemma 2.2 of [7] the triple (\hat{S}, ν, \hat{x}) (where $\hat{x}: \hat{S} \to \mathbb{C}$ is given by $\hat{x}(\chi) = \chi(x)$ ($\chi \in \hat{S}$) defines an L^{∞} -representation on *S*, it flows that $f_0 \in \Re(S)$ and

$$\|f_0\|_{\Re} \le \|g\|_1 = \|\lambda\| = \|\Phi\|$$
(3)

Since by (2) for every $\hat{\mu} \in \widehat{M_a(S)}$, $\tau_f(\hat{\mu}) = \Phi(\hat{\mu})$, and $\widehat{M_a(S)}$ is dense in *A*, we deduce that

$$\left\|\Phi\right\| = \left\|\widetilde{\tau}_{f_0}\right\| \tag{4}$$

A combination of (3) and (4) with the aid of (1) yields $\|\Phi\| = \|\tilde{\tau}_{f_0}\| = \|f_0\|_{\mathfrak{B}}$. This completes the proof.

As a consequence of the above theorem we obtain the

following version of the Bochner-Eberlein theorem.

Corollary 2. Let *S* be a commutative foundation semigroup. Let (f_{α}) be a net in $\Re(S)$ such that $||f_{\alpha}||_{\Re} \leq M$ for all α , where *M* is a fixed positive number. Suppose that there is a bounded continuous complex-valued function *f* on *S* such that for every $\mu \in M_a(S)$, $\int_S f_{\alpha} d\mu \rightarrow \int_S f d\mu$. Then $f \in \Re(S)$ and $||f_{\alpha}||_{\Re} \leq M$.

Proof. From Theorem 1 and the Banach-Alaoglu theorem (by passing to a subnet if necessary) it follows that there exists $g \in \Re(S)$ such that $||g||_{\Re} \leq M$ and

$$\int_{S} f_{\alpha} d\mu \to \int_{S} g d\mu \quad (\mu \in M_{a}(S)) \,.$$

Hence $\int_{S} f_{\alpha} d\mu = \int_{S} g d\mu \quad (\mu \in M_{a}(S))$. So f=g, by Lemma 2.2 of [5].

The following result is a counterpart of Theorem 2.5 of [6] for the case that *S* is commutative.

Theorem 3. Let *S* be a commutative foundation semigroup. Then the following are equivalent:

- *(i) The Banach algebra M*(*S*) *is semisimple.*
- (ii) The Banach algebra $M_a(S)$ is semisimple.
- (iii) \hat{S} separates the points of S.

(iv) The L^{∞} -representation algebra $\Re(S)$ separates the points of S.

Proof. By Theorem 3.6 of [1] we only need to prove the equivalence of *(iii)* and *(iv)*.

(iii)⇒(iv). This is clear, since by Proposition 1.1.6 of [3] $\hat{S} \subset \Re(S)$.

 $(iv) \Rightarrow (iii)$. To see this, let x, $y \in S$ with $x \neq y$. Since

 $\Re(S)$ separates the points of *S*, we can find $f \in \Re(S)$ such that $f(x) \neq f(y)$. By Theorem 3 of [7] there exists $\lambda \in M(\hat{S})$ such that $f(x) = \int_{\hat{S}} \chi(x) d\lambda(\chi)$ ($x \in S$). So there

is $\chi \in \hat{S}$ such that $\chi(x) \neq \chi(y)$.

The following example shows that the result of Theorem 3 is not valid in general for non-foundation semigroups.

Example 4. Let S=[0,1]. Then with the multiplication $xy=\max(x,y)(x,y\in S)$ and the usual topology *S* is a non-foundation semigroup.

By Theorem 5 of [2] $\Re(S)=BV(S)$ (the space of continuous functions of bounded variation on *S*) and since $\hat{S}=\{1\}$ (where 1(x)=1 for every $x \in S$), then it is clear that $\Re(S)$ separates the points of *S*, but this is not the case for \hat{S} .

References

- Baker, A. C. and Baker, J. W. Algebra of measures on locally compact semigroups III, *J. London Math. Soc.*, 4, 651-659, (1972).
- 2. Baker, J. W. and Lashkarizadeh Bami, M. The L^{∞} -representation algebra of an idempotent topological semigroup, *Semigroup Forum*, **46**, 32-36, (1993).
- Dunkl, C. F. and Ramirez, D. E. Representations of commutative semitopological semigroups, Springer-Verlag Lecture Notes in Mathematics, No. 435, (1975).
- 4. Dzinotyweyi, H. A. M. The analogue of the group algebra for topological semigroups, Pitman Research Notes in Mathematics, (1984).
- Lashkarizadeh Bami, M. Representations of foundation semigroups and their algebras, *Canadian J. Math.*, 37, (1985).
- Lashkarizadeh Bami, M. On various types of convergence of positive definite functions on foundation semigroups, *Math. Proc. Camb. Phil. Soc.*, **111**, 325-330, (1992).
- Lashkarizadeh Bami, M. The L[∞]-representation algebra of a foundation topological semigroups, *Manuscripta Math.*, 77, 161-167, (1992).
- 8. Lau, A. T. The Fourier Stieltjes algebra of a topological semigroup with involution, *Pacific J. Math.*, **7**, 165-181, (1978).