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Abstract 
In the present paper for a large family of topological semigroups, namely 

foundation semigroups, for which topological groups and discrete semigroups are 
elementary examples, it is shown that ℜ(S) is the dual of a function algebra. 
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Introduction 
The notation of the L∞-representation Banach algebra 

of a commutative topological semigroup S was 
introduced and extensively studied by Dunkl and 
Ramirez in [3]. Recall that an L∞-representation of S is a 
triple (Ω, μ, Τ ) where μ is a complete probability 
measure on the set Ω, and  is a homomorphism 
of S into the unit ball of L

sTsa
∞(Ω, μ) (where L∞(Ω, μ) has 

the pointwise multiplication) and is weak-* (i.e., 
σ (L∞(Ω, μ), L1(Ω, μ)) continuous (see [3]). The 
representation algebra ℜ(S) is defined to be the set of 
all functions 

∫Ω μdgTs s )(a  

of S into , where (Ω, μ, Τ ) is an L∞-representation of S 
and . It is shown in [4] that ℜ(S) is a 
Banach algebra of bounded continuous complex-valued 
functions on S, with pointwise multiplication and the 
norm 

),(1 μΩ∈Lg

{ }∫Ωℜ ≡= μTgdsfgf )(:inf 1 . 
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We denote by ℜ+(S) the set of all ƒ∈ℜ(S) such that 

 for some L)()( SsgdTsf s ∈= ∫ λ ∞-representation 

(Ω, λ, Τ ) and some . ),(0 1 λΩ∈≤ Lg
It is well-known that in general ℜ(S) is not the dual 

of any Banach space (see [3], Example 2.2.1). In the 
present paper we prove, for a large class of topological 
semigroups, the so-called foundation semigroups, that 
ℜ(S) is the dual of a function algebra. As an application 
of this result we give a version of the Bochner-Eberlein 
theorem on ℜ(S). We also prove an analogue of one of 
our earlier results in [5] on the *- semisimplicity of the 
Banach *-algebras M(S) and Ma(S) of a foundation 
*-semigroup S (not necessarily commutative) in terms 
of *-representations, by proving that the commutative 
measure algebras M(S) and Ma(S) of a commutative 
foundation semigroup S are semisimple if and only if 
ℜ(S) separates the points of S. It should be noted that in 
the case where S in a topological semigroup (not 
necessarily commutative) with an involution, a 
representation algebra F(S) is defined by Lau in [8] 
which satisfies the inclusion F(S)⊆ℜ(S) whenever S is 
commutative with an involution. In the Example 4.2 of 
[8] Lau has shown that for the additive group Z of 
integer numbers with the involution n*=n(n∈Z) this 
inclusion in proper. Note that a mapping * on a 
topological semigroup S is called an involution if x**=x 
and (xy)*=y*x* for every x, y∈S. 
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Preliminaries 
Throughout this article, S will denote a locally 

compact Hausdorff topological semigroup. Let M(S) 
denote the space of all bounded complex regular 
measures on S and δx be the Dirac measure at x. We 
denote by Ma(S) the space of all measures μ∈M(S) such 
that the mappings: μδ ∗→ xx  and xx δμ ∗→  of S 
into M(S) are weakly continuous. A topological 
semigroup S is called a foundation semigroup if 

{supp(μ): μ∈MU a(S)} is dense in S. A nonzero 
complex-valued function χ on S is called a 
semicharacter if χ(xy)= χ(x)χ(y) for every x, y∈S. If S is 
a foundation semigroup then by Theorem 4.4 of [1] Ŝ is 
homeomorphic to  (the maximal ideal space of 

) whenever Ŝ has the compact open topology 
and  has the Gelfand topology. We denote by Ŝ 
the set of all bounded continuous semicharacters on S. 
In particular, Ŝ with the pointwise multiplication and the 
compact open topology is a locally compact Hausdorff 
topological semigroup. Moreover the Gelfand 
transform  of  is given by 

. 

)(SM a

)(SM a

)(SM a

μ̂ )(SM a∈μ

)ˆ()()()(ˆ Sxdx
S

∈= ∫ χμχχμ

 
ℜ(S) as the Dual of a Function Algebra 

We commence with the following theorem in which 
we assume familiarity with the notion of function 
algebras. 

 
Theorem 1. Let S be a commutative foundation 
semigroup. Then (ℜ(S), ℜ. ) is the dual of the 
function algebra the L∞-representation Banach algebra 
of the completion of  in the Banach algebra 
C

)(SM a

0(Ŝ). 
 
Proof. For simplicity we denote the completion of 

 in C)(SM a 0(Ŝ) by A. So by the Gelfand representation 
theorem, A defines a function algebra on Ŝ. For every 
ƒ∈ℜ(S) we define the linear functional τƒ on  by )(SM a

))(()()()ˆ( SMxdxf aSf ∈= ∫ μμμτ . 

We claim that ℜ≤ ffτ  (ƒ∈ℜ(S)). To see this, let 

ƒ∈ℜ(S) and suppose ε > 0 is given. Then there exists an 
L∞-representation (Ω, Τ, λ ) and  such that ),(1 λΩ∈ Lg

ε+<
ℜ

fg 1 and 

)()( SxgdTxf x ∈= ∫Ω
λ . 

Define  by ),()(:~ λΩ→ ∞LSMT a

)),(),(()(,~ 1 λμμλμ Ω∈∈⎟
⎠
⎞⎜

⎝
⎛= ∫ ∫Ω

LhSMxdhdThT aS x

, 

where 〈,〉 denotes the pairing between L∞(Ω, μ) and 
L1(Ω, μ). As in the proof of Theorem 3 of [7] we have 

uT μμ ˆ~
≤

∞
 (μ∈Ma(S)), where u. denotes the norm 

of C0(Ŝ). Thus for every (μ∈Ma(S) 

)(ˆ~,~)ˆ( 1 εμμμτ μ +≤≤=
ℜ∞

fgTgT uf . 

Since ε > 0 was arbitrary, we conclude that ℜ≤ ffτ  

and hence our claim is established. Since  is 
dense in A, we can extend τ

)(SM a

f uniquely to a bounded 
linear functional fτ~  on A such that 

ℜ
≤ ffτ~  (1) 

Now suppose that Φ∈Α*, the dual of A. So by the Hahn-
Banach Theorem and the Riesz representation theorem 
there exists λ∈M(Ŝ) such that Φ=λ and 

))(()()(ˆ)ˆ( SMd aS
∈=Φ ∫ μχλχμμ . 

Putting dλ=gdν for some probability measure ν on Ŝ 
and g∈L1(Ŝ,ν) with λ=1g  and using Fubini’s 
theorem we obtain 

∫ ∫

∫ ∫

⎥⎦
⎤

⎢⎣
⎡=

⎥⎦
⎤

⎢⎣
⎡=Φ

S S

S S

xddgx

dgxdx

)()()()(

)()()()()ˆ(

ˆ

ˆ

μχνχχ

χνχμχμ
 (2) 

Now we define f0 on S by 

)()()()()( ˆ0 Sxdgxxf
S

∈= ∫ χνχχ . 

Since as in the proof of Lemma 2.2 of [7] the triple 
 (where )ˆ,,ˆ( xS ν →Sx ˆ:ˆ  is given by  (χ∈Ŝ) 

defines an L -representation on S, it flows that ƒ ∈ℜ(S) 
and 

)()(ˆ xx χχ =
∞

0

Φ==≤
ℜ

λ10 gf  (3) 

Since by (2) for every , )(ˆ SM a∈μ )ˆ()ˆ( μμτ Φ=f , and 

 is dense in A, we deduce that )(SM a

0

~
fτ=Φ  (4) 

A combination of (3) and (4) with the aid of (1) yields 

ℜ
==Φ 00

~ ffτ . This completes the proof. ■ 

As a consequence of the above theorem we obtain the 
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following version of the Bochner-Eberlein theorem. 
 

Corollary 2. Let S be a commutative foundation 
semigroup. Let (fα) be a net in ℜ(S) such that 

Mf ≤ℜα for all α, where M is a fixed positive 
number. Suppose that there is a bounded continuous 
complex-valued function f on S such that for every 
μ∈Ma(S), . Then f∈ℜ(S) and ∫∫ →

SS
fddf μμα

Mf ≤ℜα . 
 
Proof. From Theorem 1 and the Banach-Alaoglu 
theorem (by passing to a subnet if necessary) it follows 
that there exists g∈ℜ(S) such that ║g║ℜ≤M and 

))(( SMgddf aSS
∈→ ∫∫ μμμα . 

Hence  (μ∈M∫∫ = SS gddf μμα a(S)). So f=g, by Lemma 
2.2 of [5]. ■ 

The following result is a counterpart of Theorem 2.5 
of [6] for the case that S is commutative. 

 
Theorem 3. Let S be a commutative foundation 
semigroup. Then the following are equivalent: 

(i) The Banach algebra M(S) is semisimple. 
(ii) The Banach algebra Ma(S) is semisimple. 
(iii) Ŝ separates the points of S. 
(iv) The L∞-representation algebra ℜ(S) separates 

the points of S. 
 

Proof. By Theorem 3.6 of [1] we only need to prove the 
equivalence of (iii) and (iv). 

(iii)⇒(iv). This is clear, since by Proposition 1.1.6 of 
[3] Ŝ⊂ℜ(S). 

(iv)⇒(iii). To see this, let x, y∈S with yx ≠ . Since  

ℜ(S) separates the points of S, we can find ƒ∈ℜ(S) such  
that . By Theorem 3 of [7] there exists 

λ∈M(Ŝ) such that  (x∈S). So there 

is χ∈Ŝ such that . ■ 

)()( yfxf ≠

∫=
S

dxxf ˆ )()()( χλχ

)()( yx χχ ≠
The following example shows that the result of 

Theorem 3 is not valid in general for non-foundation 
semigroups. 

 
Example 4. Let S=[0,1]. Then with the multiplication 
xy=max(x,y)(x,y∈S) and the usual topology S is a non-
foundation semigroup. 

By Theorem 5 of [2] ℜ(S)=BV(S) (the space of 
continuous functions of bounded variation on S) and 
since Ŝ={1} (where 1(x)=1 for every x∈S), then it is 
clear that ℜ(S) separates the points of S, but this is not 
the case for Ŝ.  
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