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Abstract

A one-sided ideal | of a ring R has the insertion of factors property (or
simply, IFP) if ab el implies raRb < | for a,b e R. We say a one-sided ideal

| of R has the weakly IFP if for each a,b,r eR, ab el implies (arb)" I, for

some non-negative integer n. We give some examples of ideals which have the
weakly IFP but have not the IFP. Connections between ideals of R which have
the IFP and related ideals of some ring extensions are also shown.
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0. Introduction

Throughout this paper R denotes an associative ring
with identity. R[X;a,0] will stands for the Ore

extension of R , where « is an endomorphism and &
an « — derivation of R , that is, & is an additive map
such that o(ab) =o(@)b +a(a)s() for all a,beR .
Recall from [14] that a one-sided ideal | of a ring R
has the insertion of factors property (or simply, IFP) if
ab el implies aRb < | for a,b eR . (H.E. Bell [2] in
1973 introduced this notion for | =0). Observe that

every completely semiprime ideal | (ie., a’el

implies ae1 ) of R has the IFP [14, Lemma 3.2(a)]. If
I =0 has the IFP, then we say R has the IFP. A ring
R is called reduced if it has no non-zero nilpotent
element. By [5], reduced rings have the IFP. If R has
the IFP, then it is Abelian (i.e., all idempotents are
central).

Recall that an ideal 1 of R is called «— ideal if

(a,6) — compatible ideals;

a —rigid ideals; Ore

a(l)c 1 ;| iscalled a— invariant if a*(1)=1; I
is called 6—ideal if (1)<l ; | is called («,8)-
ideal if it is both & and o — ideal.

According to Hong, Kawak and Rizvi [4], for an
endomorphism « ofaring R ,a a— ideal | is called
to be a—rigid if aa(@) el implies ael for aeR .
Hong, Kawak and Rizvi [4] studied connections
between « — rigid ideals of R and related ideals of
some ring extensions. Motivated by the above facts, for
an endomorphism « of a ring R, we define
o — compatible ideals in R which are a generalization
of «— rigid ideals. For an ideal I , we say that | is

compatible ideal if for each abeR, abel
<aa)el . Moreover, | is said to be oJ6-
compatible ideal if for each abeR, abel
=acb)el . If | is both «-compatible and

o — compatible, we say that | is a (a,o)—compatible
ideal. If 1 =0 is (a,0)— compatible ideal, we say that
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R is a compatible ring. The definition is quite natural,
in the light of its similarity with the notion of « — rigid
ideals, where in Proposition 2.2, we will show that | is
a a— rigid ideal if and only if 1 is a— compatible
ideal and completely semiprime.

In this paper, we will show that for each n > 2, there
exists a non-zero ideal of the nxn upper triangular
matrix ring over the ring of integers Z such that has
not IFP. Connections between ideals of R which has
the IFP and related ideals of some ring extensions are
also shown. In section 2, we will show that: (1) If | isa
(ar,8) — compatible ideal of R and has the IFP, then
ideal 1[x;a,0] of R[X;a,d] has the weakly IFP. (2)
For a monomorphism « of R, if | is ¢ — compatible
ideal of R and has the IFP, then ideal 1[x,x ;] of

skew Laurent polynomials ring R[x,x *;a] has the

weakly IFP. As a corollary, we show that if R is
(a,6)— compatible ring and has the IFP, then

R[X;a,6] has the weakly IFP. Also, for a
monomorphism « of R, if R is «—compatible ring
and has the IFP, then R[x,x ;] has the weakly IFP.

In [13], Li Liang, Limin Wang and Zhongkui Liu
show that if R is a «—compatible ring and has the
IFP, then R[X;«a] has the weakly IFP. For a ring R ,

we denote by T,(R) the n—by — n upper triangular
matrix ring over R . Clearly

a ap &,
0 a ... a
R.R)= 1. .  |la,a; R
0 0 a
isasubringof T (R).
1. Examples

For an ideal 1 of R, put VI ={faeR|a" el
some non-negative integers n >0} .

for

Definition 1.1. A one-sided ideal 1 of aring R has
the weakly insertion of factors property (or simply,
weakly IFP) if abel implies arb e+/I for each
reR.If 1 =0 has the weakly IFP, then we say R
has the weakly IFP.

Clearly, if 1 has the IFP, then it has the weakly IFP.
In the following we will see the converse is not true.

Example 1.2. Let

Hashemi

146

J.Sci. . R. Iran

8; 8, a5
J=31 0 a, ayl|la e2pZ;,
0 0 a
where p is a prime number and Z is the set of
integers. Then
p p 1)(0 0 1 0 0 4p
0 0O 0 2|=|0 0 0 |eJ,
0 0O p 00 O
but
p p 1)1 0 0)y0 0 1 0 0 7p
0 0 0|0 2 0|0 O 2|=|0 0O 0 |gJ.
0 0 0)lo 0 2J)l0O O p 00 O

Hence J has not IFP, but J has the weakly IFP, by
Corollary 1.12.

By a similar way as used in Example 1.2, we can
construct numerous ideals of T,(Z) such that has

weakly IFP but have not IFP, for n > 2.

Example 1.3. Let

0 a, a, a,
0 0 a, a
J= # " lla, e2pZ
00 0 a,]| !
0 0 0 O

be an ideal of R,(Z), where p =2 is a prime number
and Z is the set of integers. Then

0 p 10)yyoo0O0TPO 0 0 0 2p

0 0 00||0O 0O 1 OOOOJ
= ed,

0 0 0 0|0 O O p 000 O

0 00 0/lOOOTO 000 O

but

0O P 1 00O O O 0O O O O

0 0 0 0|/|0 O 3 0/Jl0 0 0 1

0 0 0 0|/|0O O O 0Jl0O O OFP

0O 0 0 0)JlOO O O/)AO O O O
0 00 3p°
:OOOOeJ.
000 O
000 O
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Hence J has not IFP, but J has weakly IFP, by
Corollary 1.6.

By a similar way as used in Example 1.3, we can
construct numerous ideals of R, (Z) such that have

weakly IFP but have not IFP, for n > 4.

Lemma 1.4. Let

a ap a,
0 a - a, -
J=4q. . . Tllaela el l<i<j<ny,
0 0 - a
where | , I;; are ideals of R, suchthat | cl; <1

ij

for 1<i<j<s<n and I ;cl; for j=3--n,

sj

2<i <s<n.ThenJ isanideal of R,(R).

Proof. Itis clear.
In Propositions 1.5, 1.8 and Theorem 1.6, | and J
are ideals that mentioned in Lemma 1.4.

Proposition 1.5. Let

a a, &,
0 a a

A= : > 1eR, (R)
0 O a

such that a* el
A% e,

for a non-negative integer k . Then

Proof. We proceed by induction on n. Let n=2. For

a.k

k
a positive integer k , Akz[ao

2k k k
a a‘b,, +b,a
A% :( 0 v J Hence
a

a® ,a*b,, +b,a" el . Now, let

buj and that

A% cJ . since

a &, &,
0 a . a

A=l. . . TIeR.(R)
0 0 a

such that a* el
Consider

for a non-negative integer Kk .
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(n-1)k
a b12 bln
(n-1)k
A(n—l)k _ 0 a 2n
0 0 ... gnbk
and
k
a ClZ Cln
k
Ak — O a CZn
0 0 ... a“

By the induction hypothesis all b; ’s, except b, , are in

In?

| . Let x =a*b,, +c,,b,, ++--+c,,a" " . Hence

nk

a Yo Yina X
0 ank y2n—1 yZn
A™ =] : .o :oled,
0 0 .- a™ Yo
0 0 0 a™

since a™,x and all y; 'sarein | .

Theorem 1.6. Let | has the weakly IFP. Then J has
the weakly IFP.

Proof. Let
a a, a, b b, b,
AL - T
0 0 - a 0 0 - b
and
cC Cp Cin
co|? ¢ R R
0 0 c

such that AB €J . Then ab el and that (ach)* el

for some non-negative integer k , since | has the
weakly IFP. Thus (ACB)™ eJ, by Proposition 1.5.
Therefore J has the weakly IFP.

Corollary 1.7. Let R has the weakly IFP. Then
R, (R) has the weakly IFP, for each n > 2.

Proof. It follows from Theorem 1.6.
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Proposition 1.8. Let J has the weakly IFP. Then I
has the weakly IFP.

Proof. Itis clear.

Corollary 1.9. Let R,(R) has the weakly IFP, for
some n . Then R has the weakly IFP.

Proof. It follows from Proposition 1.8.

Lemma 1.10. Let

8 8y e
1= ° afz af” la, el 1<i<j<np,
0 0 - a,
where 1, are ideals of R, such that I; I for
1<i<j<s<n and Igcly for j=1..,n,

1<i<s<n.ThenJ isanideal of T,(R).

Proof. Itis clear.
In Propositions 1.11, 1.14 and Theorem 1.12, |, are

ideals that mentioned in Lemma 1.10, for 1<i <n.

Proposition 1.11. Let

a; &, &,
0 a ... a

S I T % NGY
0 0 ..~ a

nn

such that a,* el, for some non-negative integer k
and i =1,..,n. Then (A*™")" el

Proof. We proceed by induction on n. For n=2, let

2k +1
A =[a” a“j. Since A% =[a“ )Z(k ”J , Where
0 a, 0 a,

X:Zaﬂiauazzjli"'j:Zkvi,jZO, we have

A** cJ. Now, assume n>3 and AeT, (R).
Consider
(2k +1)(n-2)
a, b12 bln
(2k +1)(n-2)
(A2k+l)n—2: 0 ay, " b2n
0 0 ann(2k+1)(n72)

and
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a:ll ClZ Cln
2k +1
A 2k +1 — O a22 CZn
O O a 2k +1

By the induction hypothesis all b; ’s, except b,
Hence (Ln)-entry of (A*™)"* s
x =a, %P, +Cpby, ++--+Cy b
since  a,*".a,*™*.b
(A2k+l)n71 el

are in 1.
ic a (2k +1)(n-2)

In~nn EI’

n-1n

-,b

0, €l . Therefore

on 1’

Theorem 1.12. If each 1;,1<i <n has the weakly
IFP, then J has the weakly IFP.

Proof. It follows from Proposition 1.11.

Corollary 1.13. Let R has the weakly IFP. Then
T, (R) has the weakly IFP for each n > 2.

Proof. It follows from Theorem 1.12.

Proposition 1.14. If J has the weakly IFP, then each
I..,1<i <n, has the weakly IFP.

i ?
Proof. Itis clear.

Corollary 1.15. Let T, (R) has the weakly IFP for
some n >2.Then R has the weakly IFP.

2. Extensions of Ideals Which Have the IFP

In this section « is an endomorphismand 6 an « -

derivation of R . For an ideal |, we say that | is a
o —compatible ideal if for each abeR,
abel @aa)el . Moreover, | is said to be
o —compatible ideal if for each abeR,

abel =asb)el . If | is both - compatible and
& — compatible, we say that | is a (a,o)—compatible
ideal. If 1 =0 is both («,o)—compatible ideal, we say
that Ris a («,d)— compatible ring.

In [5, Example 2], the authors show that there exists
a non-zero ideal 1 of aring R such that has IFP but
ideal 1[x] of R[x] has not IFP. We will show that if

I has the IFP then I[x] has the weakly IFP. More
generally, we will show that: (1) If | is a (a,0)-
compatible ideal of R and has the IFP, then ideal
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I[x;a,0] of R[x;a,d] has the weakly IFP. (2) For a
monomorphism « of R, if | is a— compatible ideal

of R and has the IFP, then ideal 1[x,x *;a] of skew

Laurent polynomials ring R[x,x

IFP.
For non-empty subsets A,B of R and r eR , put

AB ={ab|acA,beB}, A’ ={1} and rA ={rajacA}.
The following proposition extends [3, Lemma 2.1].

;a] has the weakly

Proposition 2.1. Let |
of R and a,b eR .
(iYIfabel ,then aa"(b)el , a"(@)b el foreach

positive integer n .

be a (a,5)—compatible ideal

Conversely, if aa*()el or
a*(@)b el for some positive integer k , then ab el .
(ii)If ab el ,then ™ (@)d" (b), 5" (@)™ (b) e for

each non-negative integers m,n .

Proof. (i) If ab el , then a"(@)a"(b) el , since | is

a—ideal. Hence «a"(@bel, since | is a-
compatible. Conversely, let a*(@bel. Then
a“@a* () el , since 1 is a—compatible. Hence
a“(@)el and that abel, since | is a-
compatible.

(i) It is enough to show that S(@)ab)el . If
abel, then by (i) and 6— compatibility of 1,
a(@)sob)el . Hence dS(@b=06@b)-a(@)ob)el .
Thus s@b el and that s@)ab)el , since | is
a — compatible.

Proposition 2.2. Let R be aring, | be an ideal of R
and a:R — R be an endomorphism of R . Then the
following conditions are equivalent:

(1) | isa a- rigidideal of R ;

(2) 1 is a— compatible, semiprime and has the IFP;

(3) I is a— compatible and completely semiprime.

If 6 isa a— derivation of R, then the following
are equivalent:

(@ 1 isa a— rigid 56— ideal of R ;

(5) I is (a,0)—compatible, semiprime and has the
IFP;

®) 1 is
semiprime.

(a,8) —compatible and completely

Proof. (1)= (2). It follows from [4, Propositions 2.2
and 2.4].
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(2)= (1). Let ac(@)el . Then a’ <l , since | is
o — compatible. Hence aRac | , since | has the IFP.
Thus ael, since | is semiprime. Similarly we can
prove (1) = (3).

(4= (6). By (1)=(3), | is a—compatible and
completely semiprime. We show that aa(b) €1 , when
abel . If abel, then S(@)=0@) +a(a)o(b)
ed(l)cl. Thus (a(@)db))’ =s(@b)a@)sb)
—-6@ba(@)o®) el , because o(ab),ba(a) el . Since
I is completely semiprime, we have a(a)o(b) el and
so ad(b) 1 , by Proposition 2.1.

(6) = (4) and (4)= (5) are clear.

Note that there exists a ring R for which every non-
zero proper ideals are o — compatible. For example,

F F
consider the ring R :[0 FJ’ where F is a field,
and the endomorphism « of R
a b a
5 o
Lemma23. Let | be a («,5)—compatible ideal of

R and has the IFP. If (ab)* 1, for some k >0, then
(aa®))*,@@sp))* 1 .

is defined by
0

j fora,b,ceF.
c

Proof. Since | is o — compatible and
(ab)* =(@b)---(@b) el , we have ac(b)a(ab---ab)
=aca(bab---ab)el . Hence aa()a(ab:---ab)el
since | is «a—compatible. Now, aa(b)aa(---ab) el
and that ac(b)ac(b)a(ab---ab) el . Continuing this
procedure yields (aa(b))* €l . Since 1| is -
compatible and (ab)* =(ab)---(ab)el, we have
ad(bab---ab)=as(b)(@ --ab)+aa®)o@ ---ab) el .
Since aa(b)(ab---ab) el and | is & — compatible, we
have aa(b)s(a---ab)el . Thus as()@---ab) el .
Continuing this procedure yields (as())* €1 .

Lemma24. If | isa (a,5)-compatible ideal of R,
then I[X;«,d] is an ideal of R[x;«,d].

Proof. It follows from Lemma 2.3.

Lemma2.5. Let | be an ideal of R and has the IFP.
Then \/I_ is an ideal of R and has the IFP.
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Proof. Let a,be+/1.So a"b™ el for some m,n
>0. Hence (a+h)" ™ =>"(@"h")---(@hlrr),
such that i, +j, =1, 0<i, <1, 0<j, <1. It can be
easily checked that a more than n or b more than m
in (@'b'")---(@b™) Since a",b™ el and | has
the IFP, @"bh")---@mraplnrr) e .
Therefore (a+b)"™* el and (a+b)e+/I . Clearly
J1 has the IFP.

we have

Lemma2.6. Let | be a (a,8)—compatible ideal of

R and has the IFP. Then /I isa (a,0) — compatible
ideal of R .

Proof. It follows from Lemmas 2.3, 2.5.

Remark. Given « and & as above and integers
0<i<j andaeR, letuswrite f ' for the set of all

“words” in « and ¢ in which there are i factors of «
and j—i factors of &. For instance, fjj(a)z

{' @}, (@) ={5' @)} f, ! ={a'"5(@),
a'?sa(a),, 0 (@)}

and

Lemma2.7. Let | be a (a,8)—compatible ideal of
R and has the IFP. Let f (x)=a,+---+ax",
g(x)=b,+---+b,x" eR[x;,8] with f (x)g(x)e
I[x;a,0]. Then ab;, eI foreach i,j.

Proof. Note that f(x)g(x)zii(aixi)(bjxj).

i=0]j=0
Then a,a" (b, ) €1 , since it is the leading coefficient of
f (x)g(x). Hence apb,el,
compatible. Thus a,f,’(b,) <1, for each 0<i<j,

since | is a-

by Proposition 2.1. Since the coefficient of x ™" is
aa"b,,) +a _a"*0b,)+ads@ *b,)) el and
a,0(a"*(b,))el , we have aa"(b,,)+a, 2" b,)
el . Hence aca"(b, )b, +a, ,a" (b, )b, €l
that a,_,a" (b, )b, /1, since a,a"(, )b, /I .
Thus a, b, eI, by Lemmas 2.5 and 2.6, and that
a b, , e/ . Consequently, a f.) (b, )uaf,i(,,)
g\/l_, for each 0<i < j . Coefficient of x™"? is
a,a"(b,,)+a, " b, ) +a, a"*b,)+t,
t is a sum of elements

and

where
of
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Uogigj [anfij(bm)k)an—lfij(bm)kjanfij (bm—l)]' By a
way as above, we can show that
a, b,,.a b, € J1I'. Continuing this process,

similar
ab

n~m-27

we can prove ab; eI foreach i,j.

Lemma2.8. Let | bea (a,d)—compatible ideal of
and has the IFP. Let f (x)=a,+---+a,x" eR[x;,d].

If a,,---,a e/l ,then f (x) e JI[X;a,5].

Proof. Suppose that a™ eI, for i=0,---,n. Let
k=mg,+---+m, +1. Then (f (x) =
2@ (ax ) +(a,x ")) (8 (ax)™ (@, x )™ ),
i+ i, =1, r=1.-k, 0<i <1. Each

coefficient of (3, (ax )™ ---(a,x")")--- (8, (ax)"™
~+(@x")™) is a sum of such elements ye
((F= @)oo, @)) ~((f, ™ @) - (F,

(a\]))i"k). It can be easily checked that there exists
a, €{a,,~--,a,} such that i,+---+i, =m,. Since
a™ el and | has the IFP and is («,d)—compatible,
we have yel . Thus each coefficient of (f (x))

belong to | . Therefore f (x) eI [Xx;a,d].

Theorem 2.9. Let | be a («,d)—compatible ideal of
R and has the IFP. Then I[x;a,o] has the weakly
IFP.

Proof. Let f(x) = Yax', gx)=Ybx' e
i=0 j=0
R[x;a,6] such that f (x)g(x)el[x;a,8] and let
k
h(x)=>¢c,x* eR[x;a,6] be any element. By
s=0

Lemma 2.7, aibje\/T for each i,j. Hence

af c,)f, b,)cVI for each i,j, 0<p<q,

0<r <t, by Lemma 2.5 and Proposition 2.1. Note that
each coefficient of f (x)h(x)g(x) is a sum of such

7/ € Uogpsq Uogrét ai f pq (Cs )f rt (b] ) . ThUS

f(x)h(x)h(x)eJI[x;a,0] by Lemma 2.8. This
means that | [X;«, 5] has the weakly IFP.

elements

Corollary 2.10. Let R be a («,5)—compatible ring
and has the IFP. Then R[X;a,d] has the weakly IFP.
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Corollary 2.11. ([13], Theorem 3.1) Let R be a
a — compatible ring and has the IFP. Then R[x;«a] has

the weakly IFP.
Recall that for a ring R with an injective ring
endomorphism «:R —->R, R[x;a] is the Ore

extension of R . The set {x'}.., is easily seen to be a

left Ore subset of R[x;a], so that one can localize

R[x;] and form the skew Laurent polynomials ring

R[x,x ";a]. Elements of R[x,x *

;a] are finite sum
of elements of the form x 'rx' where r eR and i, j
are non-negative integers. Multiplication is subject to
xr=a(r)x and x " =x"a(r) forall r eR .

Now we consider D.A. Jordan’s construction of the
ring A(R,«) (See [8], for more details). Let A(R,a)

or A be the subset {x "rx'|r eR,i >0} of the skew
Laurent polynomials ring R[x,x *;«]. Foreach j >0,
X ix ' =x D 1t follows that the set of all
such elements forms a subring of R[x,x ';a] with
XXt ax dsx b =x @ (D) +a' (s)x Y and
' DX Tsx ) =x gl (e (s)x T for r,s
eR and i,j>0. Note that «

automorphism of A(R,a). We have R[x,x %]

is actually an

=A[x,x ;a], by way of an isomorphism which maps
x'rx) to @ (r)x'" . Foran a— ideal | of R, put
A(1)=U,.ox "Ix". Hence A(l) is a— ideal of A.
The constructions 1 — A(l), J ->JNR are inverses,
so there is an order-preserving bijection between the
sets of a— invariant ideals of R and - invariant
ideals of A. For an ideal | of R, put
J,={reR|x''el} fori=>0.

Theorem 2.12. Let « be a monomorphism of a ring
R.
(i) If I isa a—compatible ideal of R and has the

(weakly) IFP, then A(l) is a «— compatible ideal of

A and has the (weakly) IFP.
(if) If J is a «—compatible ideal of A and has the

(weakly) IFP, then J=A(J,) and J, is a
a — compatible ideal of R and has the (weakly) IFP.

Proof. (i) Let | be a «—compatible ideal of R .
Hence A(l) is an ideal of A. Now, let

(x ' )(x Tsx)eA(l) .Hence x Vgt (rea' (s)x D
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eA(l) and that o' (r)a' (s)el . Thus o' (r)a'™(s)
el, since | is «a—-compatible. Consequently
(x'mxDa(x Tsx)eA(l). Therefore  A(l) s
a—compatible.  Now, assume (x 'rx')(x 'sx 1)
eA(l). Then o' (r)a' (s) el . Hence a'* (r)a'* (s)
el foreach t >0. Since | has the weakly IFP, so for
each aeR and each t>0, there exists n>0

such that (o™ (Na'* @)a'"(s))" €l . Therefore
((x ") tax)(x Tsx )" e A(l).
A(l) has the weakly IFP.

(i) Let red,. Then a"(r)ed, for each n>0.
for each n>0. Thus

Consequently

Hence a"(x "m")=rel

Xx"rx"eld, since J is a-compatible. Therefore

A(Jy)<Jd,. Now, let x"mx™elJ. Then
a"(x"x")ed and that reJ, since J is
o —compatible.  Thus J cA(J,). Consequently,

J =A(J,). Clearly J, has the weakly IFP.

Note that if | is a a— ideal of R, then
I[x,x ;] is an ideal of the skew Laurent
polynomials ring R[x,x *;a]. By a similar way as in
the proof of Lemmas 2.7, 2.8 and Theorem 2.9 one can
prove the following results.

Lemma2.13. Let | be a a—compatible ideal of R
and has the IFP. Let « be an automorphism of R . Let

f(x)=ax"+---+ax", gx)=bx*+---+b x" €
R[x,x ] with f(x)g(x)el[x,x 5;a]. Then
ab, eI foreachi,j.

Lemma2.14. Let I be a a—compatible ideal of R
and has the IFP. Let « be an automorphism of R . Let

f(x)=ax"+--+ax" eR[x,x™ If a,-a,
eVl then f (x) e I[x,x a].

Proposition 2.15. Let 1 be a «a— compatible ideal of
R and has the IFP. Let « be an automorphism of R .

Then 1[x,x *;] has the weakly IFP.

al.

Theorem 2.16. Let | be a a— compatible ideal of R
and has the IFP. Let @ be a monomorphism of R .

Then 1[x,x ;] has the weakly IFP.

Proof. Since | is a— compatible and has the IFP, so
A(l) is a—compatible and has the IFP, by Theorem
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2.12.Since I[x,x "] = A()[x,x %], RIx,x ;]
=A[x,x ";a] and « is an automorphism of A, the

result follows from Proposition 2.15.
Corollary 2.17. Let R be a « - compatible ring and
has the IFP. Let « be a monomorphism of a ring R .

Then the skew Laurent polynomials ring R[x,x
has the weakly IFP.

al

Proof. It follows from Theorem 2.16.

Corollary 2.18. If R has the IFP, then Laurent
polynomials ring R[x,x ] has the weakly IFP.
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