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Abstract 

We define a new function-valued inner product on L2(G), called φ-bracket 
product, where G is a locally compact abelian group and φ is a topological 
isomorphism on G. We investigate the notion of φ-orthogonality, Bessel's 
Inequality and φ-orthonormal bases with respect to this inner product on L2(G). 
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Introduction and Preliminaries 

The bracket product in , which was 
originally introduced in [1] and extended in [10], play 
an important role in the analysis of shift-invariant 
spaces. For 

2 ( )nL \

2, ( n )f g L∈ \ , the bracket product is 
defined by [ , ] := (. )nZ

f g fg
α

α
∈

+∑ . Then [ ,  is a 

well defined element in  and satisfies 

]f g
1( )nL T

1 2
2[ , ] =( ) ( )nL L

f f f \T n . Casazza and Lammers have 

extended this notion and analysed the properties of the 
bracket product of two -functions 2 ( )L \ ,f g  defined 
for  by a +∈\ < , > = (. )a n Z

f g fg
∈

−∑ na . They have 

then applied this to show that all operators associated to 
a Gabor system have a compression with regard to this 
bracket product. Moreover, in [5Error! Reference 
source not found.] the authors have made use of an 
extension of this notion to  for their results on 
reproducing systems. 

n\

In this paper we define a new inner product on L2(G) 
called φ-bracket product, where G is a locally compact 
abelian (LCA) group and φ is a topological 
isomorphism on G . We investigate its properties and 

we show that this bracket product gives rise to several 
results similar to the ones in the standard Hilbert space 
theory. This theory, originated from David Hilbert's 
work (1862-1943), especially 2L -spaces, is essential in 
the development of wavelet transform analysis. One of 
the nicest features of these spaces is that their geometry 
is very much similar to the familiar Euclidian geometry. 

The φ-bracket product is useful in two ways. First it 
is a unified approach to all the bracket products 
mentioned above, on . Secondly, it is applicable to 
extend many ideas and constructions from the theory of 
shift-invariant spaces, factorable operators and Weyl-
Heisenberg frames on , to the setting of LCA groups 
in a more general and different way. In a forthcoming 
paper we will work out these various applications on 
LCA groups (see also [7]). 

n\

n\

The rest of this paper is organized as follows. Section 
2 sets out the definition and elementary properties of the 
φ-bracket product on a LCA group. In section 3 we 
study φ-orthonormal sequences and φ-bases in L2(G) 
where  is a second countable LCA group. We show 
that there is a close relationship between φ-
orthogonality and usual orthogonality in L2(G). 
Moreover, we prove Bessel's Inequality for φ-
orthonormal sequences and Parseval Identity for φ-

G
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bases. Finally we show that L2(G) admits such bases just 
as in the standard Hilbert space theory. 

Before embarking on our study, we recall some basic 
facts from the theory of LCA groups. For general 
references on this theory, we refer to [3,6]. 

Let G  be a locally compact abelian group. It is well 
known that such a group possesses a Haar measure that 
is unique up to a multiplication by constants. Suppose 
H  is a closed subgroup of G . Let  be the 
quotient group whose Haar measure is 

/G H
µ  (which is 

unique up to a constant factor). If this factor is suitably 
chosen we have  

1

/
( ) = ( ) ( ) ( )

G G H H
f x dx f xy dyd xH f L Gµ ∈∫ ∫ ∫ . 

This identity is known as Weil's formula. 
We shall denote the dual group of G  by . Let the 

Fourier transform 
Ĝ

1
0

ˆ( ):̂ ( )L G C→ G , ˆf f→ , be 

defined by ˆ( ) = ( ) ( )
G

f f x x dxξ ξ∫ . The Fourier 

transform can be extended to a unitary isomorphism 
from L2(G) to 2 ˆ( )L G  known as the Plancherel 
transform [3]. 

A subgroup L  of G  is called a uniform lattice if it 
is discrete and co-compact (i.e  is compact). The 
subgroup  is called the 

annihilator of 

/G L
ˆ= { ; ( ) = {1}}L G Lξ ξ⊥ ∈

L  in  which is a uniform lattice in  
(for more details see [8]). 

Ĝ Ĝ

Definition and Elementary Properties 
Throughout this paper we always assume that G  is a 

second countable LCA group. Suppose L  is a uniform 
lattice in G , and :G Gϕ →  is a topological 
isomorphism. 

If 2, ( )f g L G∈ , then 1( )f g L G∈  and by Weil's 
formula we have 

1

/ ( )

1
( ) ( )/ ( )

1

| ( ( )) |

| ( ( )) |

| ( ) |

< ,

k LG L

k LG L

G

f g x k dx

f g x k dx

f g x dx

f g

ϕ

ϕ ϕϕ

ϕ

ϕ

−
∈

−
∈

=

=

= ∞

∑∫

∑∫

∫

�

�
 

where = ( )x x Lϕ� , and dx  is the Haar measure on �
/ ( )G Lϕ . Thus for almost all x G∈ , 

1( ( ))
k L

f g x kϕ −
∈∑  converges. Now we can define the 

φ-bracket product of any 2, ( )f g L G∈  as a function-
valued inner product on L2(G). 
 
Definition 1.  Let 2, ( )f g L G∈ . The φ-bracket product 

of ,f g  is defined by 1[ , ] ( ) = ( ( ))
k L

f g x f g x kϕ ϕ −
∈∑ , 

for all x G∈ . We define the φ -norm of f  as 
1/ 2( ) = ([ , ] ( ))f x f f xϕϕ

. 

Note that [ , ]f g ϕ  is φ-periodic, i.e. for every 
,l L x G∈ ∈ , [ , ] ( ( )) = [ , ] ( )f g x l f g xϕ ϕϕ . In other 

words [ , ]f g ϕ  is constant on ( )Lϕ -cosets. So one may 

consider the φ-bracket product of 2, ( )f g L G∈ , as the 
mapping 2 2 1[.,.] : ( ) ( ) ( / ( ))L G L G L G Lϕ ϕ× → , defined 

by 1[ , ] ( ) = ( ( ))
k L

f g x f g x kϕ ϕ −
∈∑�  for all 

/ ( )x G Lϕ∈� . Throughout, we will use both of the 
above notations interchangeably. 
 
Example 2.  Consider  in the above 
definition. Fix a

= , =G L\ ]
+∈\ . Then :ϕ →\ \ , given by 

( ) =x axϕ  is a topological isomorphism and the 
mapping 2 2 1[.,.] : ( ) ( ) [0, ]L L Lϕ × →\ \ a , defined by 

[ , ] ( ) = ( )
n

f g x f g x naϕ ∈
−∑ ]

 is the -pointwise 

inner product of 

a

f  and g  introduced by Casazza and 
Lammers in [2]. If φ  is the identity function on  then 
the φ-bracket product is exactly the bracket product 
defined by Ron and Shen [10]. 

\

 
Example 3.  Let , for = n n n

nG Z× × ×\ ] T n ∈` , 
where nZ  is the finite abelian group {1,  of 
residues modulo n . Then 

2,..., }n
= {1}n n

nL Z× × ×] ]  is a 
uniform lattice in G . Let A  be an invertible n n×  real 
matrix and fix nl ∈] . Define :G Gϕ →  by 

( , , , ) = ( , , , )x m t p l m t pAxϕ + , for every nx ∈\ , 
. The , ,n n

nm t p∈ ∈ ∈] T Z φ -bracket product is 
given by [ , ] ( , , , )f g x m t pϕ = (, ,n nk n

fg xn q Z∈
−∈ ∈∑ ] ]  

, , 1, )Ak m l n t p q− + − − . 
The φ-bracket product behaves in some ways like the 

usual inner product on a Hilbert space. The following 
properties are immediate from the definition. 
 
Proposition 4.  Let 2, ( )f g L G∈  and c . Then the 
following properties hold: 

∈^

• (1) . 2/ ( )
[ , ] ( ) =< , > ( )LG L
f g x dx f g Gϕϕ∫ � �
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• (2) [ , ] = [ , ] [ , ]f g h f h g hϕ ϕ ϕ+ + ,  [ , ] =cf g ϕ

[ , ]c f g ϕ . 

• (3)  and   [ , ] 0f f ϕ ≥ [ , ] = [ , ]f g g fϕ ϕ . 
• (4) [ ,  if and only if ] = 0f f ϕ = 0f . 

• (5) | [ , ] |f g f gϕ ϕ ϕ
≤  (Cauchy Schwartz 

Inequality). 
• (6) f g f g

ϕ ϕ
+ ≤ +

ϕ
 (Triangle Inequality). 

• (7) 2 2 2= 2( )f g f g f g 2

ϕ ϕ ϕ
+ + − +

ϕ
 (The Para-

llelogram Law). 
• (8) [ , ]f g ϕ  = 21 / 4[ f g

ϕ
+  − 2f g

ϕ
−  + 

2(i f ig
ϕ

+ −  2 )]f ig
ϕ

−  (The Polarization Identity). 

(Notice that ((1)-(8) hold almost every where). 
It is easy to see that The Pythagorean Theorem also 

holds for φ-bracket products, i.e. for 2
1,..., ( )nf f L G∈  if 

 for , then [ , ] = 0i jf f ϕ i j≠
2 2

=1 =1
=n n

ii i if f
ϕϕ

∑ ∑ . 

Similar to the usual inner product, we may define φ-
orthogonality. 
 
Definition 5.  Let 2, ( )f g L G∈ . We say f  and g  are 
φ-orthogonal if [ , . A sequence ] = 0f g ϕ

2( ) ( )n ng L G∈ ⊆`  is called φ-orthonormal if 
, for all  and [ , ] = 0n mg g ϕ n m≠ ∈` = 1ng

ϕ
 for all 

. For , the φ-orthogonal complement 

of  is ;  , for all 

n ∈` 2 ( )E L G⊆

E 2= { ( )E g L Gϕ⊥
∈ [ , ]f g ϕ = 0 . .a e

}f E∈ . 
For any subset , there is a relation 

between φ-orthogonal complement of  and its 
orthogonal complement in L2(G) which is given in the 
next proposition. First we state a lemma whose proof is 
easy and so omitted. 

2 ( )E L G⊆
E

 
Lemma 6.  Let 2, ( )f g L G∈ . Denote by  the set 

of all φ-periodic functions in 

( )B Gϕ

( )L G∞ , i.e. 
. 

Then for all , 
( ) = { ( ), ( ( )) = ( ), }B G h L G h x k h x forall k Lϕ ϕ∞∈ ∈

( )h B Gϕ∈ [ , ] = [ , ]fh g h f gϕ ϕ  and 

[ , ] = [ , ]f hg h f gϕ ϕ . 
Now we can prove the following proposition. 

 

Proposition 7.  Let , and  be as in 

Lemma 6. Then . 

2 ( )E L G⊆ ( )B Gϕ

= (( )h B
E hG

ϕ

ϕ

⊥ ⊥

∈∩ )E

Proof. Let f E ϕ⊥
∈ . Then for  and ( )h B Gϕ∈ g E∈ , 

by Proposition 4 (1) and Lemma 6 we have 
  = 2< , > ( )L

f hg G / ( )
[ , ] ( )

G L
f hg x dxϕϕ∫ � �  = 

/ ( )
( )[ , ] ( )

G L
h x f g x dxϕϕ∫ � � �  = 0. So, ( )( )h B

f hEGϕ

⊥

∈
∈∩ . 

Now let ( )( )h B
f hEGϕ

⊥

∈
∈∩  and g E∈ . For 

n ∈` , define , when | [( ) = [ , ] ( )nh x f g xϕ� � , ] ( ) |f g xϕ �  
≤ n , and  otherwise. Then obviously ( ) = 0nh x�

( )nh B Gϕ∈  and we have  20 =< , > =( )n L
f h g G

/ ( )
[ , ] ( )nG L
f h g x dxϕϕ∫ � �  = 

/ ( )
( )[ , ] ( ) =nG L

h x f g x dxϕϕ∫ � � �

�

 

 Hence [ ,2

/ ( )
| ( ) | .nG L
h x dx

ϕ∫ � ] = 0 . .f g aϕ e , that is 

f E ϕ⊥
∈ . 
We will develop more, the notion of φ-orthogonality 

in the next section. 

Bessel's Inequality and φ-Orthonormal Bases 

This section is devoted to establishing Bessel's 
Inequality for φ-orthonormal sequences in L2(G). We 
will also define a φ-orthonormal basis in terms of an 
orthonormal basis in L2(G) and prove Parseval's Identity 
in this case. 

First we would like to consider φ-orthogonality in 
terms of orthogonality in L2(G). The key is the 
following proposition. 

For Ĝγ ∈ , denote by M γ  the modulation operator 

on L2(G), i.e. ( ) = ( ) ( )M f x x f xγ γ , for all 2 ( )f L G∈ . 

Proposition 8.  Suppose 2, ( )f g L G∈ , and ( )Lγ ϕ ⊥∈ , 

where ( )Lϕ ⊥  is the annihilator of ( )Lϕ  in . Then 

. 

Ĝ

2[ , ] ( ) < , > ( )L
f g f M g Gϕ γγ =
l

Proof. Since  for all 1( ( )) = 0kγ ϕ − k L∈ , for 
2, ( )f g L G∈  we have 
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/ ( )

1 1

/ ( )

1

/ ( )

/ ( )

2

[ , ] ( ) [ , ] ( ) ( )

( ( )) ( ( ))

( ( )) ( ( ))

[ , ]( )

< , > .( )

G L

k LG L

k LG L

G L

L

f g f g x x dx

fg x k x k dx

f x k M g x k dx

f M g x dx

f M g G

ϕ ϕϕ

ϕ

γϕ

γϕ

γ

γ γ

ϕ γ ϕ

ϕ ϕ

− −
∈

−
∈

=

=

=

=

=

∫

∑∫

∑∫

∫

l � � �

�

�

� �

1−

)

 

We obtain immediately 
 
Corollary 9.  Let 2, (f g L G∈ . Then ,f g  are φ-

orthogonal if and only if { ; ( )span M f Lγ γ ϕ }⊥∈  and 

{ ; ( )span M g Lγ γ ϕ ⊥∈ }  are bi-orthogonal in 2 ( )L G . 
Whence we can characterize φ-orthonormal systems 

 in ( )n ng ∈`
2 ( )L G . 

 
Theorem 10.  Let  be a sequence in ( )n ng ∈`

2 ( )L G . 
Then  is φ-orthonormal if and only if 

 is orthonormal. 
( )n ng ∈`

, ( )
( )n n L
M gγ γ ϕ ⊥∈ ∈`

 
Proof. Suppose  is a φ-orthonormal system. Let ( )n ng ∈`

, ( )Lγ η ϕ ⊥∈ . For , n m≠ γ η≠  we have 
, by Corollary 9. For , first 

note that by [6], 
< , >=n mM g M gγ η 0 =n m

/ ( )G Lϕ  is topologically isomorphic to 
 and so it is compact. Thus by [3], 

is an orthonorma basis for 

/G L

( ) ( / ( ))L G Lϕ ϕ⊥ =
l

2 ( / ( ))L G Lϕ . Hence we have 

2

1 2 1
( ) ( )/ ( )

2

/ ( )

/ ( )

,

< , >

( ) ( )

| ( ) | ( ) ( )

| ( ( )) | ( ( ))

( ) ( ) ( )

( ) ( )

,

n n

n nG

nG

nk LG L

nG L

G L

M g M g

M g x M g x dx

g x x x dx

g x k x k dx

g x x x dx

x x dx

γ η

γ η

ϕ ϕϕ

ϕϕ

ϕ

γ η

γ η

ϕ γη ϕ

γ η

γ η

δ

− −
∈

=

=

=

=

=

=

∫

∫

∑∫

∫

∫

�

� � � �

� � �

 

which completes the proof. The proof of the converse is 

similar. 
In the following theorem we prove Bessel's 

Inequality for φ-orthonormal sequences in 2 ( )L G . 
 
Theorem 11.  (Bessel's Inequality) Let 2 ( )f L G∈  and 
( )n ng ∈`  be a φ-orthonormal sequence in 2 ( )L G . Then 

22| [ , ] ( ) | ( ), . . .n
n

f g x f x for a e x Gϕ ϕ
∈

≤ ∈∑̀ � �  (1) 

 
Proof. Observe that 2[ , ] ( )n nf g g L Gϕ ∈  (for a more 
general statement of this fact see Remark 13). Indeed, 
by Weil's formula and Cauchy Schwartz Inequality for 
φ-bracket products (Proposition 4 (5)), we have 

2

1 2
( ) ( )/ ( )

2 1
( ) ( )/ ( )

22

/ ( )

2

/ ( )

2

2

2[ , ] ( )

| [ , ] ( ( )) |

| [ , ] ( ) | | ( ( )) |

| [ , ] ( ) | ( )

( )

< ,

n n L

n nl LG L

n nl LG L

n nG L

G L

f g g G

f g g x l dx

f g x g x l dx

f g x g x dx

f x dx

f

ϕ

ϕϕ ϕϕ

ϕ ϕ ϕϕ

ϕ ϕϕ

ϕϕ

ϕ

ϕ

−
∈

−
∈

=

=

=

≤

= ∞

∑∫

∑∫

∫

∫

�

� �

� � �

� �

2

 

Where in the second equality we have used φ-
periodicity of [ , ]nf g ϕ  and the inequality is followed by 
Cauchy Schwartz Inequality for φ-bracket products 
together with orthonormality of ( ) . Now fix n ng ∈`

m ∈` . Then 0 ≤  
=1

[ [ , ] ,m
i ii

f f g g fϕ− −∑  

. Since 

 was arbitrary we conclude (1). 

2
=1 =1

[ , ] ] = [ , ] | [ , ] |n m
i i ii i

f g g f f f gϕ ϕ ϕ ϕ−∑ ∑
m
 
Remark 12.  If 2 ( )f L G∈  and ( )  is a φ-
orthonormal sequence in 

n ng ∈`
2 ( )L G  then [ , ]n nn

f g gϕ∈∑ `
 

converges in 2 ( )L G . Indeed, we have 

=1 2

2

=1/ ( )

2
=1/ ( )

2
[ , ]

( )

[ , ] ( )

| [ , ] ( ) | .

m
i ii L

m
i iiG L

m
iiG L

f g g
G

f g g x dx

f g x dx

ϕ

ϕϕ ϕ

ϕϕ

=

=

∑

∑∫

∑∫

� �

� �

 

By Bessel's Inequality and Monotone Convergence 
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Theorem, 2| [ , ] ( ) |nn
f g xϕ∈∑ `

�  converges in 
1( / ( ))L G Lϕ . So if  then the right hand side of 

the above equality tends to zero. Thus 
m → ∞

[ , ]n nn
f g gϕ∈∑ `

 

converges in 2 ( )L G . 
 
Remark 13.  Notice that for 2, ( )f g L G∈  the function 
[ , ]f g gϕ  need not generally be in 2 ( )L G . In fact, put 

1/3
[0, ]( ) = ( ) = af x g x xχ −  in Example 2. Then 

2, ( )f g L∈ \ , but [ , ]f g gϕ  is not in . 2 ( )L \

We Say 2 ( )g L G∈  is φ-bounded if there exists 
 so that > 0M . .g M a e

ϕ
≤  Observe that if 

2, , ( )f g h L G∈  and ,g h  are φ-bounded then 
2[ , ] ( )f g h L Gϕ ∈ . 

Now we are ready to define a φ-orthonormal basis in 
terms of an orthonormal basis in 2 ( )L G . To this end, 
we establish the following theorem. 
 

Theorem 14.  If  is a φ-orthonormal sequence 
in 

( )n ng ∈`
2 ( )L G , the following are equivalent. 

• (1)  is a maximal φ-orthonormal sequence, 
i.e.  is not contained in any other φ-orthonormal 
set. 

( )n ng ∈`

( )n ng ∈`

• (2) If  a.e. for all , then [ , ] = 0nf g ϕ n ∈` = 0f  
a.e. (completeness). 

• (3) For each 2 ( ), = [ , ]nn nf L G f f g gϕ∈
∈ ∑ `

 a.e. 

• (4) 2 2= | [ , ]nn
f f g ϕϕ ∈∑ `

|  a.e. for all 2 ( )f L G∈  

(Parseval Identity). 
• (5) [ , ] = [ , ] [ , ] . .n nn

f g f g g gϕ ϕ∈∑ `
a eϕ  

• (6)  is an orthonormal basis for 
, ( )

{ }n n L
M gγ γ ϕ ⊥∈ ∈`

2 ( )L G . 
 
Proof. It is not difficult to mimic the standard proofs for 
a usual orthonormal sequence in a Hilbert space to 
obtain the implications  

. We show equivalence of conditions  and 
 and this will complete the proof. Assume (2). Since 

 is a φ-orthonormal sequence, 
 is an orthonormal system, by 

Theorem 10. So by [4], it is enough to show that it is 
complete. Let 

(1) (2) (3) (4)⇒ ⇒ ⇒ (5)⇒
(1)⇒ (2)

(6)
( )n ng ∈`

, ( )
{ }n n L
M gγ γ ϕ ⊥∈ ∈`

2 ( )f L G∈ . If  for all < , >= 0nf M gγ

n ∈` , ( )Lγ ϕ ⊥∈  then [ ,  for every ] ( ) 0nf g ϕ γ =
l

n ∈` , ( )Lγ ϕ ⊥∈ , which implies [ ,  for all ] = 0nf g ϕ

n ∈` . Thus by (2), f = 0 a.e. Similarly (6) implies (2). 
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We call a φ-orthonormal sequence having one of the 
properties (1)-(6) in Theorem 14, a φ-orthonormal basis. 

Now it is natural to ask if φ-orthonormal bases 
always exist in 2 ( )L G . The following proposition gives 
an affirmative answer to this question. 
 
Proposition 14.  2 ( )L G  admits a φ-orthonormal basis. 
 
Proof. By Zorn's Lemma the collection of φ-
orthonormal sets ordered by inclusion has a maximal 
element and maximality is equivalent to property (1) in 
Theorem 14. 
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