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Abstract 

In this paper we define ω-independent (a weak-version of independence), 
Kronecker and dissociate sets on hypergroups and study their properties and 
relationships among them and some other thin sets such as independent and Sidon 
sets. These sets have the lacunarity or thinness property and are very useful 
indeed. For example Varopoulos used the Kronecker sets to prove the Malliavin 
theorem. In the final section we bring some examples and find ω-independent and 
dissociate sets on a compact countable hypergroup of Dunkle and Ramirez, the 
dual Chebychev polynomial hypergroup, and some other polynomial hypergroups 
from Lasser. 
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1. Introduction and Notation 

Hypergroups were introduced by Dunkl [2], Jewett 
[10], and Spector [17] in early 70's, although some 
similar structures had already been studied (see [15], 
[1]). Since then some aspects of harmonic analysis on 
groups have been generalized to hypergroups. Our aim 
in this paper is to study some special subsets of 
hypergroups and dual hypergroups that have lacunarity 
or thinness property and have many applications in 
harmonic analysis and related topics. In a series of 
papers [19-21], Vrem has studied lacunarity on 
hypergroups. Also C. Finet has extended some results 
about Riesz, Nicely placed, Shapiro and Rosenthal sets 
to the duals of compact hypergroups [4]. In this paper, 
we introduce the notion of ω − independent sets on 
hypergroups which is the extension of both of 

independent sets on hypergroups [21] and independence 
property on groups. For a group G , a subset  of G  
is called independent if for every distinct elements 

S

1 nx x, ...,  of  and every integers , the 
equation 

S 1 nk k, ...,
1

1
nk k

nx x e... =  implies 1
1

nk
n
kx x= ... = = e [9]. 

For a compact commutative hypergroup K , a subset 
 of E Γ , the dual of K , is called independent by Vrem 

[21], if 1 E∉  and for any finite subset 1{ }nF ξ ξ= ,...,  
of : E

( )i  for each {1}E \ F Fξ ξ∈ , =∩ ; and 

( )ii  for all i iψ ξ∈  ( 1 , { })i n= ,..., 1 { }nψ ψ∗...∗  is 
a singleton in Γ . 

Although such an independent subset of Γ  does not 
necessarily belong to the center of hypergroup and in 
the case of Γ  being a group this definition coincides 
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with the definition of independent subsets of groups, if 
 is only a hypergroup the property (  of the above 

definition is quite restricted. By an 
Γ )ii

ω − independent we 
mean an independent set which is not confined by  
(definition 2.2(a)). As in example 4.4, 

( )ii
1
2{0 }E = ,−  is an 

ω − independent subset of dual Chebychev polynomial 
hypergroup of the first kind, and the center of this 
hypergroup is { 1 . So in general an 1}+ ,−
ω − independent set does not necessarily intersect the 
center of the hypergroup. Theorem 2.9 implies that in 
some hypergroups there are infinite ω − independent 
sets that are not independent. Then ω − independence 
property properly contains independence property (see 
proposition 2.3). 

One of the main results of the section 2 is that every 
ω − independent subset of Γ  with elements of infinite 
order is a Sidon set. (A subset  is called a Sidon 
set if there is a constant B  such that 

E K⊆

ˆ( )f B f
γ

γ
∞∈Γ

| |≤∑  for every -polynomial E f  on 

K  [19].) In the sequel we define and study the 
Kronecker sets on hypergroups and show that under 
certain conditions, an ω − independent set is a 
Kronecker set. These sets have been defined and named 

sets by Hewitt and Kakutani [8] and then Rudin 
called them Kronecker sets on groups [16]. In particular, 
most recently 

0K −

ε -Kronecker and  sets in abelian 
groups have been studied in a series of papers [5-7]. We 
go further and introduce dissociate sets on duals of 
hypergroups and by using the Riesz products for 
hypergroups [21] we are able to prove some results on 
bounded dissociate sets. As a corollary we see that 
every bounded strongly asymmetric dissociate set is a 
Sidon set. 

0I

In the final section we bring some examples and find 
ω − independent and dissociate sets on a compact 
countable hypergroup of Dunkle and Ramirez [3], the 
dual Chebychev polynomial hypergroup, and some 
other polynomial hypergroups from Lasser [13]. 

The main references for definitions and properties of 
hypergroups are [10] and [1]; see also [14]. 
 
Notations. Let K  be a locally compact Hausdorff 
space. We denote by M ( K ) the space of all finite 
Borel measures on K , by ( )M K+  the set of all 
positive measures in M ( K ), and by xδ  the Dirac 
measure at the point x . The space K  is a hypergroup 
if there exists a binary mapping ( ) x yx y δ δ, 6 ∗  from 

K K×  into ( )M K+  satisfying the following 
conditions, 

(1) The mapping ( )x y x yδ δ δ δ, ∗6  extends to a 
bilinear associative operator ∗  from ( ) ( )M K M K×  
into M ( K ) such that 

( ) ( ) ( ) (x yK K K K
)fd fd d xµ ν δ δ µ ν∗ = ∗∫ ∫ ∫ ∫ d y  

for all continuous functions f  in . 0 ( )C K
(2) For each x y, ∈  K , the measure x yδ δ∗  is a 

probability measure with compact support. 
(3) The mapping ( )µ ν µ ν, ∗6  is continuous from 

( ) ( )M K M K+ +×  into ( )M K+ ; the topology on 
( )M K+  being the cone topology. 

(4) There exists e  such that K∈ e xδ δ∗  

x x eδ δ δ= = ∗  for all x ∈  K . 
(5) There exists a homeomorphism involution 

x x −6  from K  onto K  such that, for all x y K, ∈ , 
we have ( )x yδ δ −∗ =

y x
δ δ− −∗  where for ( )M Kµ ∈ , 

µ−  is defined by 

( ) ( ) ( ) ( )
K K

f t d t f t d tµ µ− −= ,∫ ∫  

and also, 

( )x ye supp δ δ∈ ∗ if and only if , y x −=

where ( )x ysupp δ δ∗  is the support of the measure 

x yδ δ∗ . 
(6) The mapping ( ) ( )x yx y supp δ δ, ∗6  is 

continuous from K K×  into the space ( )KC  of 
compact subsets of K , where ( )KC  is given the 
topology whose sub-basis is given by all 

{ ( ) andU V }A K A U A V, = ∈ : ≠ ∅ ⊆C C ∩  

where U, V are open subsets of K . 
Note that x yδ δ∗  is not necessarily a Dirac measure. 

The set ( ) {Z K x K:= ∈ :  for all y K∈ , 
supp ( )x yδ δ∗  is a singleton} is called the center of 
hypergroup. Then ( )Z K  with ( )x y x, 6 y∗  is a 
locally compact semigroup and a group if K  is 
commutative ( x y z∗ =  means x y zδ δ δ∗ = , where 

( )x y Z K, ∈ ). A hypergroup K  is commutative if 

x y y xδ δ δ δ∗ = ∗  for all x y,  in K . Let us first recall 
some properties of locally compact commutative 
hypergroups. Such a hypergroup K  carries a left Haar 
measure  such that m x m mδ ∗ =  for all x K∈  [18]. 
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If x y K, ∈ , for a Borel function f  on K , 

( ) ( )x yK
f x y fd δ δ∗ = ∗∫ . A complex-valued continu-

ous function ξ  on K  is said to be multiplicative if 
( ) ( ) ( )x y x yξ ξ ξ∗ =  holds for all x y K, ∈ . A 

multiplicative function ξ  on K  is called a character if 

( ) ( )x xξ ξ− =  for all x  in K . The dual K̂Γ =  of K  
is the space of all characters of K .  is not necessarily 
a hypergroup. A hypergroup 

Γ
K  is called strong if its 

dual  is also a hypergroup with complex conjugation 
as involution, pointwise product as convolution, that is 

Γ

{ } { }m me x x ′∈ ∗

ˆ
( ) ( ) ( ) (η χ )

K
x x x dη χ ξ δ ξ= ∗∫ δ  

for all K̂η χ, ∈  and x K∈ , and the constant function 

1 as the identity element, and ˆ KΓ � , where Γ̂  is the 
dual of Γ . 

For ( )M Kµ ∈ , the Fourier-Stieltjes transform µ̂  
of µ  is defined by 

ˆ ( ) ( ) ( ) ( )
K

t d tµ ξ ξ µ ξ= ,∫ ∈Γ .  

Similarly the Fourier transform ˆf  of a function 
1( )f L K∈  is defined as 

ˆ( ) ( ) ( ) ( )
K

f t f t dm tξ ξ= ,∫  

where ξ ∈Γ . 
Throughout this paper K  is a compact commutative 

strong hypergroup. 
For a subset E  of K , the closed subhypergroup 

generated by  i.e., the intersection of all closed 
subhypergroups of 

E
K  contains , is denoted by E E . 

If x y K, ∈  and A B K, ⊆  we denote 
{ } { } ( )x yx y supp δ δ∗ = ∗ , { } { }

x A y B
A B x

∈ , ∈
∗ = ∗∪ y , 

0{ } { }x e= , 1{ } { } { }n nx x x −= ∗  and { }  for 
a positive integer n . The sets of natural numbers, 
integers, non-negative integers, non-positive integers, 
and complex numbers with absolute value one are 
denoted by N, Z, Z+, Z- and T, respectively. Then 
for every subset o x  of 

{ }n nx x− −=

( ) n n ′+ , 

{ } { } { } { }1 1

1 1{ ... k kn n n n
k kE : iξ ξ ξ ξ′ ′

= ∗ ∗ ∗ ∗ ∈∪ n  Z+,  

in ′ ∈  Z-,  N, k ∈ }.i Eξ ∈  

Almost periodic functions on hypergroups have been 
studied in [11]. We denote the set of all almost periodic 
functions on  by  and by m Z −′∈ k m m ′= +

 the space of all bounded linear 
operators on ( )AP Γ  with strong operator topology. The 
function 0n n ′+ >  is defined by , where r s, 0 s r≤ <  
( n n rk s′+ = + ).  is not an algebra in 
general. In fact if  is a hypergroup 
compactification of 

{ } { }me x x ′∈ ∗ m

n{ } { }ne x x ′∈ ∗
0 s r≤ <  then ( )rm n ′− +  

( )rm n s′+ − + =  is an algebra and  (for more 
details we refer to [11]). 

( )o x

2. s = 0 Independent and Kronecker Sets 

First we extend the usual definition of order of an 
element of a group to elements of a hypergroup. 

 
Definition 2.1. Let . If there exist ( )o x n ∈Z+ and 
n ′∈Z- such that ( ) 1o e =  and , then we 
define the order of 

( ) ( )o x o x −=
( ) 1o a =  by 

( ) min{| |:o x n n ′= + n ∈Z+,  Z-,  n ′∈

0, { } { } }n nn n e x x ′′+ ≠ ∈ ∗  

Otherwise we say K  has infinite order and denote 
ω − . 
 
Remark. As in the group case it is not difficult to see 
that if n ∈Z+, n ′∈Z-,  and 0n n ′+ ≠

{ } { }ne x x n ′∈ ∗  then  divides ( )o x n n ′+ . For, if 
( )o x k=  ( k  is nonzero), then by above definition 

there exist m ∈Z+ and Z- such that m ′∈ k m m ′= +  
and { } { }me x x m ′∈ ∗ . If , then by division 
algorithm there exist non-negative integers r s

0n n ′+ >
,  such 

that 0 s r≤ <  and . Since n n rk s′+ = +
{ } { }me x x m ′∈ ∗  and  we have { } { }ne x x ′∈ ∗ n

{ } { } { } { } { } { }rm rm n n rm n rm ne x x x x x x′ ′ ′ ′− − − + − +∈ ∗ ∗ ∗ = ∗ . 
But 0 s r≤ <  and ( ) ( )rm n rm n s′ ′− + + − + = , so by 
definition of , ( )o x 0s = . That is  divides ( )o x n n ′+ . 

Also we can easily see that ( ) 1o e =  and 
( ) ( )o x o x −= . But there are some differences too. For 

instance, in the finite hypergroups 9.1B, 9.1C and 9.1D 
of [10] we have ( ) 1o a = , while a  is not the identity e . 

If K  is a locally compact commutative group the 
following definitions of ω − independent and Kronecker 
sets correspond to the definitions of independent and 
Kronecker sets in the group case given in [9]. 
 
Definition 2.2. (a) A subset  of E K  is called 
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ω − independent set if for every choice of distinct 
elements 1 kx x, ...,  of , non-negative integers 

 and non-positive integers , the 
inclusion  
implies  (

E

1 kn n, ..., 1 kn n,...,′ ′

k ke x x x x′∈ ∗ ∗...∗ ∗11
1 1{ } { } { } { } kkn nn n ′

{ } { } iin n
i ie x x ′∈ ∗ 1i k= ,..., ). 

(b) A subset  of E K  is called a Kronecker set if for 
every continuous function f  on  with  and 
every 

E 1f| |=
0ε > , there exists ξ ∈Γ  such that 

( ) ( )f x xξ ε| − |<  ( x E∈ ). 
 
Proposition 2.3. Every independent subset of Γ  is also 
ω − independent. 
Proof. Let  be an independent subset of E Γ . Then 

, and for any finite subset 1 E∉ 1{ }kF ξ ξ= ,..., E of : 
( )i  for each {1}E \ F Fξ ξ∈ , =∩ ; and 

( )ii  for all i iψ ξ∈  ( 1i k )= ,..., , 1{ } { }kψ ψ∗...∗  
is a singleton in Γ . 

Let  where 
 Z+ and  Z-. Then for some 

(unique)  ( ) we have 

11
1 11 { } { } { } { } kkn nn n

k kξ ξ ξ ξ′ ′∈ ∗ ∗...∗ ∗

1 kn n, ..., ∈ 1 kn n,..., ∈′ ′
{ } { } iin n

i i iψ ξ ξ ′∈ ∗ 1i = ,...,k

11 { } { }kψ ψ∈ ∗...∗  and by , ( )ii 1{1} { } { }kψ ψ= ∗...∗ . 
For any subsets A B,  of Γ , 1 A B−∈ ∗  if and only if 

 [7, 4.1.A]. Hence A B ≠ ∅∩ 2{ } { }kψ ψ ψ− ∈ ∗...∗ , 
and so by , ( )i 1 1ψ = . Similarly 1iψ =  for 2i k= ,..,  

and the proof is completed. , 
We have an interesting result on real hypergroups. 

 
Theorem 2.4. For  R or  let K := [0 1], (K ),∗  be a 
hypergroup such that for every x y K, ∈ , 

( )x ysupp δ δ∗  contains at most two points. Then ( )K ,∗  
contains an infinite ω − independent set. 
Proof. In the case K = R, (K ),∗  is isomorphic to one 
of the following hypergroups: 

( )i  -hypergroup R+ together with the 
convolution defined by 

cosh

( ) ( )
2 2r s r s r s
cosh r s cosh r s
coshr coshs coshr coshs

δ δ δ δ| − | +

− +
∗ = +

. .
,  

where R+, and identity as involution; or r s, ∈
( )ii  hermitian one-dimensional hypergroup ( R+ ),∗  

with convolution 1 1
2 2r s r s r sδ δ δ δ| − | +∗ = + , [1, Theorem 

3.4.28]. 
In the case ,  is isomorphic to [0 1]K = , (K ,∗)
( )iii  the (double-coset) hermitian one-dimensional 

hypergroup ([0 1] ), ,∗  with convolution given by 
1 1

12 2r s r s r sδ δ δ δ| − | | −| − ||∗ = +  where , [1, 
Theorem 3.4.21]. 

[0 1]r s, ∈ ,

Hence it is enough to establish the existence of 
infinite ω − independent sets in these three hypergroups. 

In the both hypergroups  and , ( )i ( )ii
{ } { } { }r s r s r s∗ = | − |, +  R+ . Then we can 
easily see that for every 

(r s, ∈ )
r s, ∈R+, 

 and { }{ } {0 2 4 }mr r r= , , ,...,mr { 3 5 }ns s s s ns= , , ,...,  
and also  if and only if 0 { } { }mr s∈ ∗ n

3 3 31 1 1
2 2 2 4 4 4{ }r n n n

s m m m∈ , ,..., , , ,..., ,..., , ,..., , where n m,  are 
odd and even integers, respectively. Similarly for m ,  

 odd,  if and only if n 0 { } { }mr s∈ ∗ n

3 3 31 1 1
3 3 3 5 5 5{1 3r n n

s mn m∈ , ,..., , , ,..., , , ,..., ,..., , ,...,  }n
m . So if 

at least one of the integers  is odd, we have 
 if and only if there exists 

1 kn n, ...,
1

10 { } { } kn
kr r∈ ∗...∗ n

0)1( ) (0ka a,..., ≠ ,...,  in Zk such that . 
Therefore for any non-negative non-algebraic number 

1 1 0k ka r a r+ ...+ =

ζ ∈R and every distinct elements 1 kr r,...,  in 
2 3{ }S ζ ζ ζ= , , ,... ,  if and only if 1

10 { } { } kn
kr r∈ ∗...∗ n

1 kn n, ...,  are all even. So  implies 
, and this shows that S  is 

1
10 { } { } kn

kr r∈ ∗...∗ n

nr1
10 { } 0 { } kn

kr∈ ,..., ∈
ω − independent. 

In the hypergroup , every element of { }  is of 
the form a b

( )iii nr
r+ , where  Z+, [0 1]r ∈ , , ∈n a b, ∈ Z. 

In general, every element of  is a linear 
combination of 

1
1{ } { } kn

kr r∗...∗ n

1 kr r,...,  with integer coefficients. This 
implies that for any non-algebraic [0 1]η∈ ,  and odd 
integer  we have n 0 { }nη∉ . Hence for every distinct 
elements 1 kr r,...,  in 2 3{T η η η }= , , ,...  and integers 

1 kn n, ..., ,  if and only if 1
10 { } { } kn

kr r∈ ∗...∗ n
1 kn n, ...,  

are all even and so 0 {  ( ). Therefore T  

is 

} in
ir∈ 1i = ,...,k

ω − independent. , 
 
Remark. The sets  and T  introduced in the proof of 
theorem 2.4 do not satisfy in the condition  of 
independent sets and so are not independent. 

S
( )ii

 
Theorem 2.5. Every ω − independent set  with 
elements of infinite order is a Sidon set. 

E ⊆ Γ

Proof. We will prove the condition  of the 
equivalence 2.2 in [19]. For this, let 

( )v

1{ }kF γ γ= ,...,  be a 
finite subset of  and consider E
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1
( )k

i i Ei
f a Trig Kγ

=
= ∈∑ , where  are complex 

numbers and  denotes all the trigonometric 
polynomials on . Then by orthogonality of characters 

1 na a, ...,

( )ETrig K
E

if ( 1 )
ˆ( )

0 otherwise
i iia K i n

f
γ ξ γ

ξ
| | = = ,..., ,⎧⎪| |= ⎨

,⎪⎩
 

where K dγ γγ= ∫ m . We have 

( ) ( ) ( )

( ) ( ) ( ) ( )({1}),

K x x dm x

x dm x d

γ

γ γ γ γ

γ γ

ξ δ δ ξ δ δ

=

= ∗ = ∗

∫

∫∫
 

and so 

1 1

ˆ ˆ( ) ( )
( )({1})

i

i i

n n
i

i
i

a K
f f dm aγ

γ γ

ξ ξ
δ δ=

| |
= | | = = | | .

∗∑ ∑∫
1i =

 

Put 1 ( ) 0
( )

i
iRe a

A Re a
≥

= ∑ , 2 ( ) 0
( )

i
iRe a

A Re a
<

= |∑ | , 

3 ( ) 0
( )

i
iIm a

A Im a
≥

= ∑  and  

Then 
4 ( ) 0

( )
i

iIm a
A Im

<
= |∑ a | .

4}

1 4
1 1

( ) ( ) 4 { }
n n

i i i
i i

a Re a Im a max A A
= =

| |≤ | | + | |≤ . , ..., .∑ ∑  

Let 1 1{A max A A= ,..., , (proofs in the other cases 
are similar). For , if  we take 1i n= ,..., ( ) 0iRe a ≥

ix e= . If , since  and ( ) 0iRe a < 0i dmγ =∫ ( ) 1i eγ = , 

there exists some v  in K  such that ( ( )) 0iRe vγ < . 
Choose { }ix v v −∈ ,  such that  and ( )iIm a ( ( ))i iIm xγ  
have different signs. So if  then ( ) 0iRe a ≥

( ( )) (i i i iRe a x Re a )γ. = , and if  then ( ) 0iRe a <

( ( )) ( ) ( ( ))

( ) ( ( )) 0.

i i i i i i

i i i

Re a x Re a Re x

Im a Im x

γ γ

γ

. =

− ≥
 

Hence 

1
1

( (
n

i i i
i

A Re a xγ
=

≤ .∑ )).  

Claim: there exists an x K∈  such that 
( ) ( )i i ix xγ γ= , for all . 1i k= ,...,
To prove this claim, first note that the function ϕ  

defined on F  by 
1

( ) ( ( )) ii
k n n

i ii
xϕ ξ γ + ′

=
=∏ , where 

 Z+,  Z- ( ) and 
, is well-defined, 

because if for other integers  Z+ and 

in ∈ in ∈′ 1i = ,...,k
n ′11

1 1{ } { } { } { } kkn nn
k kξ γ γ γ γ′∈ ∗ ∗...∗ ∗

im ∈ im ∈′  Z- 
we also have  
then 

11
1 1{ } { } { } { } kkm mm m

k kξ γ γ γ γ′ ′∈ ∗ ∗...∗ ∗

11 1

1

1 1 1

1

1 { } { } { } { } { }

{ } { } { }

kk

kk

n nn n
k k

mm m
k k

γ γ γ γ γ

γ γ γ

−′ ′

−− −′ ′

∈ ∗ ∗...∗ ∗ ∗

∗ ∗...∗ ∗

m

m−

 

1 11 1
1 1{ } { } { } { }k kk kn m nm n m n

k kγ γ γ γ− − −′ ′ ′ ′= ∗ ∗...∗ ∗ ,  

and then, since  is E ω − independent, 1∈  
 for . Now because every 

element of E  is of infinite order, we have 
{ } { }i ii in mm n

i iγ γ− −′ ′∗ 1i = ,...,k

n m 0i ii im n− + − =′ ′ k for . In addition, for 
given 

1i = ,...,

ξ η,  in F  that .  11
1 1{ } { }n nξ γ γ ′∈ ∗ ..

{ } { } kkn n
k kγ γ ′∗ ∗  and , 

where 

11
1 1{ } { } { } { } kkm mm m

k kη γ γ γ γ′ ′∈ ∗ ...∗ ∗

i in m, ∈Z+ and Z-, we have i in m,′ ′ ∈
1 11 1

1 1{ } { } { } { } { } { } k kk kn m n mn m n m
k kξ η γ γ γ γ+ ++ +′ ′ ′∗ ⊆ ∗ ∗...∗ ∗ ′

 and then 

1

1

( ) ( ) ( )( )

( ( )) ( )( )

( ( )) ( ) ( )

i ii i

i ii i

k
n m n m

i i
i

k
n m n m

i i
i

t d t

x d t

x

ξ η

ξ η

ϕ ξ η ϕ δ δ

γ δ

γ ϕ

+ + +′ ′

=

+ + +′ ′

=

∗ = ∗

= ∗δ

ξ ϕ η= = .

∫

∏∫

∏

 

Hence ϕ  is a character on F . Since K̂  is also a 

hypergroup and ˆ̂K K� , K  separates the elements of 
F . Therefore there exists an x K∈  such that 

( ) ( ) ( )i i i ix xγ ϕ γ γ= =  and the claim is proved. 

Thus  and then 
1

( ( )) (n
i ii

Re a x Re f xγ
=

. =∑ ( ))

1
ˆ 4 ( ( )) 4 ( ) 4f Re f x f x f

∞
≤ ⋅ ≤ ⋅ | |≤ ⋅ .  , 

 
Theorem 2.6. Suppose aΓ  is a hypergroup. Every finite 
ω − independent subset  of  that generates E Γ Γ  and 
has no element of finite order is a Kronecker set. 
Proof. Let f  be a function on  with E 1f| |=  and 

1{ }E kξ ξ= ,..., . Since Γ  is generated by , for every E
ξ ∈Γ  there exist integers Z+, Z- (in ∈ in ∈′ 1i k= ,..., ) 
such that . We 

define 

11
1 1{{ } } { } { } kkn nn n

k kξ ξ ξ ξ ξ′ ′∈ ∗ ∗...∗ ∗

Tϕ : Γ →  by . Note that 
1

( ) ( ) ii
k n n

ii
fϕ ξ ξ + ′

=
=∏

( ) ( )i ifϕ ξ ξ=  for 1i k= ,..., . If also for other im ∈Z+, 

im ∈′ Z- ( 1i k= ,..., ),  11
1 1{ } { } { } km mm

kξ ξ ξ ξ′∈ ∗ ∗...∗
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{ } km
kξ

′∗  then in the same way as the function ϕ  
defined in the proof of theorem 2.4, ϕ  is well-defined. 
Also ϕ  is multiplicative. Because if 

 and  
, where 

11
1 1{ } { } { } { } kkn nn n

k kξ ξ ξ ξ ξ′ ′∈ ∗ ∗...∗ ∗ 1
1{ }mη ξ∈

1
1{ } { } { } kkmm m

k kξ ξ ξ′ ′∗ ∗...∗ ∗ i in m, ∈Z+, 
Z-, then i in m,′ ′ ∈

1 11 1
1 1{ } { } { } { }

{ } { } k kk k

n m n m

n m n m
k k

ξ η ξ ξ

ξ ξ

+ +′ ′

+ +′ ′

∗ ⊆ ∗ ∗.

∗ ∗

..

,
 

and therefore 

{ } { }

{ } { }
1

1

( ) ( ) ( )( )

( ) ( )( )

( ) ( ) ( )

i ii i

i ii i

k
n m n m

i
i

k
n m n m

i
i

d

f d

f

ξ ηξ η

ξ ηξ η

ϕ ξ η ϕ γ δ δ γ

ξ δ δ γ

ξ ϕ ξ ϕ η

∗

+ + +′ ′

∗
=

+ + +′ ′

=

∗ = ∗

= ∗

= =

∫

∏∫

∏ .

a a

 

Since  is a hypergroup,  is an algebra and 
 [11]. So  

(for a commutative Banach algebra 

aΓ ( )AP Γ

( ) ( )aA CΓ = Γ ( ( )) ( ( ))a aA CΓ ≅ ∆ Γ ≅ ∆ Γ
A , ( )A∆  denotes 

the maximal ideal space of A ). Therefore for every 
0ε >  there exists 0x K∈  such that 

0( ) ( )i i xϕ ξ ξ ε| − |<  ( ). , 1i = ,...,k

3. Dissociate Sets 

Dissociate sets are weak versions of independent sets 
that were introduced in [9] for characters group of a 
compact abelian group. We generalize this concept for 
duals of compact hypergroups and give some results on 
hypergroups. Throughout this section K  is a compact 
and strong hypergroup ( that is,  is also a 
hypergroup). A subset  of Γ  is called bounded if 

Γ
E

{ }K Eγ γ: ∈  is bounded, where 1K γ γγ− = ∫ dm . The 

subset  is called symmetric if E { }E Eγ γ= : ∈ , is 
called asymmetric if 1  and E∉ Eγ ∈  with γ γ≠  
imply Eγ ∉ , and is called strong asymmetric if for all 

Eγ ∈  we have γ γ≠  and Eγ ∉ . Obviously strongly 
asymmetric implies asymmetric. 
 
Definition 3.1. A subset  of  is said to be 
dissociate if 1  and for every distinct elements 

E Γ
E∉

1 k Eγ γ,..., ∈  
( )i  1

1{ } { } k
k

ε εγ γ∗...∗  is a singleton for each 

1 { 1 1}kε ε,..., ∈ + ,− ; 
( )ii  for each in ∈Z+ and Z- with in ∈′

{0 1 2}iin n+ ∈ ,± ,±′  ( ), if  1i = ,...,k 1
11 { }nγ∈

1
1{ } { } { } kknn n

k kγ γ γ′ ′∗ ∗...∗ ∗  then 1 { } { } iin n
i iγ γ ′∈ ∗  

( 1i k= ,..., ); 
( )iii  E  is asymmetric. 

 
Remark. As in the example 4.4 a dissociate set dose not 
necessarily belong to the center of the hypergroup. 
Moreover if K  is a compact abelian group then the 
definition of dissociation given above corresponds to 
the usual definition of dissociation in groups. For  
and any subset  of 

0s >
N Γ  not containing 1 define 

( ) ( )(s
B B

R N ψ
ψ

)γ δ γ
∈

, = ∑ ∏  

where the sum is over all asymmetric subsets  of B
{ }N Nγ γ: ∈∪  with . A subset  of ( )card B s= E Γ  

is called quasi-independent if for every finite subset A  
of , E ( 1) 0sR A , =  for 1 2s = , ,...  [21]. Suppose  is a 
dissociate subset of 

E
Γ  and { }N E \ γ γ γ= : = . For 

1 2s = , ,...  we put 

2 ( ) ( )(s
B B

R N ψ
ψ

)γ δ γ
∈

, = ∑ ∏  

where the sum is over all the subsets  of B
{N }Nγ γ: ∈∪  with  and could be 

repeated in 
( )card B s=

B ψψ
δ

∈∏  up to 2. Obviously 2 ( 1) 0sR N , =  

for 1 2s = , ,... . Thus every strongly asymmetric 
dissociate set is quasi-independent. Also we can easily 
see that every independent set is a dissociate set. So our 
definition of dissociation has the same position as 
dissociation does in groups. 

The following interesting theorem is an extension of 
[6, 37.14] to hypergroups, with completely different 
technique. 
 
Theorem 3.2. Let  be a strongly asymmetric 
dissociate subset of 

E
Γ  bounded by D , and g  be a 

complex-valued hermitian function on 
{Q E E }γ γ= : ∈∪  such that for every Eγ ∈ , 
1

2( )g γ| |≤ D . Then there exists a measure ( )M Kµ +∈  
such that ˆ (1) 1µ =  and ˆ( ) ( )gµ γ γ=  for all Eγ ∈ . 
Proof. The function  C defined by h Q: →

( ) ( )h K gγγ γ= ⋅ , is clearly hermitian and 
1 1

2( )h K γγ 2| |≤ ⋅ ≤D  ( Qγ ∈ ). The equalities 
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1 ( ) ( ) 1 ( ) ( ) 1 ( ) ( )h h h h h h ,γ γ γ γ γ γ γ γ γ γ γ γ+ + = + + = + +
 and inequalities ( ) ( ) ) 2 ( ) 1h h hγ γ γ γ γ| + |≤ | |≤  imply 
that 1 ( ) ( )h hγ γ γ+ + γ  is real and non-negative. For a 
finite asymmetric subset A  of Q  we define 

(1 ( ) ( ) )A A
P h h

γ
γ γ γ γ

∈
= + +∏ . Then  is real-

valued and non-negative and by [21] 
AP

( )A AP C
γ

γ γ
∈Γ

= ∑ , where ( ) ( ( ))A B
C

B
h

ψ
γ ψ

∈
= ∏

))

∑  

( )(
B ψψ
δ γ

∈∏  (the last sum ranges over all subsets  

of 

B

A ). 
For distinct elements 1 k Eγ γ,..., ∈  and numbers 

1 { 1 1}kα α,..., ∈ + ,−  let 1
1{ } { } k

k
α αγ γ γ= ∗...∗ . If also 

for other distinct elements 1 t Eη η,..., ∈  and numbers 

1 { 1 1}tβ β,..., ∈ + ,− , we have 1
1{ } { } t

t
ββγ η η= ∗...∗ , then 

1 1
1 11 { } { } { } { } tk

k t
βα α βγ γ η η −−∈ ∗...∗ ∗ ∗...∗ . If for an 

index , j 1{ }j kη γ γ∉ ,..., , 1 { } j
j

βη −∈  and so 1jη = , a 
contradiction. Hence iγ  ’s are unique. Now let i iη γ=  
( ). Since  is dissociate and 1i = ,...,k E

{0 1 2}i iα β− ∈ ,± ,±  ( ), 1 {1i k= ,..., } { }i i
i i

α βγ γ −∈ ∗ . If 
1i i 1α β= , = −  (similarly if 1i i 1β α= , = − ) then 

1 { } { }i iγ γ∈ ∗  and so i iγ γ=  a contradiction because 
 is strongly asymmetric. Hence E iα  ’s are also 

unique. For 1
1{ } { } k

k
α αγ γ γ= ∗...∗  we have 

1
1( ) ( ) ( ) k

A kC h hα αγ γ γ= ...  and so ˆˆ ( ) ( ) ( )AA CP γ γ γ γ=  
1 1

1( ) ( ) k
kh h Kα α

γγ γ −= ... . By relation (2.2) in [21] 
. For other ˆ (1) (1) 1AA CP = = γ  ’s, ˆ ( ) 0AP γ = . Since 

 is non-negative we have ˆ AP 1
ˆ ˆA AmP P=  

. If  is finite we put ˆ ˆ (1) 1A AK
dmP P= =∫ = E

EP mµ =  and if  is infinite we consider the set E
finite{ A }P m A E: ⊆ . With directing this set with 

inclusion, 

1 1
1

1 1( ) ( ) if { } { }

ˆlim ( ) 1 if 1

0 forothers

k k
k k

A A

h h K

P

α α α α
γγ γ γ γ γ

γ

−⎧ ... = ∗...∗ ,
⎪⎪=⎨
⎪

.⎪⎩

γ = ,

A

 

By Alaoglu ’s theorem the net finite{ }P m A E: ⊆  
has a weak*-cluster point ( )M Kµ +∈  and so for a 
subnet { }αµ  of { , w*-}AP m limα αµ µ= . Finally 

ˆ ˆ( ) lim lim ( )d dα α α αµ γ γ µ γ µ γµ= = =∫ ∫ =

1

 

1 1
1

1 1( ) ( ) if { } { }

1 if

0 for others

k k
k kh h Kα α α α

γγ γ γ γ γ

γ

−⎧ ... = ∗...∗ ,
⎪⎪ = ,⎨
⎪

.⎪⎩

 

In particular 1ˆ ( ) ( ) ( )h K gγµ γ γ −= = γ  for all Eγ ∈ ., 
 
Corollary 3.3. Every bounded strongly asymmetric 
dissociate subset  of E Γ  is a Sidon set. 
Proof. Let g  be a complex-valued function on  
bounded by C. Take a real number D greater than 

E

2 (Esup gγ )γ∈⋅ | | . Then  and  
are functions on  satisfying in the hypothesis of 
theorem 3.2. So there are 

C 1 ( )Re g− ⋅D 1 ( )Im g− ⋅D
E

1 2 ( )M Kµ µ +, ∈  such that 
 and  on . Thus 1

1ˆ ( )Re gµ −= ⋅D 1
2ˆ ( )Im gµ −= ⋅D E

1 2
ˆ( )D iD gµ µ⋅ + ⋅ =  on . Now by theorem 2.2 of 

[19] E  is a Sidon set. , 

E

Another proof for corollary 3.3 follows from 
corollary 4.4 of [21]. 

 
Corollary 3.4. Let  be a strongly asymmetric 
and dissociate set, bounded by C. Then C is 
bounded if and only if 

E ⊆ Γ
g E: →

g  is the restriction to  of a 
bounded positive-definite function on Γ . 

E

Proof. Suppose g  is bounded and put h =  
1(2 { ( ) })sup g E gγ γ −⋅ | |: ∈C . Then 1

2( )h γ| |≤ C  and by 

theorem 3.2. there exists an ( )M Kυ +∈  such that 
ˆ( ) ( )h γ υ γ=  ( E )γ ∈ . Therefore ˆ( ) ( )g γ µ γ=  ( )Eγ ∈  

where 2 { ( ) }sup g Eµ γ γ υ= ⋅ | |: ∈C , and since the 
Fourier transform of the measure µ  is bounded and 
positive definite on Γ , the corollary is established. (The 
other part of the corollary is plain.) , 

4. Examples 

Example 4.1. Fix a prime  and let  denote the 
ring of -adic integers. Every  has a unique 

expansion 

p p∆

p px ∈∆
2

0 1 2x x x p x p= + + + ...  where ix ∈  
{0 1 1}p, ,..., −  ( 0 1 2i = , , ,... ), we refer to 10§  of [9] for 
details. For pG = ∆ , the group of -adic integers, and p

0{ pH x x 0}= ∈∆ : ≠ , the group of units in p∆ , the 

countable compact hypergroup HG  is homeomorphic 
to ∞

+Ζ , the one-point compactification of Z+. Then ∞
+Ζ  

is a hermitian hypergroup with  as identity and with ∞
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the following convolution, 

{ } for andm n min m n m nδ δ δ ,∗ = ≠ ,  

1

2 1
1n n n kk n

k n

p
p p

δ δ δ
∞

−
= +

−
∗ = +

− ∑ δ .

∈ 2

 

Then for every Z+ and every integer , m ∈ 2n ≥

{ } { 1 2 }nm m m m= , + , + ,...,∞ .  

If Z+ and  then for all integers 
, . This 

implies that the only 

1 2m m, 1m m<

2n ≥ 1 2 1 1{ } { } { 1 }nm m m m∞∈ ∗ = , + ,...,∞

ω − independent subsets of +
∞Z  are 

singletons. In addition  implies 
that for every m  Z+,  

1 2{ } { } { }m m m−∞∈ ∗ = 3

∈ ( ) 1o m = . 

We can identify the dual hypergroup ˆ +
∞Z  with 

{ 0 1 2n n }χ : = , , ,... , where nχ  is a function on +
∞Z  

defined by 

1 if or

1( ) if 1
1

0 if 2

n

m n m

m m
p

m n

χ

⎧ ≥ =
⎪
⎪ −

= =⎨ −⎪
⎪

n

∞,

− ,

≤ − .⎩

 

We have { }n m max m nχ χ χ ,= ,  and 

1
2

01
1

1 2
1( 1)

n
k n

n kn
k

pp
pp p nχ χ χ

−
−

−
=

−
= + +

−− ∑ χ .  

ˆ +
∞Z  is hermitian and so every subset of ˆ +

∞Z  is 
asymmetric and satisfies the condition (  of definition 

3.1, because for distinct elements 

)i

1
ˆ

kn nχ χ +
∞,..., ∈Z  we 

have 

1 1{ }{ } { } { }
k kn n max n nχ χ χ ,...,∗...∗ = .  

If  then 10 n n< < 2 0χ ∈
1 2

2{ } { }n nχ χ∗  

1 1 20 1 0 1{ } { } { }n n n 2nχ χ χ χ χ χ χ χ= ∗ , ,..., ,..., = , ,...,  but 

10 { }nχ χ∉ . Hence the only dissociate subsets of ˆ +
∞Z  

are singletons. 
The following example comes from [13]. 

 
Example 4.2. Let  be sequences of 

non-zero real numbers and  be a sequence of 

real numbers with the following properties, 

0
( ) ( )n n n na c∈ ,Ν N∈

0
( )n nb ∈N

0 0 1a b+ =  

1 1n n na b c n+ + = , ≥ .  

Let  be a polynomial sequence defined by 
0

( )n nR ∈N

0 1
0

1( ) 1 ( ) ( )R x R x x b
a 0= , = − ,  

1 1 1( ) ( ) ( ) ( ) ( ) 1n n n n n n nR x R x a R x b R x c R x n+ −= + + , ≥ .  

Then we have 

( ) ( ) ( ) ( )
n m

n n k
k n m

R x R x g n m k R x
+

=| − |

= , ; ,∑  

where ( )g n m k, ; ∈R for all n m k n m| − |≤ ≤ + . If the 
coefficients ( )g n m k, ;  satisfy 

for all( ) 0g n m k n m, ; ≥ , ∈  R  

and ( )n m k n m| − |≤ ≤ + ℘ ,  

then N0( ),∗  is a discrete commutative hermitian 
hypergroup (called a polynomial hypergroup) with 
convolution 

( )
n m

n m k
k n m

g n m kδ δ δ
+

=| − |

∗ = , ;∑ .  

For details one can consult to [12]. 
Now fix 2a b, >  and put  0 1a = , 1

1
a

aa | − |= ,  
11 1 1

1 2 2 2
b

n na b bc a c a c−= , = , = , = = ( 3)n ≥ ,  0nb =  
(n ∈N0 . By recursion formula there exists an 
orthogonal polynomial  satisfying 

property (

)

0
( ( ))nT x a b ∈; , Nn

℘ ). Using formula (1) of [12] ( )g n m k, ;  ’s 
can be computed and so that 

{0} { } { }n n∗ =  ( ), 0n ≥

{1} { } { 1 1}n n n∗ = − , +  ( ), 1n ≥

{2} { } { 2 2}n n n n∗ = − , , +  ( ), 2n ≥

{3} { } { 3 1 1 3}n n n n n∗ = − , − , + , +  ( ), 3n ≥

{4} { } { 4 2 2 4}n n n n n n∗ = − , − , , + , +  ( ), 4n ≥

{ } { } { 2 4 4m n n m n m n m n m∗ = − , − + , − + , + − ,  

                    2 }n m n m+ − , +   ( 5n m≥ ≥ ).

Therefore 

{1} {0 2 4 }n n= , , ,...,  (  even), n

{1} {1 3 5 }n n= , , ,...,  (  odd), n
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{2} {0 2 4 2 }n n= , , ,...,  ( ), 2n ≥

{3} {0 2 4 3 }n n= , , ,...,  (  even), n

{3} {1 3 5 3 }n n= , , ,...,  (  odd), n

{4} {0 2 4 4 }n n= , , ,...,  ( ), 2n ≥

{5} {0 2 4 5 }n n= , , ,...,  (  even), n

{5} {1 3 5 5 }n n= , , ,...,  (  odd), n

{6} {0 2 4 6 }n n= , , ,...,  ( ), 4n ≥

3{6} {2 4 6 8 10 12 14 16 18}= , , , , , , , , , 

2{6} {0 2 4 8 10 12}= , , , , , , 

{7} {0 2 4 7 }n n= , , ,...,  (  even), 4n ≥

{7} {3 5 7 }n n= , ,...,  (  odd), 3n ≥

2{7} {0 2 4 10 12 14}= , , , , , , 

#  

Then for every odd N, the hypergroup N0n ∈ ( ),∗  is 
generated by , because n

3{ }n n∈ ;    
 

52 2 { }n n n− , + ∈ ; 74 4 { }n n n− , + ∈
21 2 1 { }nn n +, − ∈ ; 42 1 { }nn n ++ ∈

..

 For  even we have 
 and this implies that for 

every even numbers  there exists an  such that 
. Then by the following remark the only 

n
2 4 62 { } 4 { } 6 { }n n n∈ , ∈ , ∈ ,.

k n, m
{ }mk n∈

ω − independent subsets of N0  are singletons. ( ),∗
 
Remark. Let  be a discrete commutative 
hermitian hypergroup and let 

(K ,∗)
A K⊆ . For every x e≠  

in A \ A , the set { }A x∪  is not ω − independent. 

Because x A \ A∈  implies that there are  
and Z+ such that 

1 ka a A, ..., ∈

1 kn n, ..., ∈ ix a≠  ( ) and 
. So  

and by 

1i = ,...,k
n1

1{ } { } kn n
kx a a∈ ∗...∗ 1

1{ } { } { } kn
ke x a a∈ ∗ ∗...∗

x e≠ , { }A x∪  is not ω − independent. 
 
Example 4.3. In some hypergroups ( N0  such as 
Chebyshev polynomial hypergroup of the first kind and 
also -hypergroup on N0, we have 

),∗

cosh
{ } { } { }m n n m n m∗ = | − |, +  ( m n N0) [1]. So for 
every N0, 

, ∈
n ∈

odd and

even

{ } { 3 5 } ( ) { }

{0 2 4 } ( )

k kn n n n kn k n

n n kn k

= , , ,...,

= , , , ..., .
 

Then 0 { } { } { }k k kn n n k′ ′−∈ ∗ =  ( k Z+, ∈ k ′∈ Z-, 
0n ≠ ) implies that k k ′−  and so  is even. So 

the order of every element of N0 except 0 is 2. Let 
k k ′+

A  be 
an ω − independent subset of N0 and  be distinct 
elements of 

1 2n n,
A . Then there are N such that p q, ∈

gcd( ) 1p q, =  and 1

2

n p
n q=  and without lose of generality 

we may suppose that  is odd. The proof of theorem 
2.4 implies that , while 

p

1 20 { } { }qn n∈ ∗ p

20 { }pn∉ , a contradiction. Hence the only 
ω − independent subsets of N0 are singletons. 

In the following example we find ω − independent 
and dissociate sets that are not singleton. 
 
Example 4.4. Let G = T , the unit circle group, and 

{H id }τ= , , where  and ( )id x x= ( )x xτ =  ( x ∈T ). 
Then [0 ]HG π≡ ,  and if we replace [0 ]π,  with [ 1,1]−  
by transformation cos xθ =  then [ 1  is a hypergroup 
such that its structure is given by 

,1]−

2 2 2 2(1 )(1 ) (1 )(1 )

1 1
2 2x y xy x y xy x y

δ δ δ δ
− − − + − −

∗ = + .  

In fact it is dual Chebyshev polynomial hypergroup 
of the first kind [1]. The hypergroup [ 1  is hermitian 
and so the orders of it’s elements are at most two. For 
every 

,1]−

[ 1 1]x ∈ − , ,  , 2 2{ } {1 2 1}x x= , − 3{ }x =  
3{ 4 3 }x x x, − ,  2{0} { } { 1 }x x∗ = ± −  and { 1} { }x− ∗ =  

{ }x− . Also in particular {0  for } {1 1}n = ,− 0n ≠  even, 
 for  odd, {0} {0}n = n 1

2{ } {1 }n− = , 1
2
−  for all , 

 for  even and { 1  for n  odd. 
Then 

2n ≥

{ 1} {1}n− = n } { 1}n− = −

(0) ( 1) 2o o= − =  and 1
2( ) 1o − = . If 1

21 {0}∈ ∗{ }n m−  

then 1m n, >  and  is even. So 1 {  and n 0}n∈ 1
21 { }m−∈ . 

Therefore 1
2{0 }E −= ,  is ω − independent. For 

[ 1 1]x y, ∈ − , , { } { }x y∗  is singleton if 1x = ±  or 
1y = ± . Then the subsets of the form {1 }E x= ,  or 

{ 1 }E x= − ,  satisfy the condition (  of definition 3.1. 
We have { 1

)i
} { } { }n m mx x− ∗ =  for  even and 

 for  odd. So if we take 
n

{ 1} { } { { } }n m mx t t x− ∗ = − : ∈ n
[ 1 1]x ∈ − ,  such that 1 { }mx− ∉  for all m ∈Z+, then 
{ 1 }E x= − ,  ( 1x ≠ ) is a dissociate set because for  n
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odd 1 { 1} { }n mx∉ − ∗ , and for  even 1 {n 1} { }n mx∈ − ∗  
implies  and 1 {1 { 1}n∈ − }mx∈ . For instance 

1
2{ 1 }E −= − ,  is dissociate. 
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