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Abstract
Functional data analysis is a relatively new and rapidly growing area of

statistics. This is partly due to technological advancements which have made it
possible to generate new types of data that are in the form of curves. Because the
data are functions, they lie in function spaces, which are of infinite dimension. To
analyse functional data, one way, which is widely used, is to employ principal
component analysis, allowing finite dimensional analysis of the problem. The
authors gave stochastic expansions of estimators eigenvalues and eigenfunctions,
providing not only a new understanding of the effects of truncating to a finite
number of principal components, but also pointing to new methodology, such as
simultaneous and individual bootstrap confidence statements for eigenvalues and
eigenfunctions. The expansions explicitly include terms of sizes n−1/2, n−1,  and  a
remainder of order n−3/2, where n denotes sample size. The terms of size n−1/2 are
related to limit theory. Because for many situations, the exact statistical properties
of the eigenvalues and eigenfunctions estimators are not directly obtainable, the
way by which we can approximate their distributions is of interest in practice. In
this paper, we discuss asymptotic results for eigenvalues and eigenfunctions. The
work shows that eigenvalue spacings have only a second-order effect on
properties of eigenvalue estimators, but a first-order effect on properties of
eigenfunction estimators.
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Introduction
In recent years, there has been substantial interest in

research on functional data analysis. Application of new
technologies allows data analysts to access a new kind
of data which are functions. Similar to classical

principal component analysis, PCA for FDA produces a
small number of constructed variables from the original
data that are uncorrelated and account for most of the
variation in the original data set. Thus, it is a popular
tool for dimension reduction, which results in
understanding the underlying structure of the data.
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Statistical methodologies which are finite-dimensional
in conventional statistical settings, become infinite-
dimensional in the context of functional data. Therefore,
they challenge classical methods of data analysis and
need theoretical justification.
We  may  describe  PCA  for  FDA  as  a  generalization  of
classical PCA so that matrix-based arguments are
changed to operator-based ones in function spaces such
as Hilbert spaces. However, theoretical treatments for
FDA  are  not  as  easy  as  we  are  thinking  about  in  that
way. High dimensionality of the problems in this field,
alter substantially both numerical and theoretical
properties of statistical methodology. See, for example,
[16,17]. Some theoretical justification for PCA in
functional data analysis is provided by limit theory. See,
for example, [14] and [8].

1. What Are Functional Data?
One  of  the  aspects  of  functional  data  is  to  show

changes over time (the “age” effect), separated from the
effects caused by differences among subjects which are
chosen from the population for the study. This is due to
the nature of the collected data, consisting of repeated
measurements of subjects through time. Unlike cross-
sectional studies, in which we measure a single quantity
for each object, here we are able to use the capacity of
data to explore the “age” effect by analyzing the data.
Separation of changes over time within objects from
those among them can be beneficial for revealing useful
characterizations of the population from which the
sample was drawn. In a sample like 1( ), , ( )nX t X tL ,
the former variation refers to the variable t, time, which
belongs to an interval, say [ , ]a b , and the second can be
seen through the essential randomness of X , in which
for a certain time, we have different values of X when
running from the first individual ( 1( )X t ) to the last one
in the sample ( ( )nX t ). In cross-sectional data, however,
we can see the differences among individuals by
measuring a quantity over sampled individuals, showing

1 2, , , nX X XL .
Figure 1 shows the heights of ten boys, obtained by

measuring each boy at 29 different points of time ([25],
page 2). For each boy, measurement was begun at age
two and continued annually until age ten, after which it
was done biannually for all boys. Therefore, we have 29
records  for  each  person,  which  can  be  assumed  as  a
continuous function due to the nature of growth. As the
graph shows, it can be easily recognized that the sign of
almost all boys' height accelerations tend to change at
some points (ages), especially at 12, 14, and 16. This
might be due to pubertal effects on their growth.

However,  the  effect  is  not  the  same  for  all  boys,  and
differs  in  the  timing  and  the  intensity.  To  explore  the
“age” effect, one can be benefited by using tools for
investigating behavior of functions, such as obtaining
the acceleration curves by estimating the D2Heighti
from the data. Thus, thinking of records as curves rather
than vectors of observations in discrete time enables us
to employ derivatives for investigating the “age” effect
in functional data ([25], page 2).

2. Principal Component Analysis
for Functional Data

Classical principal component analysis (PCA) is
amongst the oldest of the multivariate statistical
methods of data reduction. A Multivariate Analysis
problem could start out with a substantial number of
correlated  variables.  In  such situations,  using  PCA,  we
can reduce the number of the variables to a lesser
number of constructed variables from the original data
that are uncorrelated and account for most of the
variation in the original data set. It helps us to
understand the underlying structure of the data. For this
reason, PCA has found application in fields such as
signal processing, face recognition, image compression
and so on ([21]). Similarly, PCA is widely used in the
study of functional data, since it allows finite-
dimensional analysis of a problem that is intrinsically
infinite-dimensional.

Early  work  on  PCA  for  FDA  includes  that  of
[4,24,27,23,29,30]. Accounts in monographs include
those of [25], especially Chapter 6, and [26]. Work of
[14,7,3,19,22], for example, addresses empirical basis
function approximation and approximations of
covariance operators.

Recent work includes contributions to techniques for
functional PCA (see e.g. [1,2,6,9-13,15,18,20].

Figure 1.  The heights of 10 Swiss boys measured at 29 ages.
The points indicate the unequally spaced ages of measurement
(See [25], page 2).
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2.1. Kernel for Principal Component Analysis

Let X  denote a random function, or equivalently a
stochastic process, defined in the interval I = [0,1]  and

satisfying 2( ) <
I
E X ¥ò . Put ( )E Xm = , a conven-

tional function. The principal component expansion of
X m-  may be constructed via the covariance function,

[ ]( , ) = { ( ) ( )}{ ( ) ( )} .K u v E X u u X v vm m- -

We interpret K  as  the  kernel  of  a  mapping,  or
operator (also denoted by K ),  on  the  space 2 ( )L I  of
square-integrable functions from I  to  the  real  line.  It
takes 2 ( )L Iy Î  to Ky , where

( )( ) = ( , ) ( ) .
I

K u K u v v dvy yò (1)

We may write

=1
( , ) = ( ) ( ),j j j

j
K u v u vq y y

¥

å (2)

where 1 2 0q q³ ³ ³L  is  an  enumeration  of  the
eigenvalues of K , and the corresponding orthonormal
eigenfunctions are 1 2, ,y y K .

The jy ’s are sometimes called the principal
component functions of K .

2.2. Empirical Principal Components

Suppose we are given a set 1= { , , }nX X XK  of
independent random functions, all distributed as X .
The standard empirical approximation to ( , )K u v  is

=1

1ˆ ( , ) = { ( ) ( )}{ ( ) ( )},
n

i i
i

K u v X u X u X v X v
n

- -å

where 1= ii
X n X- å .

Analogously to (1) and (2), we can write the kernel
operator K̂ , on the space 2 ( )L I  as follows:

ˆ ˆˆ ˆ( )( ) = ( , ) ( ) ,
I

K u K u v v dvy yò
and the empirical spectral decomposition

=1

ˆˆ ˆ ˆ( , ) = ( ) ( ),j j j
j

K u v u vq y y
¥

å

where 1 2
ˆ ˆ 0q q³ ³ ³L  is  an  enumeration  of  the

eigenvalues of K̂ , and the corresponding orthonormal
eigenfunctions are 1 2ˆ ˆ, ,y y K .

2.3. Karhunen-Loève Expansion

An expansion of the function X m-  with respect to
the orthonormal basis jy  (in 2 ( )L I  sense) is its
Karhunen-Loève expansion:

=1
( ) ( ) = ( ),j j

j
X u u um x y

¥

- å (3)

where the principal components 1 2, ,x x K  are  given by

I
= ( )j jXx m y-ò . As regards the kernel ( , )K u v , it

follows that

I I
( ) = ( ) ( , ) ( ) = ,j k j k j jkE u K u v v du dvx x y y q dò ò  (4)

where jkd  is the Kronecker delta (recall that the 1/2
jq

are eigenvalues and 1/ 2
jy  are the corresponding

orthonornal eigenfunctions of the operator K ).
Equation implies that the random variables jx  are
uncorrelated, with zero means and variance

2= ( )j jEq x . Moreover, 2
1I

( ) = <jj
E X m q

³
- ¥åò .

We call the expansion the Karhunen-Loève expansion
of X m- . It is also known that if the kernel ( , )K u v  is
a continuous function on I I´ , then the series on the
right-hand side of converges uniformly to ( ) ( )X u um-
(Theorem 1.5 of [8]). However, the 2L  convergence of
the series to ( ) ( )X u um- , satisfied by the condition

2

I
[( ) ] <E X m- ¥ò .

Also, in regard to ˆ ( , )K u v  as the standard empirical
approximation to ( , )K u v , we write

=1

ˆ ˆ= ,i ij j
j

X X x y
¥

- å

where
I

ˆ ˆ= ( )ij i jX Xx y-ò  is  the j th empirical

principal component of iX . In analogy to (4),

I I
=1

1 ˆ ˆ ˆˆˆ ˆ= ( ) ( , ) ( ) = .
n

ij ik j k j jk
i

u K u v v dudv
n

x x y y q då ò ò

[16,17] developed rigorous arguments, based on
arguments from operator theory, that derive stochastic
expansions for eigenvalues and eigenfunctions
estimators as follows.

2.4. Stochastic Expansions for Eigenvalues and
Eigenfunctions

In this Section we give expansions for eigenvalues
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and eigenfunctions which explicitly include terms of
sizes 1/2n -  and 1n - , where n  denotes sample size, and
a remainder of order 3/2n - .  This  work  shows  that
eigenvalue spacings have only a second-order effect on
properties of eigenvalue estimators, but a first-order
effect on properties of eigenfunction estimators.

Take I  to  be  the  unit  interval.  Put = ( )A X E X-
and assume that

(a) for all 0C >  and some 0e > ,

| ( ) | < ,sup C

t
E X t

Î
¥

I

,
[{| | | ( ) ( ) |} ] < ;sup C

s t
E s t X s X te-

Î
- - ¥

I
(5)

(b) for each integer r≥1,
2, ( )r r

j jI
E Aq y- ò  is bounded uniformly in j.

For example, (5) holds for Gaussian processes with
Hölder-continuous sample paths.

Recall that the eigenvalues of the covariance operator
K  are ordered so that 1 2 0q q³ ³ ³K . Let (0,1)jz Î

denote the infimum of 1 ( / )k jq q-  over K  such that
<k jq q , and let (0,1)jn Î  denote  the  infimum  of

( / ) 1k jq q -  over k  such that >k jq q . Define
2 2ˆ ˆ||| ||| = ( )K K K K- -ò , and put = | |min k jj j kr q q¹ - ,

and = | ( ) |supj jus uy .
Theorem 1. If (5) holds, then for each j for which

1ˆ min( , ),
2 j j jK K q z n- £ (6)

ˆ ( ) ( )j jt ty y- = 1/ 2 1

:
( ) ( )j k k j k

k k j
n t Zq q y y y- -

¹

-å ò
1 2 2

:
12 ( ) ( ) ( )j j k j k

k k j
n t Zy q q y y- -

¹

- -å ò
1 1

:
( ){( )k j k

k k j
n ty q q- -

¹

+ -å

1

:
( ) ( )( )j j k

j
Z Zq q y y y y-

¹

´ -å ò òl l l

l l

2 3/ 2( ) ( )( )} ( ),j k j j j k pZ Z O nq q y y y y- -- - +ò ò  (7)

1/ 2 1ˆ =j j j jn Z nq q y y- -- +ò
1 2 3/2

:
( ) ( ) ( ),j k j k p

k k j
Z O nq q y y- -

¹

´ - +å ò  (8)

where the absolute values of the “ 3/2( )pO n - ”

remainders on the right-hand sides of (7) and (8) are
each bounded above by 3/2 1/ 2 3 1/ 2(1 )nj j j j jn U sz r q- - - -- ,
where the random variables njU  satisfy

, 1 ( ) <sup C
njn j E U³ ¥  for each > 0C .  In the case of (7),

this bound is also valid uniformly in t.  Moreover,  the
“ 3/2( )pO n - ” remainders on the right-hand sides of (8)

are bounded above in the 2L  metric by 3/2 3
nj jn U r- - ,

where the njU  have the same properties as before.
Proof: See [16].

Using the stochastic expansions given in and, and
their properties, here we discuss the weak convergence
results for estimators of eigenvalues and eigenfunctions.
Lemma 1. If the random process ( )X t  satisfies the
following condition:
for all > 0C  and some 0e > ,

| ( ) | < ,sup C

t
E X t

Î
¥

I

,
[{| | | ( ) ( ) |} ] < ,sup C

s t
E s t X s X te-

Î
- - ¥

I
(9)

then 1/2 ˆ( , ) = ( )( , ) ( , )Z u v n K K u v u vz- ®  in distri-
bution, where z  is a Gaussian process.
Proof: See the appendix.

The stochastic expansions for eigenvalues and
eigenfunctions given in (7) and (8) are of intrinsic
interest. They can be used as the foundation for theory
in a particularly wide range of settings, for example
bootstrap methods for confidence intervals for
eigenvalues and eigenfunctions ([16]). However, in
order to develop informative theory about the
performance of such methodologies, we need a concise
account of the accuracy to which ˆ

jq  and ˆ jy

approximate jq  and jy , respectively. That account can
be easily provided using properties of the expansions.
Moreover, the problem of determining estimator
accuracy, uniformly over many components, prompts
consideration of explicit uniform bounds that are
obtainable via the mathematical theory of infinite-
dimensional operators ([17]).

The weak limit of Z , z , is a bivariate Gaussian
process with mean zero and the covariance function

( , , , ) cov{ ( , ), ( , )}

{ ( ) ( ) ( ) ( )}

( , ) ( , ),

C u v s t u v s t

E Y u Y v Y s Y t

K u v K s t

z z=

=

-

where (.) = (.) (.)Y X h-  denotes  a  generic iY . Using
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the Karhunen-Loève expansion
=1

( ) = ( )j jj
Y u ux y

¥å ,

where
I

=j jYx yò , we have:

( , , , )C u v s t

1 4 1 2 3 4
=1 =11 4

( ) ( ) ( ) ( ) ( )j j j j j j
j j

E u v s tx x y y y y
¥ ¥

=å åK K

1 2 1 1 2 2
=1 =11 2

( ) ( ) ( ) ( ),j j j j j j
j j

u v s tq q y y y y
¥ ¥

-åå (10)

where we have used the fact that 2( ) =j jk k
E x q .  If  the

absence of correlation among the jx 's is replaced by
independence, only for the purpose of calculating the
expected values of products of four of the variables jx ,
then the first series on the right-hand side of (10) can be
written as

1 4 1 2 3 4
=1 =11 4

( ) ( ) ( ) ( ) ( )j j j j j j
j j

E u v s tx x y y y y
¥ ¥

=å åK K

4

=1
( ) ( ) ( ) ( ) ( )j j j j j

j
E u v s tx y y y yå

1 2 1 1 2 2
1 2

{ ( ) ( ) ( ) ( )j j j j j j
j j

u v s tq q y y y y
¹

+åå

1 1 2 2
( ) ( ) ( ) ( )j j j ju s v ty y y y+

1 1 2 2
( ) ( ) ( ) ( )}.j j j ju t s vy y y y+

Therefore,

( , , , )C u v s t

4 2

=1
{ ( ) } ( ) ( ) ( ) ( )j j j j j j

j
E u v s tx q y y y y

¥

= -å

1 2 1 1 2 2
1 2

{ ( ) ( ) ( ) ( )j j j j j j
j j

u s v tq q y y y y
¹

+åå

1 1 2 2
( ) ( ) ( ) ( )}.j j j ju t s vy y y y+ (11)

Under the assumption that random processes X  is a
Gaussian processes, (i.e. the variables jx  are
independent and jointly normally distributed, rather than
merely uncorrelated, and with zero kurtosis),

4 2( ) = 3j jE x q . In this situation, the asymptotic
covariance function is simplified as follows:

( , , , )C u v s t

1 2 1 2 1 2
1 2

{ ( ) ( ) ( ) ( )j j j j j j
j j

u v s tq q y y y y
¹

=åå

1 2 2 1
( ) ( ) ( ) ( )}j j j ju v s ty y y y+

2

=1
2 ( ) ( ) ( ) ( ).j j j j j

j
u v s tq y y y y

¥

+ å (12)

Results
For many situations, the exact statistical properties of

the eigenvalues and eigenfunctions estimators are not
directly obtainable. Therefore, the way by which we can
approximate their distributions is of interest in practice.
In this section, we discuss asymptotic results for
eigenvalues and eigenfunctions. The asymptotic results
discussed here, can be used to a construct confidence
interval for jq , helping to qualify the amount of
variability that can be explained by the jth principle
component. Also, an asymptotic confidence interval for

jy  provides information about the likelihood that a
bump on ˆ jy  reflects a similar feature in the true
eigenfunction jy .

Asymptotic Distribution of Eigenvalues and
Eigenfunctions

It should be mentioned that accounts of asymptotic
normality of eigenfunctions and eigenvectors and their
projections have been given by [14] and [8]. In
connection with the results discussed above, using the
expansion (7) and (8) , the following shorter expansions
can be derived:

1/2 ˆ( ( ) ( ))j jn t ty y-

1

:
( ) ( ) (1).j k k j k p

k k j
t Z oq q y y y-

¹

= - +å ò  (13)

1/2 ˆ( ) = (1).j j j j pn Z oq q y y- +ò (14)

Similarly, it can be seen from equation (7) that:
2ˆ ||j jn y y-||

2 2

:
( ) ( ) (1),j k j k p

k k j
Z oq q y y-

¹

= - +å ò (15)

Results 13-15 lead directly to limit theorems for ˆ jy

and ˆ
jq , as follows.

Let =j j jP y yÄ  and jQ = 1
:

( )j k k kk k j
q q y y-

¹
- Äå ,
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where x yÄ  is defined by ( ) = ,x y f x f yÄ á ñ  for
each f EÎ . Define the operator jF  such that it maps
Z FÎ  to j jQ ZP FÎ , where F ,  the  space  of  all
Hilbert-Schmidt operators on E  with the inner product
.,. Fá ñ

1 2 1 2, = , ,F j j E
j

T T T e T eá ñ á ñå

and the Borel field FB .
Theorem 2. if the jy 's are continuous (for each 1j ³ ,

[0,1]j Cy Î ), then the random function
1/2 ˆ( ( ) ( ))j jn t ty y-  converges weakly to a Gaussian

process, ( )j tY  say, precisely;

1/2 ˆ( ( ) ( )) ( )j j jn t t ty y- ®Y =

1

:
( ) ( ) , in distributionj k k j k

k k j
tq q y zy y-

¹

-å ò  (16)

Proof: The proof is straightfoward. The operator jF  is
linear and continuous. So, Lemma 1 implies that

( ) ( )j jZ zF ®F  in distribution.
where the non-stationary Gaussian process ( )j tY  has
zero mean and covariance function

( , )j u vt =

1 1
1 2 1 2

1: 1 2: 2
( ) ( ) ( ) ( )j k j k k k

k k j k k j
u vq q q q y y- -

¹ ¹

- -å å

1 2( , , , ) ( ) ( ) ( ) ( ) ,j k j kC u v s t u v s t dudv dsdty y y y´ò
where ( , , , )C u v s t  was introduced in (10). After some
algebraic calculations, under the assumption of
independence the above formula is simplified to

2

:
( , ) = ( ) ( ) ( ).j j k j k k k

k k j
u v u vt q q q q y y-

¹

-å

In particular, the asymptotic variance of 1/2 ˆ ( )jn ty
equals

2 2 2

:
( ) = ( , ) = ( ) ( ) .j j j k j k k

k k j
t t t ts t q q q q y-

¹

-å  (17)

Result (16) can be extended to a p -tuple of the ˆ jy .

The p -tuple 1/2 ˆ( ( ) ( ))j jn t ty y-  for  1 j p£ £

converge jointly and weakly to the non-stationary
Gaussian process 1, , pY YL . In particular, for

1 2, 1j j ³ , the two random functions

1/ 2

1 1
ˆ( ( ) ( ))j jn t ty y- -  and 1/ 2

2 2
ˆ( ( ) ( ))j jn t ty y- -  have

the asymptotic covariance function
2

, ,1 2 1 2 1 1
: 1

( , ) = ( ) ( ) ( )j j j j j k j k k k
k k j

u v u vt d q q q q y y-

¹

-å

2
,1 2 2 1 1 2 2 1

( 1)( ) ( ) ( ),j j j j j j j ju vd q q q q y y-+ - -

where ,1 2j jd  denotes the Kronecker delta. The

covariance function shows that for 1 2j j¹ ,  the  two
elements 1/ 2

1 1
ˆ( ( ) ( ))j jn t ty y- -  and 1/ 2

2
ˆ( ( )jn ty- -

2
( ))j ty  are not asymptotically independent.

Therem 3. in connection to (15), if (9) holds, then we
have

1/2 ˆ , in distribution,j j jn Uy y- ®|| || (20)

where
2 2 2

:
= ( ) ,j j k jk

k k j
U Nq q -

¹

-å (19)

and the random variables =jk j kN zy yò  are jointly

normally distributed with zero mean. Morever, if the
random function X  is  a  Gaussian  process  then

1 2, ,j jN N K  are independent as well as normally
distributed.
Proof: The proof is straightforward by using lemma1
and result (15). Note that, since 4

I
( ) <E X ¥ò ,

2 2

=1 =1
( ) = ( )jk jk

k k
E N E N

¥ ¥

å å

2

I I
= { [ ( , ) ( ) ] }jE u v v dv duz yò ò

2
2I

( )E z£ òò
2 2 2

I I
= { [ ( ) ( ) ] ( , ) }E X u X v K u v du dv-ò ò

2 2

I I
[ ( ) ( ) ]E X u X v du dv£ ò ò

2 2 4

I I
= ( ) ( ) < ,E X E X£ ¥ò ò (20)

from which it follows that the series defining 2
jU  is

finite provided the eigenvalue jq  is not repeated.
Result 1. It implies that

1/2 ˆ( ) , in distribution,j j jjn Nq q- ® (21)

where Njj is normally distributed with mean zero and
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variance
2 4 2= ( ) .j j jEg x q- (22)

An extension of the result (21) is available for any p-
tuple of the ˆ

jq . The p -tuple 1/2 ˆ( )j jn q q-  for
1 j p£ £  converge  jointly  to  a p -variate Normal
distribution. In particular, for 1 2, 1j j ³ , the two random

quantities 1/2

1 1
ˆ( )j jn q q-  and 1/2

2 2
ˆ( )j jn q q-  are

asymptotically distributed as a two-variate Normal
distribution with the covariance

2 2

1 2 1 2 1 2
= ( ) .j j j j j jEg x x q q-

Comparing result (21) with formula (19) for the
limiting distribution of 1/2 ˆ j jn y y-|| || ,  we  see  that
spacings among the eigenvalues kq  impact immediately
on properties of ˆ jy , through first-order terms in its

limiting distribution; but impact on ˆ
jq  only through

second-order  terms.  Note  also  ,  where  it  is  clear  that
eigenvalue spacings affect only the term in 1n - , not that
in 1/2n - .

Appendix
Proof of Lemma 1. We have

1/2 ˆ( , ) = ( )( , )Z u v n K K u v-

1/ 2

=1

1= [( ( ) ( ) ( , ))
n

i i
i

n Y u Y v K u v
n

-å

{ ( ) ( )}{ ( ) ( )}]X u u X v vh h- - -

1/ 2

=1

1= [ ( , ) { ( )
n

i
i

n W u v X u
n

-å

( )}{ ( ) ( )}],u X v vh h- -  (23)

where ( ) = { ( )}u E X uh ,  =i iY X h-  and ( , ) =iW u v
( ) ( ) ( , )i iY u Y v K u v- . The first term on the right-hand

side of is the sample mean of the n independent terms.
Furthermore, by using the fact that ( )X v -

1/ 2( ) = ( )pv O nh -  (Theorem 3.2.5 of [29] with tightness
of ( )X v  which is discussed later), we can write

1/ 2( , ) = ( , ) ( )n pZ u v Z u v O n -+ , where ( , ) =nZ u v
1/ 2

=1
( , )n

ii
n W u v- å .

Theorem 4. Let nP  and P  be probability measures on

[0,1]( , )C F , where [0,1]C  is the space of continuous
functions on [0,1] with the uniform metric

( , ) = | ( ) ( ) |suptx y x t y tr - , for each [0,1],x y CÎ , and
F  is  the s -field constructed on [0,1]C . If the finite-
dimensional distributions of nP  converge  weakly  to
those of P ,  and  if { }nP  is tight, then nP  converges
weakly to P .
Proof: See Theorem 8.1 of [5]. ■

Using the above theorem, if nX  are random
elements of [0,1]C , then { }nX  is tight if { }nP  is tight,
where nP  is the distribution of nX , as we identify the
finite-dimensional distribution of nX  with those of nP
in the above theorem. Therefore, Theorem 4 is
equivalent to the following argument.

If the finite-dimensional distributions of nX
converge weakly to those of X , and { }nX  is tight,
then nX X®  in distribution. Regarding the k  points

1 1( , ), , ( , )k ku v u vL ,  for  each  point  if 4

I
( ) <E X ¥ò ,

then the classical Central Limit Theorem with the
Slutsky Theorem (Theorem 3.3.1 and 3.4.2 of [28])
implies that, for each = 1, ,j kL ,

( , ) (1) ( , )n j j p j jZ u v o u vz+ ® , in distribution, (24)

where ( , )j ju vz  is  the  weak  limit  of ( , )j jZ u v , for
each = 1, ,j kL .  Now,  for  the k  points

1 1( , ), , ( , )k ku v u vL  in [0,1] [0,1]´ , let ( , ), ,( , )1 1u v u vk k
P

L

be the mapping that carries the point h of [0,1] [0,1]C ´  to the

point 1 1( ( , ), , ( , ))k kh u v h u vL  of kR . Since

( , ), ,( , )1 1u v u vk k
P

L
 is  continuous,  we  have

( , ), ,( , ) ( , ), ,( , )1 1 1 1
( ) ( )u v u v n u v u vk k k k
Z zP ®P

L L
 in distribution

(Corollary 1 of Theorem 5.1 of [5]), i.e.

1 1( ( , ), , ( , ))n n k kZ u v Z u v ®L

1 1( ( , ), , ( , )), in distribution.k ku v u vz zL  (25)

(in particular, (25) follows via the Cramér-Wold
device.)
Theorem 5. The sequence { }nX  is tight if it satisfies
these two conditions:

(i) The sequence { (0)}nX  is tight.
(ii) There exist constants 0g ³  and > 1a  and  a

nondecreasing, continuous function F  on [0,1]  such
that
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2 1 2 1
1{| ( ) ( ) | } | ( ) ( ) | ,n nP X t X t F t F t a
gl

l
- ³ £ -  (26)

holds for all 1 2,t t  and n  and all positive l .
Proof: See Theorem 12.3 of [5]. ■

We know that the moment condition

2 1 2 1{| ( ) ( ) | } | ( ) ( ) | ,n nE X t X t F t F tg a- £ - (27)

implies. Furthermore, we can immediately obtain
tightness of { }nX  from condition (9), (27) and
Theorem 5. Also, for some = 2kg , where 1k ³  is an
integer, using Rosenthal's inequality for fixed

, , , [0,1]u v s t Î  results in

1/ 2 1/2

=1 =1
[| ( , ) ( , ) | ]

n n

i i
i i

E n W u v n W s t g- --å å

2

=1
= | { ( , ) ( , )} |

n
k k

i i
i

n E W u v W s t- -å

2
1

=1
{ | ( , ) ( , ) |

n
k k

i i
i

C n E W u v W s tg
-£ -å

2

=1
( | ( , ) ( , ) | ) }

n
k

i i
i

E W u v W s t+ -å

2 | ( , ) ( , ) | ,C E W u v W s t g
g£ - (28)

and

| ( , ) ( , ) | =E W u v W s t g-

| { ( ) ( ) ( ) ( )} { ( , ) ( , )} |E Y u Y v Y s Y t K u v K s t g- - -

3 ( | ( ) ( ) ( ) ( ) |C E Y u Y v Y s Y t g
g£ -

| ( ) ( ) ( ) ( ) | )E Y u Y v Y s Y t g+ -

4 | ( ) ( ) ( ) ( ) | ,C E Y u Y v Y s Y t g
g£ - (29)

where 1C g , 2C g , 3C g  and 4C g  are constants depending
only on g , g , and W  and Y  denote a generic iW  and

iY , respectively. Also,

[| ( ) ( ) ( ) ( ) | ]E Y u Y v Y s Y t g-

[| ( )( ( ) ( )) ( )( ( ) ( ) | ]E Y u Y v Y t Y t Y u Y s g= - + -

{ [| ( ) | | ( ) ( ) | ]C E Y u Y v Y tg g
g£ -

[| ( ) | | ( ) ( ) | ]}E Y t Y u Y sg g+ -

2 1/ 2 2 1/2{( [| ( ) | ]) ( [| ( ) ( ) | ])C E Y u E Y v Y tg g
g£ -

2 1/ 2 2 1/2( [| ( ) | ]) ( [| ( ) ( ) | ]) },E Y t E Y u Y sg g+ - (30)

where C g  is a constant depending only on g . If
condition (9) holds, then (28)-(30) imply that for each
two points ( , ), ( , ) [0,1] [0,1]u v s t Î ´ ,

1/ 2 1/2

=1 =1
[| ( , ) ( , ) | ]

n n

i i
i i

E n W u v n W s t g- --å å

{| | | | },C v t u sa a
g£ - + - (31)

where g  can be chosen such that = > 2a eg . Hence,
using Markov's inequality, for each > 0l , each two
points ( , ), ( , )u v s t Î ´I I  and all n  we have

1/2 1/ 2

=1 =1
(| ( , ) ( , ) |> )

n n

n i i
i i

P n W u v n W s t l- --å å

{| | | | }.C v t u sg a a
g l

-£ - + - (32)

The  proof  of  the  above  theorem,  given  by  [5],  with
condition (32) instead of (26) may be followed to show
that 1/ 2

=1
( , )n

ii
n W u v- å  is  tight.  To appreciate  why,  fix

n , d , j  and k , then for a positive integer m
consider the random variables

1/ 2

=1
= ( ( , )

n

i
i

n W j k
m m

k d d d d- + +ål

l l

( 1) ( 1)( , )),iW j k
m m

d d d d
- -

- + +
l l

for 1, , m=l L . The random variables k
l
 with

=1
= k

kS kå ll
 satisfy

<
=s r

r s
S S k

£

- å l

l

1/ 2

=1
= ( ( , )

n

i
i

s sn W j k
m m

d d d d- + +å

( , )).i
r rW j k
m m

d d d d- + +

So, for 0 r s m£ £ £  and > 0l  we have

<
(| | ) = (| | )s r

r s
P S S Pl k l

£

- ³ ³å l

l

( ) ( )[( ) ( ) ]s r s rC
m m

g a a
g

d d
l - - -

£ +

1 1

< <
[( ) ( ) ]

r s r s
C m mg a a

g l d d- - -

£ £

£ +å å
l l
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,C g a
g l d-£

where we have used (32) to obtain the first inequality
above. By using Theorem 12.2 of [5], we have

1/2

0 =1
( | ( ( , )max

n

i
m i

P n W j k
m m

d d d d-

£ £
+ +å

l

l l

( , )) |> ) ,i
BW j k a
gd d e d

e
- £

where B  depends on g  and a  ( ,=B Bg a ). Since the

iW  for each 1 i n£ £  are  continuous  functions,  if
m ®¥  we have

1/2

( , ) ( , ) < =1
( | ( ( , )sup

n

i
u v j k iE

P n W u v
d d d

-

-
å

|| ||

( , )) |> ) .i
BW j k a
gd d e d

e
- £ (33)

where . E|| ||  denotes the Euclidian norm in 2R . If 1d -

is integer, the above inequality leads to

1/ 2

( , ) ( , ) <1 1 =1< <

( | ( ( , )sup
n

i
u v j k iEj k

P n W u v
d d dd d

-

-- -
å å å

|| ||

2( , )) |> ) .i
BW j k a
gd d e d

e
-- £ (34)

Define the modulus of continuity of an element x  of
[0,1] [0,1]C ´  by

(2)

( , ) ( , ) <
( ) = | ( , ) ( , ) |,supx

u v s t E

w x u v x s t
d

d
-

-
|| ||

where 0 < 1d £ . Let

1/2
,

=1
= { :

n

s t i
i

A n W- å

1/2

( , ) ( , ) < =1
| ( ( , ) ( , )) | }.sup

n

i i
u v s t iE

n W u v W s t
d

e-

-
- ³å

|| ||

If we want to lie ( , )u v  and ( , )s t  each in rectangles
of the form [ ,( 1) ] [ ,( 1) ]j j k kd d d d+ ´ + ,  then  if

( , ) ( , ) <Eu v s t d-P P , these rectangles either coincide
or abut. Therefore,

1/2 (2)

1/2=1

=1

( : ( ) 3 )
n

i n
i n Wi

i

P n W w d e-

-

³å
å

1 ,, <
( )j kj k

P A d dd -
£ È

2
,

1 1< <

( ) ,j k
k j

BP A a
d d g

d d

d
e

-

- -
£ £å å

where we have used (34) to obtain the last inequality
above. Because we can choose g  such that = > 2a eg ,
we may take d  as the reciprocal of a large integer, and
in  this  way  make 2( / )B g ae d -  very small. Moreover,
for all > 0a  and adequate choice of d  we have

1/ 2

=1
(| (0,0) | )

n

i
i

P n W a- ³å

1/2

=1
[| (0,0) | ]

n

i
i

E n Wd da - -£ å

1 { | (0) (0) | | (0,0) |}C E Y Y Kd d d
d a

-£ +

2 { | (0) (0) | | (0) (0) | }C E Y Y E Y Yd d d
d a

-£ ´ + ´

2 1/ 2 2 1/ 2
3 { | (0) | } { | (0) | }C E Y E Yd d d
da

-£ ´

4 ,C d
d a

-£

where 1 2 3 4, , ,C C C Cd d d d  are constants depending only
on d ,  and  we  have  used  condition  to  obtain  the  last
inequality above. Thus,

( , ) ( , ), in distribution.Z u v u vz®  ■ (35)
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