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Abstract 
Nonlinear difference equations of higher order are important in applications; 

such equations appear naturally as discrete analogues of differential and delay 
differential equations which model various diverse phenomena in biology, 
ecology, economics, physics and engineering. The study of dynamical properties 
of such equations is of great importance in many areas. The autonomous 
difference equations have been studied extensively. The situation is more 
complicated when the considered model is nonautonomous. In this work we study 
global attractivity and boundedness of solutions of the following nonautonomous 

difference equation of order 1k + , 1 1 ...
n n

n
n n k

a xx
x x+

−

=
+ + +

, in which { }na  is a 

positive bounded sequence. This equation is nonautonomous form of the logistic 
type difference equation with several delays. We prove that if liminf 1n

n
a

→∞
> , then 

every positive solution is bounded and persistence. Furthermore we prove that 
when we have a positive solution { }nx  such that ( 1) limsup 1n

n
k k x

→∞
+ ≤ , then for 

all positive solutions { }nx , lim 1n

n n

x
x→∞

= . 
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Introduction 

Population models, as taught and practiced by 
ecologists over the past century, represent the attempts 
to understand the nature affecting species populations. 
Applications of difference equations (species with non 
overlapping generations) and differential equations 

(species with overlapping generations) on modeling of 
population dynamics have been widely studied (see [1-
5,8,10-12]). 

The classical logistic equation 

( ) ( )( )(1 ) , 0dx t x trx t t
dt P

= − >  (1) 
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represents a simple model of a single species dynamics 
in which r and P  denote the growth rate and the 
carrying capacity of the population, respectively. 

Usually, bearing in mind the known properties of the 
continuous model, the analogous difference equations 
proposed providing a best discrete approximation. For 
example 

1 1
n

n
n

x
x

x
α
β+ =

+
 (2) 

is the discrete version of (1). The model (1) ignores 
many complicating factors such as those due to age 
structure, spatial distribution and migration, sexual 
categories and others. The delayed logistic equation 
with a discrete delay or Hutchinson's equation [3] 

( ) ( )( )(1 )dx t x trx t
dt P

τ−
= −  (3) 

provides a simple modification of (1). Pielou [11] 
considered the delay difference equation 

1 1
n

n
n k

x
x

x
α
β+

−

=
+

 (4) 

as a discrete analogue of the delay logistic equation (3). 
Also, Kocic et al. in [7] studied the discrete logistic 
nonautonomous equation 

1 1
n n

n
n k

x
x

x
α

+
−

=
+

 (5) 

In order to introduce several delays, equation (4) has 
been modified to the following: 

1

1
1

i

n
n m

i n ki

x
x

x
α

β
+

−=

=
+∑

 (6) 

which can be considered as a discrete analogue of the 
delay logistic equation: 

1

( ) ( )( ( ))
m

j j
j

dx t rx t a b x t
dt

τ
=

= − −∑  (7) 

with several delays ( 1, 2,..., )j j mτ = . Eq.(6) studied 
extensively in [6]. 

 We consider in this paper the nonautonomous 
difference equation 

1 1 ...
n n

n
n n k

a x
x

x x+
−

=
+ + +

 , 0,1,...n =  (8) 

with initial conditions 1 0,..., 0, 0kx x x− − ≥ >  and 

0 , , 1,...nC a D n k k< ≤ ≤ < ∞ = − − +  

in which k  is a nonnegative integer. If for some 
(0,1)α ∈  and for all n ∈` , na α≤ , then by [9, Th. 2] 

the trivial solution 0x =  is the global exponential 
attractor of all solutions of Eq.(8). Furthermore author 
in [10] proved that if 1na <  and lim 1nn

a
→∞

= , the zero 

solution is globally asymptotically stable. 
In this work we obtain new sufficient conditions for 

global attractivity of the solutions of Eq.(8). Also we 
study the boundedness and persistence of the solutions. 

Results 

1. Boundedness 

We use the following notation in the sequel: 

lim inf nn
a a

→∞
= , lim sup nn

b a
→∞

=  (9) 

 
Lemma 1. Assume that one of the following two 
conditions hold: 

(1) b<1 
(2) b=1 and there exists an integer 0N  such that 

1na ≤  for 0n N≥ . 
Then every positive solution { }nx  of (8) is 

eventually decreasing and lim 0nn
x

→∞
= . 

Proof. For sufficiently large n  we have 1na ≤  and 

1 1 ...
n n

n n
n n k

a x
x x

x x+
−

= <
+ + +

 

hence { }nx  is eventually decreasing, and therefore 
convergent, that is lim 0nn

x x
→∞

= ≥ . Now there exists a 

subsequence { }ni
a  such that lim limsup

in ni n
a a b

→∞ →∞
= = , 

and we have 

lim lim
1 ... 1 ( 1)

i i

i

i i

n n
ni i

n n k

a x bxx x
x x k x→∞ →∞

−

= = =
+ + + + +

 

hence we have 0x =  or 1 0
1

bx
k
−

= ≤
+

 which yield 

0x = .  
 

Lemma 2. The following statements are true: 
(i) If one of the following two conditions holds: 
(a) b>1; 
(b) b=1 and for every positive integer 0N  there 

exists 0n N>  such that 1na > ; 
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Then there exists a positive integer 0N  such that for 
every 0n N> , 

n kx − , 1n kx − + , …, 11n n nx x b x x+≥ > − ⇒ < . 

(ii) If 1a >  then there exists a positive integer 0N  
such that for every 0n N>  

1 1, , ... , 1n k n k n n nx x x x a x x− − + +≤ > − ⇒ > . 

Proof. We prove part (i). Let 0 ( 1) 1k x bε< < + + − , 
then there exists 0N k>  such that na b ε< +  for 

0n N> . Furthermore, if 0n N>  and n kx − , 

1, ... , 1n k nx x x b− + ≥ > −  then we have 

1
( )

1 ... 1 ( 1)
n n n

n n
n n k

a x b x
x x

x x k x
ε

+
−

+
= ≤ <

+ + + + +
. 

Part (ii) can be proved by a similar argument.  
A sequence { }nx  is said to oscillate if the terms nx  

are neither eventually all positive nor eventually all 
negative. Otherwise the sequence is called 
nonoscillatory. A sequence { }nx  is called strictly 
oscillatory if for every 0 0n ≥ , there exist 1 2 0n n n> ≥  
such that 

1 2
0n nx x < . A sequence { }nx  is said to 

oscillate about the sequence { }nx  if the sequence 

{ }nnx x−  oscillates. The sequence { }nx  is called 

strictly oscillatory about { }nx  if the sequence 

{ }nnx x−  is strictly oscillatory. 

For positive sequences { }nx  and { }nx , we define a 

positive semicycle of { }nx  relative to the sequence 

{ }nx  as a string of terms { }1 2, ,...,l l mC x x x+ + +=  such 

that i ix x≥ for 1,...,i l m= +  with l k≥ − and m ≤ ∞  

and such that either l k= −  or 0l ≥  and l lx x<  and 

either m = ∞  or m < ∞  and 1 1m mx x+ +< . A term 

px C +∈  is said to be a maximum of the positive 

semicycle C +  relative to { }nx  if 

1

1
max ,...,p l m

p ml

x x x
x x x

+

+

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

. 

A negative semicycle is defined similarly. 

Lemma 3. Every positive solution of equation (8) is 
bounded from above by a positive constant. 
Proof. We have the following possible cases: 

(1) Either 1b <  or 1b =  and there exists an integer 
0N  such that 1na ≤ , for 0n N≥ . From lemma 1 it 

follows that every positive solution of (8) converges to 
0  and therefore it is bounded above. 

(2) 1b >  or 1b =  and for every positive integer 0N  
there exists 0n N>  such that 1na > . In this case 

{ }sup 1nB a= > . Let 1x B= −  and { }nx  be a 
nontrivial positive solution of (8). The following three 
cases are possible: 

(a) nx x≤  for 0n N≥ . In this case { }nx  is 
bounded. 

(b) nx x>  for 0n N≥ . By the lemma 2(i), { }nx  is 
decreasing, and therefore convergent and bounded. 

(c) { }nx  strictly oscillates about x . Let 

{ }1
,...,q pi i

x x
+

 be the i-th negative semicycle relative 

to x  followed by the i-th positive semicycle 

{ }1
,...,p ri i

x x
+

. Let M i
x  be the maximum in the i-th 

positive semicycle. From lemma 2(i) it follows that the 
maximum in the positive semicycle occurs in the first 

1k +  terms. Now we have 

1 1

1

1

1

1 ...

...
...

(1 ... )...(1 ... )

i i

i i

i

i i k

i i

M M

M
M M k

M p
p

M k p

M p k

i i
i

a x
x

x x

a a
x

x x

B x B x

−

− − −

−

− −

− +

=
+ + +

= =
+ + + +

< <

 

hence 
1limsup limsup

i

k
n M

n i
x x B x+

→∞ →∞
= ≤  

therefore { }nx  is bounded.  
 

Lemma 4. If 1a >  then every positive solution of (8) is 
bounded below by a positive constant. 

The proof is omitted since it is similar to the proof of 
the above lemma. Now the following theorem is a direct 
consequence of lemmas 3 and 4. 

 
Lemma 5. Assume that 1a > . Then every positive 
solution of (8) is bounded and persist, that is there exist 
positive constants ,A B  such that for every n k≥ −  
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0 nA x B< < < < ∞  

2. Attractivity 

In this section we study attractivity of solutions of 8. 
 

Lemma 6. Assume that 1a >  and let { }nx  be a 

positive solution of (8). Then the following statements 
are true: 

(i) If for some integer m , m km kx x −− = , ... , 

mmx x=  then for every 0,1, ...n =  nnx x= . 
(ii) The extremum in every semicycle relative to 

{ }nx , except perhaps in the first one, occurs in the first 

1k +  terms. 
Proof. 

Part (i) is obvious. For the proof of (ii) we consider 
only positive semicycles. If the semicycle has no more 
than 1k +  terms the extremum is one of them. Assume 
that it has at least 2k +  terms, that is n kn kx x −− ≥ , … , 

11 nnx x ++ ≥ . then 

1

1

1

1

1 ...

1 ...

n n
n

n n k

n n n
n

n n k n

n n

n n

a x
x

x x

a x x
x

x x x

x x
x x

+
−

+
−

+

+

=
+ + +

≤ =
+ + +

≤

 

and the result follows.  
For two positive sequences { }nx , { }nx  we use the 

notation nnx x∼ , if lim 1n

n n

x
x→∞

= . 

 
Lemma 7. Assume that 1a > . Then for every positive 
solution { }nx  of (8) which is nonoscillatory relative to 

{ }nx , 

nnx x∼ . 

Proof. We consider only the case when nnx x≥  for 

0n N≥ . From lemma 6 

1

1
1 n n

n n

x x
x x

+

+

≤ ≤  for 0n N> . 

Therefore 

lim 1n

n n

x
x

α
→∞

= ≥ . 

We prove that 1α = . Since { }nx , { }nx , { }na  are 

bounded and persistent sequences, there exists a 
subsequence { }in  of integers such that the 

subsequences { }inx , …, { }in kx − , { }inx , …, { }in kx − , 

{ }ina  are convergent. 

Let 
' '
0lim 0 , ... , lim 0 ,i in n k ki i

x x x x−
→∞ →∞

= > = >  

lim 0
ini

a p
→∞

= > . 

Now from the above relations lim
ini

x
→∞

=  
' '
0 , ... , lim

in k ki
x x xα α−→∞

= . 

Therefore we have 

1

1

'
0

' '
0

'
0

' '
0

lim

1 ... 1 ...
lim

1 ...1 ...

i

i

i i

i i

ii

i i

n

i n

n n

n n k k

i nn

kn n k

x

x

a x p x
x x x x

pxa x
x xx x

α

α
α α

+

→∞ +

−

→∞

−

=

+ + + + + +
= =

+ + ++ + +

 

which yields that 1α =  and the proof is complete.  
 

Theorem 8. Assume that 1a > . Let { }nx  be a positive 

bounded solution of (8) with 

0 lim inf lim supn n
n n

r x x s
→∞ →∞

< = ≤ = < ∞ . 

If ( 1) 1k k s+ ≤ , then for every positive solution 

{ }nx  of (8), nnx x∼ . 

Proof. For the nonoscillatory solution { }nx  with 

respect to { }nx  the previous lemma proves that 

nnx x∼ . Assume that { }nx  is oscillatory with respect 

to { }nx . Let { }1
,...,q pi i

x x
+

 be the i-th negative 

semicycle followed by the i-th positive semicycle 

{ }1
,...,p ri i

x x
+

 . Denote by 
iMx  the maximum in the i-

th positive semicycle and 
imx  the minimum in the i-th 

negative semicycle. Let 
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lim inf liminf i

i

mn

n in m

xx
x x

λ
→∞ →∞

= =  

and  

lim sup limsup i

i

Mn

n in M

xx
x x

μ
→∞ →∞

= = . 

Clearly 1λ μ≤ ≤  and we must show that 1λ μ= = . 
From lemma 6(ii) it follows that the maximum in the 

positive semicycle occurs in the first 1k +  terms of the 
semicycle, and we have 1i iM p k− ≤ + . Clearly for 

every 0ε > , and n  sufficiently large n

n

x
x

λ ε− <  and 

nx s ε< +  (11) 

For i  sufficiently large we have i

i

M

M

x

x
=  

1 11 1

11 1 1

1 ...
1 ...

i ii i

ii i i

M M kM M

MM M k M

a x x x
x x a x

− − −− −

−− − − −

+ + +
+ + +

 

1 1 1

1 1 1

1 ...
1 ( )( ... )

...

i i i

i i i

i

i

M M k M

M M k M

p

p

xx x
x x x

x
A

x

λ ε
− − − −

− − − −

+ + +
<

+ − + +

< < ×

 

in which 

1 1

1 1

1 ... ...
1 ( )( ... )

1 ... .
1 ( )( ... )

i i

i i

i i

i i

M M k

M M k

p p k

p p k

x xA
x x

x x
x x

λ ε

λ ε

− − −

− − −

−

−

+ + +
=

+ − + +

+ + +
+ − + +

 

Now we consider two cases. First, consider the case 
when the maximum occurs in the first k  terms of the 
positive semicycle. Since 1λ ε− <  and 1i iM p− ≤  we 
have 

1 1

1 1

1 2

1 2

1 ...
1 ( )( ... )

1 ......
1 ( )( ... )

i ii

i i i

i i i

i i i

p p kM

M p p k

M k M k p

M k M k p

x x xA
x x x

xx x
x x x

λ ε

λ ε

− − −

− − −

− − −

− − −

+ + +
< ×

+ − + +

+ + +
× ×

+ − + +

 

Furthermore 1i

i

p

p

x

x
<  and function 

1 ( 1)
1 ( 1)( )

k x
k xλ ε
+ +

+ + −
 is increasing for all x . Now from 

the above relation and (11) it follows 

11 ( )( 1)( )
1 ( 1)( )( )

i

i

M k

M

x s k
k sx

ε
λ ε ε

++ + +
<

+ + − +
. 

Now we consider the case when the maximum occurs 
in the ( 1)k + -th term of the positive semicycle relative 

to { }nx . Then 1i iM p k= + +  and we have 

1 1 1

11 1

1 ... ...
1 ...

1 ... ...
1 ( )( ... )

1 ...
1 ( )( ... )

i ii i

i ii i

i i

i i

i i i

i i i

M M kM M

M MM M k

p k p

p k p

p p k p

p p k p

x xx x
x xx x

x x
x x

xx x
x x x

λ ε

λ ε

− − − −

−− − −

+

+

−

−

+ + +
= <

+ + +

+ + +
<

+ − + +

+ + +
+ − + +

 

Since 1i

i

p

p

x

x
<  we have 

11 ( )( 1)( )
1 ( 1)( )( )

i

i

M k

M

x s k
k sx

ε
λ ε ε

++ + +
<

+ + − +
. 

Now since 0ε >  is arbitrary, we obtain 

11 ( 1)( ) ( )
1 ( 1)

i

i

M k

M

x k s G
k sx

λ
λ

++ +
< =

+ +
. 

Hence ( )Gμ λ≤ . Similarly one can show that 
( )Gλ μ≤ . Therefore by [7, Lemma 2] it follows that 

1λ μ= =  and the proof is completed.  
 

Remark: In the case that na a=  (autonomous case), if 

1a > , Eq.(8) has a positive equilibrium 1
1

ax
k
−

=
+

. 

From theorem 8, it follows that the sufficient condition 
for global attractivity of x  is ( 1) 1k a − ≤ . Also if 
0 1a< <  then the trivial solution 0  is the global 
attractor of all positive solutions of Eq.(8). 
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