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Abstract 

The combinations of inductively coupled plasma-optical emission spectrometry 

(ICP-OES) and three classification algorithms, i.e., partial least squares 

discriminant analysis (PLS-DA), least squares support vector machine (LS-SVM) 

and soft independent modeling of class analogies (SIMCA), for discriminating 

different brands of Iranian bottled mineral waters, were explored. ICP-OES was 

used for the determination of Li, Na, K, Ca, Mg, Sr, Ba, B, Si and Zn in bottled 

mineral waters (150 samples) from 30 brands. Hierarchical cluster analysis (HCA) 

and principal component analysis (PCA) showed differences in water samples 

according to the mineral composition. 120 samples (4 for each brand) were 

selected randomly for the calibration set, and 30 samples (1 for each brand) for the 

prediction set. PLS-DA, LS-SVM and SIMCA were implemented for calibration 

models. The results suggest that ICP-OES combined with PLS-DA, LS-SVM and 

SIMCA models had the capability to discriminate the different brands of mineral 

waters with high accuracy. The model can resolve the tap water samples from 

classified mineral waters accordingly. 

 
Keywords:  Multivariate classification; Inductively coupled plasma optical emission 

spectrometry; Bottled mineral waters 

 

 

                                                        
* Corresponding author, Tel.: +98(21)22850266, Fax: +98(21)22853650, E-mail: jahan.ghasemi@gmail.com 

Introduction 

Drinking water, as the most important type of natural 

water, has a dominating role in human life. It is one of 

the basic and most inspected nourishment components 

therefore great demands are imposed on its quality. The 

world market of bottled water has grown quickly and is 

considered as a global billion dollar business [1-3]. In 

the countries such as the United Arab Emirates, nearly 

90% of the population drinks bottled mineral water. The 

dramatic increase in the consumption of bottled water 

worldwide has been attributed to the consumers concern 

over increasing water pollution and their objection to 

offensive tastes and odours such as chlorine from 

municipal water supplies and bacterial contamination 

[4]. Another reason is a common belief that mineral 
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waters have beneficial medicinal and therapeutic effects 

[5]. Almost any mineral species are allowed to be 

contained in drinking water. It is demanded that they are 

not harmful to the human body and in addition, they 

should be biologically valuable. Drinking water 

originating from a natural source has to fulfil specified 

health and technical requirements [6, 7]. It should be 

tasty, with a good appearance, adequate temperature, 

refreshing and without any odour. With regard to its 

biological and bacteriological properties it must not 

contain any disease-carrying germs. Drinking water 

should contain many species, mainly trace biogenic 

elements, in such an amount and composition that their 

optimal utility for human body is assured. Trace 

elements can be categorized as those essential to human 

life, e. g. Co, Cr, Cu, Fe, Mn, Mo, Se, and Zn, and those 

potentially toxic, e.g. Ag, Al, As, Cd, Pb, and Ni. The 

presence of non-essential and toxic elements does not 

necessarily indicate that water consumption presents a 

health risk. Also, certain essential trace elements, like 

Co, Cr, Fe, Mn, and Se, can be toxic at concentrations 

above the specific cutoff levels [8]. Therefore it is 

necessary to follow the presence and concentration of 

species important for a proper advancement and growth 

of the human body. Application of multivariate analysis 

to complex data sets are enjoying in the last years a high 

scientific interest and are now routinely used in most 

fields of application [9-11]. One of the main advantages 

of these techniques, such as principal component 

analysis (PCA), factor analysis (FA), cluster analysis 

(CA), is in the ability in analyzing large and 

complicated data, which have many variables and 

experimental units. Such methods sometimes create new 

variables by reducing the number of original variables 

in the comparison and interpretation of the data [12]. 

PCA, FA, and CA will find groups and sets of variables 

with similar properties, thus might allow us to simplify 

our description of observations by finding the structure 

or patterns in the presence of chaotic or confusing data. 

These techniques besides allow to elaborate data from 

not homogeneous variables, giving so the possibility to 

contemporarily consider chemical, physicals and 

microbiological parameters. This ability allows to 

evaluate the potential correlations among the parameters 

and to exploit these correlations for analytical purposes 

[13-16]. Multivariate methods have been often used for 

the classification and comparison of different samples 

of waters [17-19]. Güler [2] classified 130 Turkish 

bottled water brands by using multivariate pattern 

recognition methods. The production licenses provided 

information on up to 34 physico-chemical parameters 

were used as database. The relationships among eight 

selected major ion chemistry variables (calcium, 

magnesium, sodium, potassium, chloride, sulfate, 

bicarbonate, and fluoride) were examined by principal 

components analysis and hierarchical cluster analysis. 

Yekdeli-Kermanshahi and co-workers [17] investigated 

the chemical composition of Iranian bottled water 

brands by correlation analysis, principal component 

analysis and hierarchical cluster analysis. For this 

purpose, the chemical composition reported on the label 

of 73 Iranian bottled waters was used as data set. It was 

found out that only 26 brands had eight important 

parameters such as calcium, magnesium, potassium, 

sodium, chloride, sulphate, bicarbonate and fluoride and 

20 brands had acceptable charge balance error. Results 

showed that Iranian bottled waters can be divided into 

11 classes. Lourenço and co-workers [18] used from 

principal component analysis to identify the main 

geotectonic interrelationships among physicochemical 

parameters, enhancing similarities and dissimilarities, 

and contributing to a new typology of 33 different types 

of Portugalian bottled waters, based on their 

hydrochemical characteristics and geological 

occurrence. Kraic and co-workers [19] categorized 

ninety-three water samples originated from four 

European countries into five classes as the tap, mineral, 

mineral carbonated, spring, and spring carbonated 

water. Analytical measurements were performed by 

inductively coupled plasma-mass spectrometry. 

Different water categories were characterized by 

chemometrical techniques, mainly by principal compo-

nent analysis, cluster analysis, linear and quadratic 

discriminant analyses, correlation analysis, and 

ANOVA. The classification results were successful and 

close to 100 %, which was proved by the leave-one-out 

cross-validation procedure. Versari and co-workers [3] 

characterized bottled mineral waters (132 samples) from 

19 districts of Italy by means of the physico-chemical 

and chemical composition (30 parameters) reported on 

their label by using statistical analysis. The relationships 

among 12 selected variables were examined by princi-

pal component analysis; then, hierarchical cluster analy-

sis was used to search the ‘‘natural’’ grouping among 

the mineral waters, and linear discriminant analysis 

allowed to check the reliability of classification. 

In the present work, the contents of Li, Na, K, Ca, 

Mg, Sr, Ba, B, Si and Zn were determined in samples of 

different brand of Iranian bottled mineral waters by 

ICP-OES, and used as chemical descriptors. Three 

classification algorithms, i.e., partial least squares 

discriminant analysis (PLS-DA), least squares support 

vector machine (LS-SVM) and soft independent 

modeling of class analogies (SIMCA) were applied to 

explore the relationship between the mineral content 

and discrimination among different mineral water types. 
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Materials and Methods 

Reagents and Samples 

All reagents used were of analytical reagent grade 

(Merck, Germany). Double-distilled deionized water 

was used through all the experiments. Stock standard 

solutions of Li, Na, K, Ca, Mg, Sr, Ba, B, Si and Zn 

(1000 µg mL−1) were purchased from Sigma-Aldrich 

Company (USA). This solution was appropriately 

diluted in double-distilled deionized water for prepared 

metals standard calibration solutions. Different brands 

of mineral water samples were obtained from local 

stores, representing the common types readily available 

to consumers. Three tap water samples were collected 

from different area of the Tehran city. 

Instrumentation and Software 

Elemental analysis was carried out using a Varian 

(Vista-MPX) simultaneous ICP-OES coupled to a 

concentric nebulizer and equipped with a charge 

coupled device (CCD) for determination of the metal 

ions. Operational conditions and selected wavelengths 

for the metal ions were optimized and summarized in 

Table 1. Initially 39 elements (Ag, Al, As, Au, B, Ba, 

Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga, Hg, In, K, La, 

Li, Mg, Mn, Mo, Na, P, Pb, Pd, Rh, Sb, Sc, Se, Si, Sn, 

Sr, Te, Tl, V and Zn) were analyzed but some of them 

were below the quantification limits, and therefore the 

methodology was reduced to 10 elements (Li, Na, K, 

Ca, Mg, Sr, Ba, B, Si and Zn). In Table 2, the ICP-OES 

results for one sample from each brand are presented. 

The data were processed on a Toshiba computer with 

Pentium ΙV as central processing unit (2 Gb RAM) 

using MATLAB software, version 7.7. PCA, HCA, 

PLS-DA and SIMCA were carried out using PLS-

Toolbox, version 5.2 (Eigenvectors Company). The LS-

SVM optimization and model results were obtained 

using the LS-SVM lab toolbox version 1.5 (Matlab 

toolbox for least-squares support vector machines). 

Multivariate Classification 

Non-Supervised Methods 

Non-supervised methods, also known as exploratory 

methods, do not require any a priori knowledge about 

the group structure in the data, but instead produce the 

grouping, i.e. clustering, themselves. This type of 

analysis is often very useful at an early stage of the 

investigation to explore subpopulations in a data set. 

Cluster analysis can be performed with simple visual 

techniques, such as hierarchical cluster analysis or 

principal component analysis. 

Principal Component Analysis (PCA) 

PCA is a well-known statistical method for reducing 

the dimensionality of data sets [11]. PCA is the simplest 

of the true eigenvector-based multivariate analyses. 

Often, its operation can be thought of as revealing the 

internal structure of the data in a way which best 

explains the variance in the data. If a multivariate data 

set is visualized as a set of coordinates in a high-

dimensional data space (1 axis per variable), PCA 

supplies the user with a lower-dimensional picture, a 

“shadow” of this object when viewed from it is (in some 

sense) most informative viewpoint. PCA involves the 

calculation of the eigenvalue decomposition of a data 

covariance matrix or singular value decomposition of a 

data matrix, usually after mean centering the data for 

each attribute. The results of a PCA are usually 

discussed in terms of component scores and loadings. 

This approach has been used to extract related variables 

and infer the processes that control water chemistry 

[2,3]. 

Hierarchical Clustering Analysis (HCA) 

Hierarchical cluster analysis (HCA)’s primary goal is 

to display the data in such a way as to emphasize their 

natural clusters and patterns in a two dimensional space.  

 

 
Table 1. Operating parameters for ICP-OES 

Plasma gas Argon 

Plasma gas flow rate 15 L min–1 

Auxiliary gas flow rate 1.5 L min–1 

Frequency of RF generator 40 MHz 

RF generator power 1.3 kW 

Nebulizer gas flow rate 0.8 L min–1 

Sample flow rate 0.8 L min–1 

Wavelength (nm)  

Li 670.784 

Na 589.592 

K 766.490 

Ca 317.933 

Mg 285.213 

Sr 407.771 

Ba 233.527 

B 249.677 

Si 212.412 

Zn 213.857 
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The results, qualitative in nature, are usually presented 

in the form of a dendrogram, allowing the visualization 

of clusters and correlations among samples or variables 

[20, 21]. In HCA, the Euclidean distance is selected as 

the similarity measurement, which is straight line 

distance between two points in c-dimensional space 

defined by c number of variables. 

Supervised Methods 

In the supervised methods each sample is formerly 

assigned to a definite class. For building a supervised 

classification model, a set of sample objects with known 

classes is needed. This set of known objects is called the 

training set because it is used by the classification 

programs to learn how to classify objects. There are two 

phases to construct a classifier. In the training phase, the 

training set is used to decide how the parameters ought 

to be weighted and combined in order to separate the 

various classes of objects. In the prediction phase, the 

weights determined in the training set are applied to a 

set of objects that do not have known classes in order to 

determine what their classes are likely to be. Partial 

least squares discriminant analysis (PLS-DA), least 

squares support vector machine (LS-SVM) and soft 

independent modeling of class analogies (SIMCA) are 

of most commonly used supervised classification 

methods. 

Soft Independent Modeling of Class Analogies 

(SIMCA) 

Soft independent modeling of class analogies 

(SIMCA) is a well known and widely used supervised 

classification technique introduced by Wold [22, 23]. Its 

main idea is to build a PCA model for each class 

belonging to a training set. Each borderline of these 

models is determined by multiplying the average 

reference sample deviation from the model with the 

appropriate F value (corresponding degrees of freedom 

and selected level of significance). Subsequently, new 

samples (test samples) can be fitted to these models. By 

comparing the residuals to the maximum allowed 

residuals (the borderline of the model), test samples can 

be classified. In this study, optimum component of PC 

model is determined for each class by the validation set. 

Partial Least Squares Discriminant Analysis 

(PLS-DA) 

This classification method is based on a PLS 

regression where class membership is the property [24-

26]. Linear discriminant analysis would traditionally 

have been the most appropriate technique to classify the 

data, given that the data were normally distributed [24]. 

However formal linear discriminant analysis usually 

cannot be performed due to the large number of 

variables in the training dataset relative to the amount of 

measurements taken. A reduction in data dimensionality 

therefore is needed to avoid overfitting before 

continuing with the classification. PLS-DA therefore is 

preferred to analyze the data. The first step in this 

technique is a dimension reduction by using partial least  

 

 
Table 2. ICP-OES results for one sample from each brand 

Class 
Concentration (µg mL–1) 

Li Na K Ca Mg Sr Ba B Si Zn 

1 0.008 1.407 0.392 26.18 6.165 0.101 0.003 0.031 2.667 0.000 

2 0.010 6.619 0.554 61.85 12.25 0.309 0.163 0.064 6.829 0.000 

3 0.004 3.469 0.140 21.59 2.754 0.090 0.002 0.035 8.142 0.055 

4 0.021 10.39 0.871 49.02 16.84 0.689 0.023 0.051 6.145 0.000 

5 0.006 2.219 0.705 35.84 14.89 0.683 0.039 0.028 2.854 0.000 

6 0.008 48.26 0.075 14.56 6.682 0.272 0.004 0.273 3.962 0.000 

7 0.011 11.75 1.978 15.85 3.150 0.086 0.030 0.041 33.67 0.160 

8 0.005 7.785 0.467 58.83 8.342 0.518 0.064 0.023 7.801 0.024 

9 0.002 12.35 0.709 0.287 11.13 0.001 0.003 0.090 0.170 0.000 

10 0.007 3.926 1.093 7.322 1.690 0.056 0.002 0.026 15.85 0.010 

11 0.002 0.961 0.256 33.46 5.995 0.083 0.005 0.025 2.202 0.000 

12 0.005 3.137 0.546 57.05 4.225 0.208 0.019 0.026 6.286 0.000 

13 0.000 6.408 0.572 81.72 7.521 0.336 0.008 0.068 11.17 0.029 

14 0.004 46.89 0.081 18.04 5.896 0.239 0.007 0.295 3.618 0.000 

15 0.022 25.86 0.638 27.02 20.4 0.245 0.004 0.090 6.404 0.011 

16 0.003 23.37 3.372 39.74 6.230 0.218 0.064 0.141 23.53 0.071 

17 0.008 24.84 0.459 30.47 5.634 0.253 0.014 0.075 3.638 0.054 

18 0.002 14.68 0.486 45.12 5.954 0.128 0.016 0.027 2.729 0.000 

19 0.004 26.33 0.831 26.56 6.987 0.230 0.009 0.074 1.247 0.000 

20 0.001 0.259 0.169 45.18 3.154 0.117 0.006 0.019 2.502 0.000 

21 0.000 0.239 0.301 55.67 1.969 0.108 0.009 0.013 2.881 0.000 

22 0.003 3.226 0.624 39.69 5.629 0.137 0.012 0.032 3.952 0.038 

23 0.028 34.51 2.098 42.20 11.76 0.520 0.149 0.124 5.082 0.000 

24 0.005 3.524 0.992 55.06 11.63 0.203 0.033 0.021 6.490 0.000 

25 0.001 0.369 0.238 33.44 7.691 0.079 0.031 0.000 2.126 0.000 

26 0.006 25.07 1.015 15.97 6.564 0.211 0.004 0.971 3.511 0.000 

27 0.014 29.03 2.912 11.13 21.75 0.357 0.021 0.434 5.283 0.000 

28 0.012 82.40 2.614 50.14 21.84 0.658 0.020 0.293 7.855 0.156 

29 0.007 11.09 0.387 51.07 13.09 0.723 0.058 0.099 8.059 0.054 

30 0.004 11.38 0.837 49.70 5.662 0.362 0.035 0.016 3.570 0.018 

31 0.004 17.91 0.581 60.88 10.12 0.370 0.034 0.049 8.806 0.049 

32 0.007 10.53 0.564 42.15 5.823 0.388 0.032 0.048 3.109 0.116 

33 0.006 10.71 0.540 41.54 5.876 0.377 0.034 0.051 3.299 0.081 
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squares (PLS). PLS is comparable to the commonly 

used dimension reduction technique of principal 

component analysis (PCA), with the important 

difference being that PLS explains both sample 

variation and response variation. In contrast with PCA, 

PLS components are chosen such that the sample 

covariance between the response and a linear 

combination of the predictors is maximized. A 

component with a small predictor variance could be a 

better predictor of the response classes, a fact which is 

not taken into account in PCA. The main objective of 

partial least squares is to build a model which relates the 

response variables to the factor scores multiplied by 

their loadings. The factor scores, in turn, are linear 

combinations of the original predictor variables, 

resulting in no correlation between the factor score 

variables used in the predictive regression model: 

Y=TQ+E 

where Y = n × m response variables matrix 

T = factor score matrix (=predictor variables x 

weights) 

Q = coefficients matrix (=loadings for T) 

E = n × m noise term 

The second step in the PLS-DA technique involves a 

classification using linear discriminant analysis (LDA). 

LDA is well-known as a classification technique based 

on the gross variability ‘within groups’ and ‘among 

groups’. The combination of PLS and LDA therefore 

results in a dimension reduction as well as a 

classification outcome. A cross-validation method was 

chosen in order to evaluate the model obtained by PLS-

DA. The basic precept behind this model validation 

technique is that a data subset (test data) is removed 

before training begins. The performance of the selected 

model then can be tested on the new test data. The 

number of latent variables where then specified that had 

to be retained in the model, which relates to the percent 

variance captured by the model in X and Y. 

Support Vector Machines (SVM) 

The SVM [27,28] is a supervised method that has 

been applied to a large range of pattern recognition 

problems. The aim of SVM is to find an optimal 

hyperplane (classifier) that correctly separates objects of 

the different classes as much as possible. This is done 

by leaving the largest possible fraction of points of the 

same class on the same side and maximizing the 

distance of either class from the hyperplane. It is based 

on structural risk minimum mistake instead of the 

minimum mistake of the misclassification on the 

training set that SVM can effectively avoid over-fitting 

problem. Due to its advantages and remarkable 

generalization performance over other methods, SVM 

has attracted attention and gained extensive applications 

[28]. As a simplification of traditional of SVM, Suykens 

and Vandewalle [29] have proposed the use of least-

squares SVM (LS-SVM). LS-SVM encompasses similar 

advantages as SVM, but its additional advantage is that 

it requires solving a set of only linear equations (linear 

programming), which is much easier and 

computationally more simple. The theory of LS-SVM 

has also been described clearly by Suykens et al. [29, 

30] and application of LS-SVM in quantification and 

classification reported by some of the workers [32, 33]. 

The standard SVM are designed for binary 

classification. How to effectively extend it for multi-

class classification is still on-going issue. Currently, 

there are two types of approaches for multi-class SVM 

classification. One is by constructing and combining 

several binary classifiers such as one-against-all, one-

against-one, and complete-code while the other is by 

directly considering all data in one single optimization 

formulation. 

Model Efficiency Estimation 

For the evaluation of the performance of multivariate 

classification models, the correct classification rate 

(CCR) was used [34]: 

1 Correctly classified samples in class i

Total number of samples in class i
CCR= 100

k
j 

  

where k is the total number of classes. 

Results and Discussion 

Principal Component Analysis 

PCA was applied to a matrix of 10 analytical 

parameters for 165 samples (150 mineral water samples 

and 15 tap water samples). Figure 1 shows the loading 

plot of the two first-principal components extracted by 

principal component analysis (PCA). PC1 describes 

31.20 % of the variance in the data set, and has positive 

loadings for the Li, Na, K, Sr, Mg, Si and Zn. On the 

other hand, PC2, accounting for 18.89 % of the original 

information and has high positive loadings for the Ca 

and Ba and negative loadings for B. Thus, PC1 seemed 

to represent the water saltiness whereas PC2 may be 

considered as an index of water hardness. Figure 2(A) 

shows the score plot of mineral waters onto the first two 

principal components. As can be seen from this figure 

the total mineral water brands can be divided into 8 
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different classes according to their mineral content (Fig. 

2 (B)). The 26 mineral water brands with normal-

mineral content were grouped on the left side and center 

of the plot. As Fig. 2 shows, three mineral water brands 

(23, 28 and 26) are clearly different from the others 

(classes D, E and G). Classes 23 and 28 have high 

concentration of Na, Ca and Mg whereas class 26 has 

high concentration of B. Also this figure shows that tap 

water samples (31, 32 and 33) and four mineral water 

brands are localized in a special class (class B) and are 

different from the other mineral water brands. 

Hierarchical Clustering Analysis 

Hierarchical cluster analysis (HCA) was used for 

searching the natural grouping among bottled waters 

from different brands. The bottled water brands were 

classified according to their major ion composition. The 

data were standardized (z-scores) and the Euclidean 

distance was used as similarity measurement. The 

Ward’s method was used to obtain hierarchical 

associations. The result of the HCA is presented as a 

dendrogram (Fig. 3). The resulting dendrogram had four 

major groups based on a similarity of ten parameters. 

The first group is composed of brand 28, 16 and brand 

7. The second, third and fourth groups are composed of 

the remaining brands. 

Classification Models 

With the aim to define classification models based 

on the algorithms PLS–DA, SIMCA and LS-SVM, two 

data matrices including the descriptors (concentration of 

elements) for all the water samples (variables X) and the 

water sample brands (variables Y) were built. Overall 

165 water samples (150 mineral water samples and 15 

tap water samples) were divided into a training set of 

132 samples (4 for each brand) and a prediction set of 

33 samples (1 for each brand). PLS-DA, LS-SVM and 

SIMCA were then implemented for calibration models. 

Partial Least Squares Discriminant Analysis 

To develop the classification rules for unknown 

samples in real applications, PLS discriminant analysis 

was utilized. This method was carried out as supervised 

learning, which is performed with the prior knowledge 

of the class membership. The whole data set was 

divided into two groups, training and test set, using 

random selection. The training set is used to develop the 

calibration model and find the optimum parameters for 

classification. Samples in the training sets were 

designed to include all sources of sample variability as 

much as possible. In this study separate classifiers have 

been developed for each of the 33 classes (30 mineral 

water brands and 3 tap water from different areas), 

resulting in 33 sets of regression coefficients. The  

 

 

 

Figure 1. Loading plot for mineral water samples. 

 
 

 

Figure 2. Score plots of the first two principal components  

for 165 mineral water samples. 
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optimal number of PLS components was estimated by 

cross validation. Assignment of a sample to a class is 

based on the value of the discriminant variable ŷ by 

using a critical value (threshold) t as follows. 

ŷ< t → class 0 (not a member of the considered 

class) 

ŷ≥t → class 1 (member of the considered class) 

As the values 0 and 1 are used for y (the true class 

membership), a threshold of 0.5 is a first approximation 

for separating "class membership" and "no class 

membership". However, in this study the threshold of 

the discriminant variable was optimized separately for 

each of the 33 water classes to achieve maximum 

prediction performance in cross validation. The quality 

of the prediction performance of the models has been 

evaluated by the independent test set of the 33 water 

samples sorted out of the data set previously. The PLS-

DA models were applied to the test set samples by using 

the optimal number of PLS-components and the 

optimum threshold for the discriminant variable (both 

obtained from the training set). Results show that for 32 

 

 

 

Figure 3. Dendrogram presenting the results of hierarchical 

clustering for samples. 

 

 
Table 3. Performance of three supervised pattern recognition 

techniques in the classification of mineral water samples 

 PLS-DA SIMCA SVM 

Number of total samples 33 33 33 

Number of truly predicted samples 32 33 33 

Number of falsely predicted samples 1 0 0 

Correct classification rate 97 100 100 

of the 33 water classes both samples were correctly 

assigned (correct classification rate of 97%). One test 

set sample of class 30 was partially misclassified as that 

sample was assigned to two classes: one correct and 

another wrong. These results indicate a presumably high 

classification power of the developed method. 

SIMCA 

SIMCA, a supervised learning technique, was used 

to create a PCA model for each class with which 

unknowns could be predicted. The optimum number of 

PCs used for each class was determined by cross 

validation. A PCA model for each class was constructed 

with a different number of optimum PCs. All training 

data and test data were correctly classified with this 

SIMCA model and the algorithm achieves a correct 

classification rate of 100% (Table 3). 

Least Squares Support Vector Machine 

Similar to other multivariate statistical models, the 

performances of LS-SVM for classification depend on 

the combination of several parameters, such as kernel 

function and the corresponding kernel parameters. For 

classification tasks, a commonly used kernel function is 

the radial basis function (RBF) because of its good 

general performance and a few parameters. Thus γ (the 

relative weight of the regression error) and σ2 (the 

kernel parameter of the RBF kernel) need to be 

optimized. To determine the optimal parameters, a grid 

search was performed based on leave-one-out cross 

validation on the original training set for all parameter 

combinations of γ and σ2 from 0.01 to 100. No samples 

were wrong identified for all varieties of mineral waters 

and a correct classification rate of 100% was achieved 

(Table 3). 
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