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Abstract 

his paper evaluates inflation forecasts made by parametric and 

nonparametric models. The results revealed that the neural network 

model yields better estimates of inflation rate than do parametric 

autoregressive integrated moving average (ARIMA) and linear models. 

Furthermore, the neural network model outperformed nonparametric 

models (except MARS).  
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1- Introduction 

The parametric regression approach is based on the prior knowledge of 

the functional form relationship. If the knowledge is correct, the parametric 

method can model most data sets well. However, if the wrong functional 

form is chosen a priori, this will result in larger bias as compared to 

competitive models (Fan and Yao, 2003). Parametric linear models, as a type 

of parametric regression, are frequently used to describe the association 

between the dependent variable and explanatory variables. They require the 

estimation of a finite number of parameters. Furthermore, parametric linear 

dynamic models which are based on a theoretical or data-driven approach 

will be employed. 

Why is nonparametric regression important? Over the last decade, 

increasing attention has been devoted to nonparametric regression as a new 
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technique for estimation and forecasting in different sciences including 

economics. Nonparametric regression analysis relaxes the assumption of the 

linearity in the regression analysis and enables one to explore the data more 

flexibly. However, in high dimensions variance of the estimates rapidly 

increases, called as “curse of dimensionality”, due to the sparseness of data. 

To overcome this problem, some nonparametric methods have been 

proposed such as additive model (AM), multiple adaptive regression splines 

(MARS), projection-pursuit regression (PPR) and neural networks (NN).  

     This study compares parametric and nonparametric methods. The 

agents are assumed to use an optimal parametric autoregressive moving 

average (ARMA) model or nonparametric models including Additive model 

(AD), Multiple Adaptive Regression Splines (MARS), Projection-Pursuit 

Regression (PPR), and Neural Networks (NN) for forecasting. In fact, out-

of-sample estimates of inflation generated by the parametric and 

nonparametric models will be compared.  

    The paper is divided into four sections. Following introduction in 

section 1 we discuss parametric and nonparametric methods in section 2. 

Section 3 reports the empirical results of this study. Finally, section 4 

concludes. 

 

2- Statistical predictors 

2-1- Parametric prediction models 

A brief review of ARIMA modeling is presented (Chatfield, 2000). 

Autoregressive integrated moving average (ARIMA) or (Box-Jenkins) 

models are the basis of many fundamental ideas in time-series analysis. In 

order to analyze a time series, it must be assumed that the structure of the 

stochastic process which generates the observations is essentially invariant 

through time. The important assumption is that of stationarity, which 

requires the process to be in a particular state of ‘statistical equilibrium’ 

(Box and Jenkins, 1976). 

    An autoregressive moving average process: ARMA (p,q) is obtained 

by combining p autoregressive terms and q moving average terms and can be 

written as 
( ) ( )t tL X L      

with AR polynomial 
2

1 2( ) 1 ... p

pL L L L       
and 
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MA polynomial 2

1 2( ) 1 ... q

qL L L L        . An ARMA 

model is stationary provided that the roots of ( ) 0L  lie outside the unite 

circle. This process is invertible if the roots of ( ) 0L   lie outside the 

unite circle. Low order ARMA models are of much interest since many real 

data sets are well approximated by them rather than by a pure AR or pure 

MA model. In general, ARMA models need fewer parameters to describe the 

process.  

    In most cases economic time series are non-stationary and therefore we 

cannot apply ARMA models directly. One possible way to remove the 

problem is to take difference so as to make them stationary. Non-stationary 

series often become stationary after taking first difference 

(
1 (1 )t t tX X L X   ). If the original time series is differenced d 

times, then the model is said to be an ARIMA (p, d, q) where ‘I’ stands for 

integrated and d denotes the number of differences taken. Such a model is 

described by 

 

     ( )(1 ) ( )d

t tL L X L       

The combined AR operator is now ( )(1 )dL L  . The polynomials 

( )z  and ( )z have all their roots outside the unit circle. The model is 

called integrated of order d and the process is said to have d unit roots. 

 

2-2- Nonparametric prediction models 

2-2-1- Nonparametric Smoothers 

The general nonparametric regression model (Fox, 2000, 2005) is as 

follows: 

     '( )i i iy f X     

           
1 2( , ,..., )i i ik if x x x           

2~ (0, )i NID   

 

The regression function is (.)f  unspecified in advance and is estimated 

directly. In fact, there is no parameter to estimate. It is implicitly assumed 

that (.)f  is a smooth, continuous function. If there is only one 

predictor ( )i i iy f x    then it is called ‘scatter plot smoothing’ because 

it traces a smooth curve through a scatter plot of y against x.  
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    There are several smoothers such as local averaging, kernel smoother, 

Weighted Scatterplot Smoothing (Lowess) and spline Smoother that fit a 

linear or polynomial regression to the data points in the vicinity of x and 

then use the smoothed value as the predicted value at x. 

 

2-2-1-1- Local Averaging 

In local averaging procedures, we move a window continuously over the 

data, averaging the observations that fall in the window. The estimated 

values ˆ ( )f x  at a number of focal values of x are calculated and connected. 

It is possible to use a window of fixed width or to adjust the width of 

window to include a constant number of observations. Local averages are 

usually subject to boundary bias, roughness and distortion (when outliers fall 

in the window).  

 

2-2-1-2- Kernel Smoother 

A Kernel smoother is an extension of local averaging and usually 

produces a smoother result. At the focal value 0x , it is of the form 

     

0

1
0

0

1

ˆ ( )

n

i
i

i
n

i

i

x x
y K

bf x
x x

K
b





 
 
 

 
 
 




      

 

where b is a bandwidth parameter, and K a kernel function. The Gaussian 

kernel ( ( ))NK z and the tricube kernel ( ( ))TK z are popular choices of 

kernel functions. 

     
2 21

( )
2

z

NK z e


  

     
3 3(1-|z| )  for     |z|<1

0            for     |z| 1 ( )TK z   

For the Gaussian kernel the bandwidth b is the standard deviation of a 

normal distribution and for the tricube kernel b is the half-width of a window 

enclosing the observations for the local regression. Although the kernel 
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smoother has a better performance as compared to the local average 

regression, it is still subject to boundary bias. 

     It is implicitly assumed that the bandwidth b is fixed, but it is possible 

for kernel smoothers to be adapted to nearest-neighbor bandwidths. We can 

adjust b (x) so that a constant number of observations m are included in the 

window. The fraction m/n is called the span of the kernel smoother and is 

chosen based on a cross-validation approach. The kernel estimator can 

produce smoother results using larger bandwidths. In fact, there is a direct 

relationship between the span and smoothing degree: the larger the span, the 

smoother the result.  

 

2-2-1-3- Lowess Smoother 

As mentioned above, the kernel estimation has some problems. Local 

polynomial regression tries to overcome these difficulties and provides a 

generally adequate method of nonparametric regression which extends to 

additive regression (Fox, 2005). An implementation of local polynomial 

regression is lowess (Cleveland, 1979). The algorithm used by lowess 

smoothing applies robust locally linear fits. It is similar to local averaging 

but the data points that lie in the window are weighted so that nearby points 

get the most weight and a robust weighted regression is used. 

     We can examine local polynomial regression in two cases: simple 

regression and multiple regression. 

Simple Regression: suppose we want to estimate the simple regression 

( )i i iy f x    at a particular x-value, for example 0x . Local 

polynomial regression extends kernel estimation to a polynomial fit at 0x , 

using local kernel weights, 
0[( ) / ]i iw K x x b  . We implement a pth -

order weighted-least-squares polynomial regression of y on x, 

 

     2

1 0 2 0 0( ) ( ) ... ( ) p

i i i p i iy x x x x x x e             

to minimize the weighted residual sum of squares, 2

1

n

i ii
w e

 . This 

procedure is repeated for representative values of x. As in kernel regression, 

the bandwidth b can either be fixed or variable, b(x), and the span of the 

local-regression smoother is selected based on a cross-validation approach. 

Multiple Regression: in this case, '( )i i iy f X   , we need to 

define a      
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 a multivariate neighborhood around a focal point '

0 01 02 0( , ,..., )kx x x x . 

Furthermore, Euclidean distance is employed in the lowess function as: 

2

0 0

1

( , ) ( )
k

i ij j

j

D x x z z


 
 where the ijz  are the standardized predictors, 

ij ij j jz x x s   ,
jx  is the mean of the jth  predictor and js is its 

standard deviation. Calculating weights are based on the scaled distances:   

     0( , )i
i

D x x
w W

b

 
  

 
 

Where w (.) is a weight function. In some cases, b needs to be adjusted to 

define a neighborhood including the [ns] nearest neighbors of 0x (where the 

square brackets denote rounding to the nearest integer). 

 

As a simple example, a local linear fit takes the form: 

 

     2

1 1 01 2 2 02 0( ) ( ) ... ( )i i i k ik k iy x x x x x x e             

 

The combinations of predictor values are used repeatedly to create the 

regression surface. 

 

2-2-1-4- Spline Smoother 

Suppose we have n pairs ( , )i ix y . A smoothing spline equation is 

considered as  

      
max

min

2 2
''

1

( ) ( ) ( )
n x

i i
x

i

ss h y f x h f x dx


      
 

The equation consists of two terms. The first term is the residual sum of 

squares and the second term is a roughness penalty. The object is to find the 

function ˆ ( )f x with two continuous derivatives that minimized the 

penalized sum of squares. Here h is a smoothing parameter. For h=0, 
ˆ ( )f x will interpolate the data if the ix are distinct; this is similar to a local-

regression estimate with span=1/n. If h is very large, then f̂ will be selected 

so that "ˆ ( )f x is everywhere 0, which implies globally linear least-squares 
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fit to the data. This is again similar to local regression with infinite 

neighborhoods.  

     The Spline Smoother is more attractive than local regression because 

there is an explicit objective-function to optimize. But it is not easy to 

generalize splines to multiple regression. Generally, the smoothing 

parameter h is selected indirectly by setting the equivalent number of 

parameters for the smoother .Both smoothing-spline and local-regression fits 

with the same degree of freedom are usually very similar. 

 

2-2-2- Nonparametric Models 

2-2-2-1- Additive Model (AM) 

Nonparametric regression based on kernel and smoothing spline 

estimates in high dimensions faces two problems, that is, the curse of 

dimensionality and interpretability. Stone (1985) proposed the additive 

model to overcome these problems. In this model, since each of the 

individual additive terms is estimated using a univariate smoother, the curse 

of dimensionality is avoided. Furthermore, while the nonparametric form 

makes the model more flexible, the additivity allows us to interpret the 

estimates of the individual terms. Hastie and Tibshirani (1990) proposed 

generalized additive models for a wide range of distribution families. These 

models allow the response variable distribution to be any member of the 

exponential family of distributions. We can apply additive models to 

Gaussian response data, logistic regression models for binary data, and 

loglinear or log-additive models for Poisson count data. 

     A generalized additive model has the form 

 

     
1 1 2 2( ) ( ) ... ( )p pY f X f X f X        

where (.)jf  are unspecified smooth (partial-regression)functions. We fit 

each function using a scatterplot smoother and provide an algorithm for 

simultaneously estimating all j functions. Here an additive model is applied 

to a logistic regression model as a generalized additive model. Consider a 

logistic regression model for binary data. The mean of the binary response 

( ) Pr( 1 )X Y X    is related to the explanatory variables via a linear 

regression model and the logit link functions: 
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1 1

( )
log ...

1 ( )
j j

X
X X

X


  



 
    

 

 

The additive logistic model replaces each linear term by a more general 

functional form 

 

     
1 1

( )
log ( ) ... ( )

1 ( )
j j

X
f X f X

X






 
    

 

  

In general, the conditional mean ( )X  of a response Y is related to an 

additive function of the explanatory variables via a link function g: 

 
     [ ( )]g X 

1 1( ) ... ( )j jf X f X     

The functions 
jf  are estimated in a flexible way using the backfitting 

algorithm. This algorithm fits an additive model using regression-type fitting 

mechanisms. 

Consider the jth  set of partial residuals  
     ( ( ))j k k

k j

Y f X 


    

Then ( ) ( )j j j jE X f X  . This observation provides a way for 

estimating each (.)jf  given estimates  ˆ (.),jf i j  for all the others. 

The iterative process is called the backfitting algorithm (Friedman and 

Stuetzle, 1981). 

 

2-2-2-2- Multiple Adaptive Regression Splines (MARS) 

This approach (Friedman (1991), Hastie et al (2001)) fits a weighted sum 

of multivariate spline basis functions and is well suited for high-dimensional 

problems, where the curse of dimensionality would likely create problems 

for other methods. The MARS uses the basis functions 

( )x t  and ( )t x  in the following way 

     ( )x t   x-t       if     x>t

0         otherwise
 

     ( )t x   t-x       if     x<t

0         otherwise
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The “+” denotes positive part. Each function is piecewise linear or linear 

spline, with a knot at value t. These functions are called a reflected pair for 

each input 
jX with knots at each observed value ijx of that input, and then 

the set of basis functions is defined as  

     ( ) ,( )j jC X t t X     

The strategy for model-building is a forward stepwise linear regression 

using functions from the set C and their products. Thus the MARS model 

has the form 

     
0

1

( ) ( )
M

m m

m

f X h X 


   

where the coefficients m are estimated by minimizing the residual sum-

of-squares and each ( )mh X  is a function in C. By setting 

0( ) 1h X  (constant function), the other multivariate splines are products 

of univariate spline basis functions: 

     
( , ) ,

1

( ) ( )
mk

m i s m s m

s

h X h x t


      1 m k   

where the subscript ( , )i s m  means a particular explanatory variable, and 

the basis spline in that variable has a knot at 
,s mt . 

mk  is the level of 

interactions between ( , )i s m  variables and the values of m,
1 2, ,..., mk k k , 

are the knot sets. Explanatory variables in the model can be linearly or non-

linearly and are chosen for inclusion adaptively from the data. The model 

will be additive if the order of interactions equals one ( 1k  ). 

     A backward deletion procedure is used in the MARS model to prevent 

overfitting. The basis functions which have little contributions to the 

accuracy of fit are deleted from the model at each stage, producing an 

estimated best model ˆ ( )f   of each size λ. We can apply a generalized 

cross-validation criterion to estimate the optimal value of λ in the following 

way 

     
2

1

2

ˆ( ( ))
( )

(1 ( ) / )

N

i ii
y f x

GCV
M N












  

The value of M (λ) includes the number of basis functions and the 

number of parameters used in selecting the optimal positions of the knots. 
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2-2-2-3- Projection-Pursuit Regression (PPR) 

If the explanatory vector X is of high dimension, the additive model does 

not cover the effect of interactions between the independent variables. 

Projection-Pursuit Regression (Friedman and Stuetzle, 1981) applies an 

additive model to projected variables, projecting predictor variables X in M, 

as follows 

     

1

( )
M

T

m m

m

Y g w X 


        2( ) 0,var( )E      

where 
mw  are unit p-vectors of unknown parameters. The functions 

mg are unspecified and estimated along with the direction 
mw using some 

flexible smoothing method. The PPR model employs the backfitting 

algorithm and Gauss-Newton search to fit Y.  

     The functions ( )T

m mg w X are called the ridge functions because they 

are constant in all but one direction. They vary only in the direction defined 

by the vector
mw . The scalar variable ( )T

m mV w X  is the projection X 

onto the unit vector
mw . The aim is to find 

mw to yield the best fit to the 

data. If M is chosen large enough then the PPR model can approximate 

arbitrary continuous function of X  (Diaconis and Shahshahani, 1984). 

However, in this case there is a problem of interpretation of the fitted model 

since each input enters into the model in a complex and multifaceted way 

(Hastie et al, 2001). As a result, the PPR model is a good option only for 

forecasting. 

     To fit a PPR model, we need to minimize the error function  

   

  2

1 1

[ ( )]
N M

T

i m m i

i m

E y g w x
 

    

over functions 
mg  and direction vectors 

mw . The g and w are estimated 

by iteration. Imposing complexity constraints on the 
mg is needed to avoid 

overfitting. There are two stages to estimate g and w. First, to obtain an 

estimate of g, suppose there is one term (M=1). We can form the derived 

variables T

i iv w x for any value of w. This implies a one-dimensional 

smoothing problem and any scatterplot smoother such as smoothing spline 

can be used to estimate g. Second, we minimize E over w for any value of g. 

These two steps are iterated until convergence. If there is more than one term 
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in the PPR model then the model is built in a forward stage-wise manner that 

at each stage a pair ( , )m mw g is added.  

 

2-2-2-4- Neural Networks 

Many recent methods to developing data-driven models have been 

inspired by the learning abilities of biological systems. For instance, most 

adults drive a car without knowledge of the underlying laws of physics and 

humans as well as animals can recognize patterns for the tasks such as face, 

voice or smell recognition. They learn them only through data-driven 

interaction with the environment. The field of pattern recognition considers 

such abilities and tries to build artificial pattern recognition systems that can 

imitate human brain. The interest to such systems led to extensive studies 

about neural networks in the mid-1980s (Cherkassky and Mulier, 2007). 

Why use Neural Networks? Neural network modeling has seen an 

explosion of interest as a new technique for estimation and forecasting in 

economics over the last decades. They are able to learn from experience in 

order to improve their performance and to adapt themselves to changes in 

the environment. In fact, they can derive trends and detect patterns from 

complicated or imprecise data, and then model complex relationships 

between explanatory variables (inputs) and dependent variables (outputs). 

They are resistance to noisy data due to a massively parallel distributed 

processing.  

 

Learning in neural network model 

Stochastic approximation (or gradient descent) is one of the basic 

nonlinear optimization strategies commonly used in statistical and neural 

network methods (Cherkassky and Mulier, 2007). The gradient-descent 

methods are based on the first –order Taylor expansion of a risk functional 

 

( ) ( , ( , )) ( , )R w L y f x w p x y dxdy                    (1) 

 

where ( )R w is the risk functional, ( , ( , ))L y f x w the loss function and 

( , )p x y the joint probability density function. For regression, a common 

loss function is the squared error 
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     2( , ( , )) ( ( , ))L y f x w y f x w                                         (2) 

Learning is then defined as the process of estimating the 

function
0( , )f x w that minimizes the risk functional  

    

  2( ) ( ( , )) ( , )R w y f x w p x y dxdy   

using only the training data. Although the gradient-descent methods are 

computationally rather slow, their simplicity has made them popular in 

neural networks. We will examine two cases to describe such methods: 

linear parameter estimation and nonlinear parameter estimation. 

 

Linear Parameter Estimation 

Consider a linear (in parameters) approximating function and the loss 

function specified above. For the task of regression, it can be shown that the 

empirical risk is as follows 

    

  2

1 1

1 1
( ) ( , , ) ( ( , ))

n n

emp i i i i

i i

R w L x y w y f x w
n n 

                     (3) 

 

This function is to be minimized with respect to the vector of 

parameters w . Here the approximating function is a linear combination of 

fixed basis functions 

     

1

ˆ ( , ) ( )
m

j j

j

y f x w w g x


                                               (4) 

For some (fixed) m. The updating equation for minimizing 

( )empR w with respect to w is 

     
( 1) ( ) ( ( ), ( ), )kw k w k L x k y k w

w



  



  (5) 

where ( )x k and ( )y k are the sequences of input and output data 

samples presented at iteration step k . The gradient above can be written as  
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     ˆ
ˆ( , , ) 2( ) ( )

ˆ
j

j j

L y
L x y w y y g x

w y w

  
  

  
 

 (6) 

 

Now the local minimum of the empirical risk can be computed using the 

gradient (6). Let us start with some initial values (0)w . The stochastic 

approximation method for parameter updating during each presentation of 

kth training sample is as: 

 

Step 1: Forward pass computations. 

( ) ( ( ))j jz k g x k ,  1,..,m                                       (7) 

1

ˆ( ) ( ) ( )
m

j j

j

y k w k z k


 .                              (8) 

 

Step 2: Backward pass computations. 

ˆ( ) ( ) ( )k y k y k                                                 (9) 

    

   ( 1) ( ) ( ) ( )j j k jw k w k k z k                                                  (10) 

 

where the learning rate k is a small positive number decreasing with k . 

In the forward pass, the output of the approximating function is computed 

whereas in the backward pass, the error term (9), which is called “delta” in 

neural network literature, for the presented sample is calculated and utilized 

to modify the parameters. The parameter updating equation (10), known as 

delta rule, updates parameters with every training sample. 

    

Nonlinear Parameter Estimation 

The standard method used in the neural network literature is the back 

propagation algorithm which is an example of stochastic approximation 

strategy for nonlinear approximating functions. As it was considered already, 

the mapping from inputs to output given by a single layer of hidden units is 

as follows 
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0 0

1 1

( , , ) ( )
n d

j j i ij

j i

f x w V w w g v x v
 

                              (11) 

In contrast to (4), the set of functions is nonlinear in the parameters V. 

We seek values for the unknown parameters (weights) V and w that make 

the model fit the training data well. To do so, the sum of squared errors as a 

measure of fit must be minimized: 

 

     2

1

( ( , , ) )
n

emp i i

i

R f x w V y


                                          (12) 

 

The stochastic approximation procedure for minimizing empR with 

respect to the parameters V and w is 

 

     ( 1) ( ) ( ( ), ( ), ( ), ( )),k VV k V k L x k y k V k w k                 (13) 

 

     
( 1) ( ) ( ( ), ( ), ( ), ( )), 1,..., ,k ww k w k L x k y k V k w k k n           (14) 

 

where ( )x k and ( )y k are the kth training samples, presented at iteration 

step k. The loss function L is 

 

     21
( ( ), ( ), ( ), ( )) ( ( , , ) )

2
L x k y k V k w k f x w V y                      (15) 

 

where the factor ½ is included only for simplifying gradient calculations 

in the learning algorithm. We need to decompose the approximation function 

(11) for computations of the gradient of loss function (15) as follows 

     

0

d

j i ij

i

a x v


                                                         (16) 

     ( )j jz g a ,                                                                        (17) 
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For simplicity, we drop the iteration step k, consider calculation/ 

parameter update for one sample at a time and incorporate the terms 0w  and 

0 jv into the summations (
0 1x  ). The relevant gradients, based on the 

chain rule of derivatives, are 
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ij j ij
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In order to calculate each of the partial derivatives, we need equations 

(15) to (18). Therefore, 
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If we plug the partial derivatives (21)-(24) into (19) and (20), the gradient 

equations are 
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Using these gradients and the updating equations, we can construct a 

computational method to minimize the empirical risk. Starting with some 

initial values w (0) and V (0), the stochastic approximation method updates 

weights upon presentation of a sample (x (k), y (k)) at iteration step k with 

learning rate k  as 

 

 Step 1: Forward pass computations. 

“Hidden layer” 

  

0

( ) ( ) ( )
d

j i ij

i

a k x k v k


 ,                                                       (27) 

( ) ( ( ))j jz k g a k ,                                                             (28) 
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“Output layer” 
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 Step 2: Backward pass computations. 

“Output layer” 

 

  
0

ˆ( ) ( ) ( )k y k y k                                                      (30) 

      
0( 1) ( ) ( ) ( )j j k jw k w k k z k                                              (31) 

 

“Hidden layer” 

       '

1 0( ) ( ) ( ( )) ( 1)j j jk k g a k w k                                          (32) 

 

1( 1) ( ) ( ) ( )ij ij k j iv k v k k x k                           (33) 

In the forward pass, the output of the approximating function is computed 

whereas in the backward pass, the error term for the presented sample is 

calculated and utilized to modify the parameters in the output layer. Since it 

is possible to propagate the error at the output back to an error at each of the 

internal nodes 
ja  through the chain rule of derivatives, the procedure is 

called error backpropagation. In fact it is a propagation of the error signals 

from the output layer to the input layer.  
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The updating steps for output layer are similar to those for the linear case. 

Besides, the updating rule for the hidden layer is the same as the linear one 

but for the delta term (32). For this reason, backpropagation update rules 

(32) and (33) are usually called the “generalized delta rule”. The parameter 

updating algorithm holds if the sample size is large (infinite). However, if 

the number of training samples is finite, the asymptotic conditions of 

stochastic approximation are (approximately) satisfied by the repeated 

presentation of the finite training sample to the training algorithm. This is 

called recycling and the number of such repeated training samples is called 

the number of cycles (or epochs). 

It is possible to use the backpropagation algorithm for networks with 

several output layers and networks with several hidden layers. For instance, 

if additional layers are added to the approximation function, then errors are 

‘propagated’ from layer to layer by repeated application of generalized delta 

rule. 

It should be noted that a neural network model can be identified as a 

pursuit projection regression (PPR) model (Hastie et al, 2001). In fact, the 

neural network with one hidden layer has the exactly the same form as the 

PPR model. The only difference is that the PPR model uses nonparametric 

functions ( ( )mg v ) while the neural network employs a simpler function 

which is based on a sigmoid transfer function. 

 

3- Empirical Results 

3-1- Background 

The Iranian economy is oil-reliant so that any change in oil price can 

directly affect all economic sectors. It should be noted that Iran ranks second 

in the world in natural gas reserves and third in oil reserves. It is also 

OPEC’s second largest oil exporter. The economic sectors include the 

services sector, industry (oil, mining and manufacturing) and the agricultural 

sector. During the recent decades, the services sector has contributed the 

largest percentage of the GNP, followed by industry and agricultural sectors. 

The share of the services sector was 51 percent of GNP in 2003 while those 

of the industry and agricultural sectors were 35.1 and 13.9 percent of GNP 

respectively. 

    The Iranian economy has experienced a relatively high inflation 

averaging about 15 percent per year. The inflation rate has even been more 
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than 21 percent on average after the 1973 oil crisis. Furthermore, there is a 

general agreement over the underestimating of the measured inflation due to 

price controls and government subsidies. 

   The empirical evidence implies that inflation is persistent in Iran. In 

other words, the effects of a shock to inflation result in a changed level of 

inflation for an extended period. To see this, the inflation rate is regressed on 

its own lags.  

  

    
1 20.44 0.49t t trgnpi rgnpi rgnpi    

        (t-value)       (3.15)                    (3.42) 

As the sum of coefficients on lagged inflation (0.93) is close to one, 

shocks to inflation have long-lasting effects on inflation. 

 

3-2- Results 

This study compares the performance of parametric and nonparametric 

regressions in the Iranian economy over the period 1959-2003. Different 

models will be applied to the inflation series and then the predicted values 

will be evaluated. In fact, out-of-sample estimates of inflation generated by 

the parametric and nonparametric models will be compared.  

    The empirical results of the Augmented Dicky-Fuller test indicated 

that all the variables employed are stationary, and thus this issue helps us to 

avoid the problem of the spurious relationships (see Appendix for the data 

source and definitions). 

    It is assumed agents use the lagged values of inflation and real GNP 

growth to forecast inflation. Figure 1.a and Figure 1.b demonstrate a local 

linear regression fit of inflation rate (rgnpi), defined as the rate of change of 

GNP deflator, on the lagged inflation rate (rgnpilag1) and lagged real GNP 

growth rate (rgnplag1) using the Lowess function for a variety of spans. If 

the fitted regression looks too rough, then we try to increase the span but if it 

looks smooth, then we will examine whether the span can be decreased 

without making the fit too rough (Fox, 2005). The objective is to find the 

smallest value of span (s) that provides a smooth fit. A trial and error 

procedure suggests that the span s=0.5 is suitable and it seems to provide a 

reasonable compromise between smoothness and fidelity to the data.  
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Figure 1-a: Local Linear Regression fit of Inflation Rate (Rgnpi) on the Lagged 

Inflation Rate (Rgnpilag1) Using Lowess Function for a Variety of Spans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-b: Local linear regression fit of inflation rate (rgnpi) on the lagged 

real GNP growth rate (rgnplag1) using Lowess function for a variety of spans 
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A test of nonlinearity is performed by contrasting the nonparametric 

regression model with the linear simple-regression model. We regress 

inflation on rgnpilag1 (Case 1) and rgnplag1 (Case2) separately. As a linear 

model is a special case of a nonlinear model, two models are nested. An F-

test is formulated by comparing alternative nested models. The results is as 

follows 

 

Linear model vs Nonparametric regression (Case1): F=8.78(p-

value=0.008) 

Linear model vs Nonparametric regression (Case2): F=6.48(p-

value=0.04) 

 

It is obvious that the relationship between the dependent variable and 

explanatory variables are significantly nonlinear. It should be noted that the 

variable rgnplags1 will not be significant if a linear regression is considered. 

Since nonparametric regression based on smoothing functions faces the 

curse of dimensionality, the additive model has been proposed (Stone, 1985). 

The result of fitting an additive model using Lowess smoother can be written 

as  
     (rgnpilag1) (rgnplag1)rgnpi S S   

           F                  (4.13)                  (4.43) 

       p-value             (0.01)                  (0.03) 

 

where S denotes the Lowess smoother function. It is obvious that both 

smoothers are significantly meaningful. Furthermore, the linear model is 

nested by the additive model with p-value being equal to 0.01. Figure 2 

illustrates plots of the estimated partial-regression functions for the additive 

regression model. The points in each graph are partial residuals for the 

corresponding explanatory variable, removing the effect of the other 

explanatory variable. The broken lines demonstrate pointwise 95-percent 

confidence envelopes for the partial fits. 
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Figure 2: Plots of the Estimated Partial-Regression Functions for the Additive 

Regression of the Inflation Rate (Rgnpi) on the Lagged Real GNP growth Rate 

(rgnplag1) and the Lagged Inflation Rate (Rgnpilag1) 

 

We use MARS model to fit a piecewise linear model with additive terms 

to the data. The results indicate that pairwise interaction terms (by degree=2 

and degree=3) make little difference to the effectiveness of explanatory 

variables. 

    The additive model seems to be too flexible and it is not able to cover 

the effect of interactions between explanatory variables. To remove this 

problem, the Projection- Pursuit Regression model has been proposed. The 

PPR model applies an additive model to projected variables (Friedman and 

Stuetzle, 1981). Figure 3 shows plots of the ridge functions for the three two-

term projection pursuit regressions fitted to the data. 



40/ A Comparative Study of Parametric and Nonparametric Regressions 
 

0 20 40

-1
.0

0.5
2.0

term 1

-40 -20 0

-2
.0

-0
.5

0.5

term 2

0 20 40

-1
0

1
2

term 1

-40 -20 0

-2
-1

0
1

term 2

0 20 40

-1
0

1
2

term 1

-40 -20 0

-2
-1

0
1

term 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Plots of the Ridge regression for three two-term Projection Pursuit 

Regressions Fitted to the Data. 

 

Although MARS model is an accurate method, it is sensitive to 

concurvity. Neural networks do not share this problem and are better able to 

predict in this situation. In fact, as neural networks are nonlinear projection 

methods and tend to overparameterize, they are not subject to concurvity 

(Hastie et al, 2001). We examined several neural network models and the 

results indicate that a 2-3-1 network has a better performance.  

The Wilcoxon test has been used to compare the squared error of a neural 

network model and a rival model. In fact, out of sample forecasting has been 

employed to evaluate different models. The performance of PPR and 

additive models appears to differ from the neural network model, implying 

that the NN model can significantly outperform the PPR model and it has a 

better performance than the additive model, but not by much. Furthermore, 

the NN model is significantly better than the linear model (LM). However, 

there is no possibility that the NN model can outperform the MARS model 

(see Table 1). 
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Table 1: Out of Sample Forecasting based on Wilcoxon test  

             p-value 

       PPR      vs.   NN             0.01 

       LM        vs.   NN             0.00 

       MARS   vs.   NN               1 

       AM        vs.   NN              0.38 

 

Now we compare the NN model to the parametric autoregressive moving 

average (ARMA) model for inflation. A collection of ARMA (p, q) models, 

for different orders of p and q, have been estimated and then the best model 

was selected according to the Akaike information criterion (AIC) and the 

Schwarz information criterion (SIC). Examining the ARMA models for the 

inflation series indicated that ARMA (1, 1) is the best-fitting model.    

Diagnostic checking, the correlogram (autocorrelations) of inflation from 

the regression tests was examined and confirmed the results. The last 5 

observations are used for comparing the ex post forecasts generated by the 

two models. Furthermore, the Root Mean Square Error (RMSE) is used to 

evaluate ex post forecasts. We apply the feed-forward backpropagation as 

learning algorithm where only lagged inflation is used as input. The results 

imply that the forecasting performance of the NN model (RMSE=0.05) is 

significantly better than that of the ARMA model (RMSE=11.73). It should 

be noted that the results from the inflation lags exceeding one and more 

number of hidden layers are almost the same. Therefore, the NN model 

outperforms the parametric ARMA model. 

 

3- Conclusions 

This study examined the forecast performance of parametric and 

nonparametric models. The agents were assumed to use a parametric 

autoregressive moving average (ARMA) model or nonparametric models to 

forecast inflation. The results revealed that the neural network model yields 

better estimates of inflation rate than do parametric autoregressive moving 

average (ARMA) and linear models. Comparing to the nonparametric 

alternatives, the results of Wilcoxon tests demonstrated that the forecasting 

performance of Projection-Pursuit Regression and Additive models appeared 

to differ from the Neural Network model, implying that the Neural Network 



42/ A Comparative Study of Parametric and Nonparametric Regressions 
 

model can significantly outperform Projection-Pursuit Regression and 

Additive models. However, there was no possibility that the Neural Network 

model can outperform the Multiple Adaptive Regression Splines model. 
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Appendix: Data source and definitions 

 

The data are annually for the period 1959-2003 and are collected from the 

Central Bank of Iran. 

gnp = real GNP (at the constant 1997 prices) 

gnpi = GNP deflator (1997=100) 


