
Journal of Sciences, Islamic Republic of Iran 18(4): 311-316 (2007) http://jsciences.ut.ac.ir 
University of Tehran, ISSN 1016-1104 

311 

Complete Convergence and Some Maximal Inequalities 
for Weighted Sums of Random Variables 

 
M. Amini,1,* H.R. Nili Sani,2 and A. Bozorgnia1 

 
1Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University  

of Mashhad, Mashhad, Islamic Republic of Iran 
2Department of Statistics, University of Birjand, Birjand, Islamic Republic of Iran 

 
Abstract 

Let }{Xn  be a sequence of arbitrary random variables with  0  EXn =  and 
∞< EX2

n , for every 1n ≥  and }{a nk  be an array of real numbers. We will obtain 
two maximal inequalities for partial sums and weighted sums of random variables 
and also, we will prove complete convergence for weighted sums ∑ =

n

1 j jnjXa , 

under some conditions on nja  and sequence 1}n ,{X n ≥ . 

 
Keywords: Complete convergence; Weighted sums; Maximal inequalities; Pair-wise negative 
dependence 

 
 

 
* Corresponding author, Tel.: +98(511)8828605, Fax: +98(511)8828605, E-mail: m-amini@ferdowsi.um.ac.ir 

1. Introduction 

The concept of complete convergence of a sequence 
of random variables was introduced by Hsu and Robins 
[4], as follows. A sequence n{X , n 1}≥  of random 
variables converges completely to a constant a (denoted 

n nlim X   a→∞ = , completely), if 

n
n 1

P[|X  - a| ]  for all   0.ε ε
∞

=

> < ∞ >∑  

From then on, there are many authors who devote the 
study to the complete convergence for partial sums and 
weighted sums of independent random variables such as 
Taylor [13], Hu et al. [6], Sung et al. [11], Weideng and 
Zhengran [15] and Sung [12]. Several authors extended 
this convergence to partial sums and weighted sums of 
negatively dependent and negatively associated random 
variables namely Liang and Su [10], Liang [9], Huang 
and Xu [5] and Amini, and Bozorgnia [1]. In this paper 

first, we prove two maximal inequalities for partial 
sums and weighted sums of arbitrary random variables 
and then present various conditions on { nja } and 

n{X }  for which n
nj jj 1

a X
=∑  converges completely. 

In addition we consider n{X , n 1}≥  as a sequence of 
random variables with zero means such that 

2- t
n x

P[|X | x] M e dt,γ+∞
≥ ≤ ∫  (1) 

for all n and all 0x ≥ , where M and γ  are positive 
constants. Hanson and Wright [3], obtained a bound on 
tail probabilities for quadratic forms in independent 
random variables using condition (1). Wright [16] 
proved that the bound established by Hanson and 
Wright [3] for independent symmetric random variables 
also holds when the random variables are not symmetric 
but condition (1) is valid. 
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Definition.  ([2]) The sequence n{X , n 1}≥  of random 
variables is said to be pair-wise negative dependent 
(PND) if for every i jx , x R∈  

i i j j i i j jP[X x , X x  ] P[X x ]P[X x  ].≤ ≤ ≤ ≤ ≤  

 
Lemma 1.  ([2]) If the sequence n{X , n 1}≥  is PND, 
then 

i j i jE(X .X ) E(X ).E(X ) for all i j.≤ ≠  

 
Lemma 2.  If Z~N(0, 1) , and X satisfies (1), then there 
exists λ  such that 

2 2 2EX EZ .λ≤  

 
Proof.  By condition (1), we get 

( )2

2

2

0

0 x

2 2 2

0

EX  2xP[|X|  x]dx

 M 2x

M t ,

t

t

e dt

e dt EZ

γ

γ λ

+∞

+∞ +∞ −

+∞ −

= >

≤

= ≤

∫

∫ ∫

∫

 

Where 
4

3
42

M π λ
γ

≤ < ∞ . 

 
Lemma 3.  ([8]) The sequence n{X , n 1}≥  converges 
almost surely if and only if 

1
lim [sup| | ] 0,n k nn k

P X X ε+→∞ ≥
− > =  

for every 0.ε >  
 
Theorem 1.  ([7]) If n{(X , ),  n 1}nF ≥  is a non-
negative sub-martingale, then 

0
( max ) ( ) , 1.

1
p p p

k nk n

p
E X E X when p

p≤ ≤
≤ >

−
 

2.The Maximal Inequalities 

In this section, we prove two maximal inequalities 
and extend Kolomogorov’s convergence criterion of 
strong law of large numbers and we obtain some other 
useful results. 

Theorem 2. Let n{X , n 1}≥  be a sequence of 
random variables with nE(X )  0= , 2

nEX   < ∞ , 

n 1≥ , then for the given 0ε > , 

2
k 21 k n 1

32P[ max |S | ] ( )
n

j
j

ε σ
ε≤ ≤

=

≥ ≤ ∑  (2) 

Where 
1

k

k i
i

S X
=

= ∑  and var( )i iXσ = . 

 
Proof.  Set n

1n kk 1
S  X +

=
= ∑  and n

2n kk 1
S  X −

=
= ∑ , 

where X   max{0, X}+ =  and X   max{0, -X}− = . 
Since 1n n-1 1(n-1)E[S |F ] S ,≥  a.e. and 2n n-1 2(n-1)E[S |F ] S≥ , 
a.e. hence the sequences 1n n{S , F , n 1}≥  and 

2n n{S , F , n 1}≥  are nonnegative sub-martingales 
where n 1 nF   (X , · · · ,X )σ=  for all n 1≥ , where 

1 2( , ,...., )nX X Xσ  is the smallest sigma filed 
produced by 1 2, ,....., .nX X X  Then, we get by 
Markov’s inequality and Theorem 1 for 2p = , that 

2
1 121 1

2
1n 2

j2 2
1

1max [max

4ES 4 ( )   for all    0,

k kk n k n

n

j

P[  S  ε] E S ]
ε

σ ε
ε ε

≤ ≤ ≤ ≤

=

> ≤

≤ ≤ >∑
 

the last inequality is true by the following statement 

2 2 2
1n

1 1

ES ( ) .
n n

k i j k
k i j k

σ σ σ σ
= ≠ =

≤ + =∑ ∑∑ ∑  

Similarly, one can show that 

2
2 j21 1

4max ( )  
n

kk n j

P[  S  ε] σ
ε≤ ≤ =

> ≤ ∑ . 

Combining these two inequalities and 
n 1n 2n|S | S   S≤ + , we obtain 

11 1

21

2
j2

1

max | | [max ]
2

[max ]
2

32 ( )   for all    0,

k kk n k n

kk n

n

j

P[  S  ε] P S

P S

ε

ε

σ ε
ε

≤ ≤ ≤ ≤

≤ ≤

=

≥ ≤ ≥

+ ≥

≤ >∑

 

The following corollary is an extension of 
Kolomogorov’s convergence criterion of strong law of 
large numbers for arbitrary random variables. 
 
Corollary 1.  Let n{X , n 1}≥  be as in Theorem 2. 

i)  If 
1 nn
σ∞

=
< ∞∑ , then the series 

1 nn
X∞

=∑  
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converges a.e. 

ii)  If 
1

n
n

nb
σ∞

=
< ∞∑ , then the following statements 

hold. 

1

1 0 . .
n

k
kn

X a e as n
b =

→ →∞∑ , (3) 

and 

1

| |
sup 0 2n

n n

S
E for all

b

β

β
≥

⎛ ⎞
< ∞ < ≤⎜ ⎟

⎝ ⎠
 (4) 

where n{b }  is a sequence of positive increasing real 
numbers such that 

nb    as   n .→∞ →∞  

Proof. 
i)  By applying Lemma 2, Theorem 2 and Lemma 3, 

we have 

n k n
k 1

n k nm 1 k m

2
2

1

P[sup|S  - S | ] 

lim P[ sup |S  - S | ]

32 ( ) , 0,j
j n

for all

ε

ε

σ ε
ε

+
≥

+→∞ ≤ ≤

∞

= +

> =

>

≤ >∑

 

Since 
1 nn
σ∞

=
< ∞∑ , it follows that 

n k nm k 1
lim P[sup|S  - S | ] 0,ε+→∞ ≥

> =  

this completes the proof. 

ii)  Taking n
n

n

X
Y   

b
= , we get (3) and (4) by 

Keronecker’s Lemma, Lemma 3 and Theorem 2. 
 
Corollary 2.  Let n{X , n 1}≥  be as in Theorem 2. 

i)  If 
1 nn
σ∞

=
< ∞∑ , then for the given  0ε >  and for 

 0α > , the following statements hold 

2 2

11
[max | | ] ,kk nn

n P S nα α ε
∞

−

≤ ≤=

> <∞∑  (5) 

and 

2 2

1

| |
[sup ] ,k

k nn

S
n P

k
α

α
ε

∞
−

≥=

> <∞∑  (6) 

ii)  If ( ) 2
2

1 1

n
jn j

n β σ∞ −
= =

< ∞∑ ∑ , for some 0β > , 

then for every  0ε > , 

1 k n1

n P[ max | | ]  for all  0.k
n

S nβ ε ε
∞

≤ ≤
=

> < ∞ >∑  (7) 

In particular, if 
1

2
1

( )n
jj

O n
α β

σ
+

−

=
=∑ , for some 

0β >  and 1α > , then we can obtain (5). 
iii)  If n{X }  satisfies condition (1), then 
n

jj 1
O(n)α

=
=∑ , and for 0  1β< < , we have 

2 2

1 1

( )
n

j
n j

n β σ
∞

−

= =

< ∞∑ ∑  

Theorem 3.  Let n{X , n 1}≥  be an arbitrary sequence 
of random variables with 2

n nE(X )  0, EX , n 1= < ∞ ≥ . 
Suppose that nj{a , 1 j n, n 1}≤ ≤ ≥  be an array of real 
numbers, then 

k1 k n

2
2

1

P[ max |T | ]

32 ( | | )  for all   0,
n

nj j
j

a

ε

σ ε
ε

≤ ≤

=

> ≤

>∑
 (8) 

where n
n nk kk 1

T   a X .
=

= ∑  

 
Proof.  Set 1n nk k1

T |a |Xn

k
+

=
= ∑  and 2nT =  

nk k1
|a |Xn

k
−

=∑ . Since 1n n-1 1(n-1)E[T |F ] T≥ , a.e. and 

2n n-1 2(n-1)E[T |F ] T≥ , a.e. it follows that the sequences 

1n n{T , F , n 1}≥  and 2n n{T , F , n 1}≥  are nonnegative 
sub-martingales, where n 1 nF  (X , · · · ,X )σ=  for all 
n 1≥ . Since n 1n 2n|T | T   T≤ +  for all n 1≥ , the proof 
of (8) follows from the same argument as that in the 
proof of Theorem 2. Hence 

k 1k1 k n 1 k n

2k1 k n

n
2

nj j2
j 1

P[ max |T | ] P[ max T  ]
2

P[ max T  ]
2

32 ( |a | )  for all   0.

εε

ε

σ ε
ε

≤ ≤ ≤ ≤

≤ ≤

=

≥ ≤ ≥

+ ≥

≤ >∑

 

Corollary 3.  Let n{X , n 1}≥  and nj{a }  be as in 
Theorem 3, 

i)  If 2 2
1 1

( | | )n
nj jn j

n aβ σ∞ −
= =

< ∞∑ ∑ , for some 

0β > , then we have 

2

11

[max | | ] 0kk nn

n P T for allβ ε ε
∞

−

≤ ≤
=

> < ∞ >∑ . (9) 
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ii)  If n{X }  satisfies condition (1) and 
1
| |n

njj
a

=∑  
2( )O n α=  for all  0α > , then (9) holds. 

3.Complete Convergence for Weighted Sums 

Using results of Section 2, we obtain complete 
convergence for weighted sums n

nj j1
a X

j =∑  of random 

variables that satisfy (1) under some conditions on nja . 
 
Theorem 4.  Let n{X , n 1}≥  be an arbitrary sequence 
of random variables and nj{a , 1 j n, n 1}≤ ≤ ≥  be an 
array of real numbers such that 

n

nj n(j 1)
j 1

 |a  - a |   O(n ) for some  0,β β+
=

= >∑  

where 0  a 1)n(n =+ . 

i)  If n{X , n 1}≥  satisfies in condition (1), then 

n

nj j
j 1

a X 0, completely   as n .
=

→ →∞∑  (10) 

ii)  If 
1

( )n
kk

O n ασ
=

=∑  for some 0α > , then 

(10) holds. 
 
Proof.  Using Abel’s partial summation rule we get 

n n

nj j nj n(j 1)1j 1 j 1

1

| a X  |  max | | ( |a a |)

 max | |  for some    0. 

ii n

ii n

S

Cn Sβ β

+≤ ≤= =

−

≤ ≤

≤ −

≤ >

∑ ∑
 (11) 

From Theorem 2, we conclude that 

1n 1

2

-2
i2

n 1 1

( max | | )

32 n   for all    0.

ii n

n

j

P n Sβ

β

ε

σ ε
ε

∞
−

≤ ≤=

∞

= −

>

⎛ ⎞
≤ >⎜ ⎟

⎝ ⎠

∑

∑ ∑
 (12) 

Hence (11) and (12) yield 
n

-
nj j 1n 1 j 1 n 1

2

-2
2

n 1 j 1

P[| a X | ] P(n  max | | )

32 n .

ii n

n

j

Sβ

β

ε ε

σ
ε

∞ ∞

≤ ≤
= = =

∞

= =

> ≤ >

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠

∑ ∑ ∑

∑ ∑
 

i)  Condition (1) implies that 

2

2

1 1

2
2 2

1

n

1   for all    3/2.

n

j
n j

n n

β

β

σ

λ β

∞
−

= =

∞

−
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

≤ < ∞ >

∑ ∑

∑
 

ii)  If 
1

O(n )n
kk

ασ
=

=∑  for some  0α > , then 

2

2

1 1

2 2
1

n

1   for all    1 2 .

n

j
n j

n
M

n

β

β α

σ

β α

∞
−

= =

∞

−
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

< < ∞ > +

∑ ∑

∑
 

Where 0 ,M< < ∞  this completes the proof. 
 
Theorem 5.  Let n{X , n 1}≥  be an arbitrary sequence 
of random variables with zero means that satisfies (1) 
and { }nja  be as in Theorem 4. Then, there exists 0λ >  

such that 
22

nj nj2
j 1 j 1

P[| a | ] a   for all   0.
n n

jX λε ε
ε= =

⎛ ⎞
> ≤ >⎜ ⎟

⎝ ⎠
∑ ∑  

Proof.  Applying Markov’s inequality, Cauchy-
Shwarz’s inequality and Lemma 2, we have 

2
n

nj j nj j2
j 1 1

2 2
nj j ni nj i j2

j 1

2 2 2 2
nj j ni nj i j2

j 1

2

2
1

22

2
1

1P[| a X  | > ] E a X

1 (|a |) EX + |a |a |E|X X |

1 (|a |) EX + |a ||a | EX EX

1

        for all  

n

j

n

i j

n

i j

n

nj j
j

n

nj
j

a

a

ε
ε

ε

ε

σ
ε

λ
ε

= =

= ≠

= ≠

=

=

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑∑

∑ ∑∑

∑

∑  > 0.ε

 

Corollary 4.  Let n{X , n 1}≥  and { nja } be as in 
Theorem 5. 

i)  If ni1
|a |  O(1)n

i =
=∑ , then for all 1

2
β > , 

n

nj j
j 1

a X 0, completely   as n .n β−

=

→ →∞∑  
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ii)  If 
-
2

1 i n nimax  |a |  O(n ) , 0  2
δ

δ≤ ≤ = < < , then 

for all  1 -
2
δβ > , we have 

n
-

nj j
j 1

n a X  0,       completely as  nβ

=

→ →∞∑ . 

 
Theorem 6.  Let n{X , n 1}≥  be a sequence of PND 
random variables with zero means that satisfies (1). Let 
{ }nja  be an array of positive real numbers with 

2
1

( ),n
nii

a O n δ
=

=∑  for all 0δ ≥ . Then for all 

1 
2
δβ +

> , we have 

n
-

nj j
j 1

n a X  0,       completely as  nβ

=

→ →∞∑ . 

Proof.  By Markov’s inequality, Lemmas 1 and 2, we 
get 

1 1

2

2 2
1 1

2 2
2 2

1 1

2
2

2 2
1 1

2

2 2
1

[ | | ]

1

1

0.

n

nj j
n j

n

nj j
n j

n

nj j nj nj i j
n j i j

n

nj
n j

n

P n a X

E a X
n

a EX a a EX EX
n

a
n

for all
n

β

β

β

β

β δ

ε

ε

ε

λ
ε

λ ε
ε

∞
−

= =

∞

= =

∞

= = ≠

∞

= =

∞

−
=

>

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠

⎛ ⎞
≤ +⎜ ⎟

⎝ ⎠

≤

≤ < ∞ >

∑ ∑

∑ ∑

∑ ∑ ∑∑

∑ ∑

∑

 

This completes the proof. 

4. Examples 

In the following we have several examples that 
satisfy the conditions of Theorem 2, and Corollaries 1 
and 2. 

1. Let n{X , n 1}≥  be a sequence of arbitrary 
random variables. 

i)  If n nX  ~exp( )λ  for all n 1≥  and 
1

1
n

nλ
∞

=
< ∞∑ , 

then 
1 nn
X∞

=∑  converges a.e. In particular if 

n   nαλ =  for all   1α > , then 
1 nn
X∞

=∑  converges 

a.e. 

ii)  Let n
1P[X = 0] 1 - 

n α
=  and n

1P[X ]
2n

n
α

= =∓  

for all 4α > . Since 
1 1 1

2

1
nn n

n
α

σ∞ ∞

= =
−

= < ∞∑ ∑ , it 

follows that 
1 nn
X∞

=∑  converges a.e. 

iii)  If n n n nX ~U(-a , a ), 0  a   1< <  for all n 1≥ , 

and nn 1
a   ∞

=
< ∞∑ , then 

1 nn
X∞

=∑  converges a.e. 

iv)  Let n 0X ~ (m , n )αΓ , for all   0α > . Since 

n 1
n

n
σ∞

=
< ∞∑ , it follows that 

n

k k
k 1

1 (X  - EX )   0   a.e
n =

→∑ . 

2. Let n{X }  be a sequence of i.i.d. random variables 
with distribution U[0, 1] . Set n k 1Y   n

kX== ∏  and 

n n Var(Y )σ = . It is obvious that n n

1EY   
2

=  and 

n n

1V ar(Y )  
3

< , for all n 1≥ . Since 
1 nn
σ∞

=
< ∞∑ , 

from Corollary 1.i, we conclude that 
1
( )n nn
Y EY∞

=
−∑  

converges a.e. Next, note that 
1 nn
EY∞

=
< ∞∑  a.e. 

hence 

k
11
X ,            converges a.e

n

kn

∞

==

∏∑ . 

Also, the conditions of Corollary 2.i are valid for the 
sequence n{Y } . Thus (5) and (6) hold. 

3. Let n{X }  be a sequence of random variables with 
the probability function, 

n n 
1P[X  0]  P[X  2]          for all n 1.
2

= = = = ≥  

It is obvious that conditions of Corollaries 1 and 2 

are valid for the sequence n
n

X
{ }

3
, hence 

1 3
n

n n

X∞

=∑  

converges a.e. and the statements (5) and (6) are true. 
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