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Abstract 

In this paper we use radial basis functions to solve multivariable integral 
equations. We use collocation method for implementation. Numerical experiments 
show the accuracy of the method. 
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1. Introduction 

In many literatures univariable integral equations 
have been solved with projection methods as 
Collocation and Galerkin methods and with different 
types of basis functions such as wavelets or other 
(orthogonal) basis functions [1-9]. In some projection 
methods such as Collocation one can use interpolation 
scheme; but as we know in the case of two or more 
variables case there is not any natural generalization of 
interpolation [10-13]. Other methods such as finite 
element which uses (orthogonal) basis functions 
actually needs mesh generation for domain of 
integration. Mesh dependent methods need some 
triangulation (or rectangulation) and coding for nodes of 
each triangle (or rectangle) therefore some introductive 
algorithms should be executed before implementation of 
the underlying method [2]. Here we solve multivariable 
I.E. with some meshless methods. 

To simplify the notation we consider only functions 
of two variables. Generalizations of functions in more 
than two variables should be fairly straightforward. 

2. Multivariable I.E. and Radial Basis Functions 

Consider the following I.E. of the first and second 

kind with two variables 

( ) ( ) ( )

( ) [ ] [ ]

, , , , ,

, , ,

y x

c a
k x y d x y

x y a b c d

ξ η ρ ξ η ξη ψ=

∈ ×

∫ ∫
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( ) ( ) ( )
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x y x y R

λρ ξ η ρ ξ η ξ η

ψ

−

= ∈

∫
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where R, is a bounded region in the plane 2 . In this 
section we apply projection methods to the above 
equation without needing any triangulation of R. 

2.1. Scattered Data Interpolation 

Given a region R in plane 2 , and a set of data 
(measurement, and locations at which these 
measurements were obtained) we want to find a rule 
which exactly match the given measurements at the 
corresponding locations. If the locations at which the 
measurements are taken are not on a uniform or regular 
grid then the process is called Scattered data 
interpolation. 

A common approach to solving the scattered data 
problem is to make the assumption that the function 
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fP  is a linear combination of certain basis functions 
kB , i.e., 

( ) ( ),
N

s
k kf X c B X X= ∈∑P  (3) 

Here we use scattered data interpolation to find the 
solution of multivariable I.E. In the univariate setting it 
is well known that one can interpolate to arbitrary data 
at N distinct data sites using a polynomial of degree N-
1. For multivariate setting however, there is the 
following negative result due to Mairhuber and Curtis in 
1956 [15]. 
 
Theorem 1.  If sΩ ⊂ , 2s ≥  contains an interior 
point then there exist no Haar spaces of continuous 
functions except for one dimensional ones. 
 
Proof.  See [15]. 
 
Remarks. 1.  Note that existence of a Haar space 
guarantees invertibility of the interpolation matrix. 
2.  The Mairhuber-Curtis theorem implies that in the 
multivariable setting we can no longer expect this to be 
the case, e.g., it is not possible to construct unique 
interpolation with (multivariate) polynomials of degree 
N to data given at arbitrary locations in 2 . 
 
Definition 1.  A complex valued continuous function Φ 
is called positive definite on s  if 

( )
1 1

0
N N

j k j k
j k

c c X X
= =

Φ − ≥∑ ∑  (4) 

for any N pairwise different 1 ,..., s
NX X ∈  and 

[ ]1 ,..., t N
Nc c c= ∈ . The function Φ is called strictly 

positive definite on s  if the only vector that turns Eq. 
(4) into an equality is the zero vector. 

Definition 1 and the discussion preceding it suggest 
that we should use strictly positive definite functions as 
basis functions in Eq. (3), i.e. ( ) ( )k kB X X X= Φ −  
or 

( ) ( )
1

,
N

s
N k k

k

f X c X X X
=

= Φ − ∈∑P  (5) 

Definition 2.  A function : sΦ →  is called Radial 
provided that there exist a univariate function 

[ ): 0,ϕ ∞ → , such that ( )XΦ = ( )rϕ , where 

r X= , and .  is some norm on s  usually the 
Euclidean norm. 

Some radial functions that are useful for interpolation 

are as bellow 
1. ( ) ( )2exp ,r rφ α= −  0α > , Gaussian (GA) 

2. ( ) ( )2 2r c r
β

φ = + , 0β > , Nβ ∉ , Multquadric 

(MQ) 
3. ( ) ( )2 2r c r

β
φ = + , 0β < , Inverse Multquadric 

(IM) 
4. ( ) ( )2

,
ln

s k
r r rφ = , Thin plate spline (TPS) 

5. ( ) ( ) ( ),
1 m

s k
r r p rφ = − + , Wendland functions, 

where ( ). +
 is defined by 

( )
, 0,

0, 0.
m

x for x
x

for x+

≥⎧⎪= ⎨
<⎪⎩

 

and p(r) is a suitable polynomial of degree at most k, 
[16]. 

3. Collocation Method 

To define the collocation method for solving Eq. (2), 
proceed as follows. Use a Radial interpolation method 
over R by introducing the interpolatory operator nP  on 
C(R) as 

( ) ( ) ( )

( )

1
, , ,

,

n

n n j j
j

x y x y c X X

X x y

ρ ρ
=

= = Φ −

=

∑P
 (6) 

where ( )XΦ = )( )Xφ , and φ  is a radial function as 

in preceding section and , 1,...,jx j n= , are distinct 
scattered data of region R. Introduce 

( ) ( ) ( ) ( ) ( )
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∫

∑

∫

 (7) 

where ( , )v ξ η=  and ( ),X x y R= ∈  
Then for nodes , 1,...,jX R j n∈ = , compose 

( ) 0, 1,...,n ir X i n= =  (8) 

This leads to determining { }1 ,..., nc c  as the solution 
of the linear system 
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( ){

( ) ( ) } ( )
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n

j i j
j

i j iR

c X X

k X v v X dv X

λ

ψ
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Φ −

− Φ − =

∑

∫
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for 1,..., .i n=  
We note that 

0n z =P  if and only if ( ) 0, 1,...,iz X i n= = . 
The condition (8) can now be rewritten as 

0n nr =P , 

or equivalently 

( ) ,n n n nnρ
λ ψ ρ χ− = ∈P K P  (10) 

where ( ) ( ), , , ,
R

k x y d dρ ξ η ρ ξ η ξ η= ∫K , and 

( ){ }
1,...,n j j n

span X Xχ
=

= Φ − . We can see in [2] that 

the Eq. (10) is equivalent to 

( ) ,n n nnρ
λ ψ ρ χ− = ∈P K P  (11) 

Where χ  is a Banach space. For the error analysis we 
compare Eq. (11) with the original equation 

( )λ ρ ψ− =K  (12) 

since both are defined on the space χ . 

4. Error Analysis 

In this section we give an error bound for 
approximate solution of Eq. (2) by collocation method. 
First we give some definitions. 
 
Definition 3.  The Fourier transform of ( )1

sf ∈L  is 

given by 

( ) ( ) ( )ˆ 1 / 2 .s

s i Xf f X e dXωω π −= ∫  (13) 

Now let Ω  be a domain in s , and 
{ }1 ,... s

MX x x= ⊆ Ω ⊆ , and a "kernel" function 

: , sΦ Ω×Ω→ Ω ⊆ . (14) 

Consider a finite dimensional space 

( ){ }, : ,. :X span x x XΦ = Φ ∈S  (15) 

of dimension at most M. The union of these spaces is 

( ){ }: ,. : .span x xΦ = Φ ∈ΩS  (16) 

If we want to have a norm structure on the space (14) 
we can define: 
 
Definition 4.  A function (14) on sΩ⊆  that 
generates an inner product of the form 

( ) ( ) ( ),. , ,. ,x y x yΦ<Φ Φ > =Φ  for all ,x y ∈Ω  (17) 

on the space ΦS  will be called a reproducing kernel on 
Ω . Equation (15) turns ΦS  into a pre-Hilbert space, 
and it allows to write 

( ) ( ) ( ). , ,. :f y f yΦ< Φ > =  for all ,y f Φ∈Ω ∈S  

because the equation holds for ( ) ( ): ,xf y x y= Φ  by 
Eq. (15) therefore that is true for all functions in ΦS . 
The closure ΦN  of ΦS  under the inner product 

.,. Φ< >  will be a Hilbert space [14]. In fact 
 
Definition 5.  If Φ  is a reproducing kernel on sΩ∈ , 
we call the space 

( ){ }.,. .,.: : ,. :clos clos span x x
Φ ΦΦ < > Φ < >= = Φ ∈ΩN S , 

the native space for Φ . 
 
Definition 6.  we define 

( )

( ) ( ) ( )( ) ( ){ }
2

22
2 22

: . 1 .

m s

m
s s s

W

f f

=

∈ ∩ + ∈L C L
 (18) 

With definition (6) if we use a compactly supported 
function ,s kΦ  (as definition 2 no. 5 which is zero 
outside of [0,1]) for interpolation of function f in Eq. (5) 
we have the following error bound (see [17]) 

( ) ( )2 1
2 2

2 1
k s s

k s
N W

f f h f + +
+ +

Ω
− ≤

L
CP  (19) 

where f is assumed to lie in the subspace ( )2 1
2

k s sW + +  

of ( )s
ΦN . 

 
Theorem 2.  Assume :K x x→  is bounded, with x  a 
Banach space, and assume :K x xλ − →  is an onto 
and 1-1 map. Further assume 

0 asn K n− → →∞K P  

then for all sufficiently large n, say N≥ , the operator 
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( ) 1
nλ −−P K  exist as a bounded operator from χ  to χ . 

Moreover, it is uniformly bounded: 

( ) 1sup n N nλ −
≥ − < ∞P K  

For the solution of (11) and (12), 

( )

( ) 1 .

n n
n

n n

λ
ρ ρ ρ ρ

λ

λ λ ρ ρ−

− ≤ −
−

≤ − −

P
P K

P K P

 

 
Proof.  See [2]. 

Therefore we have obtained, with assumption of 
preceding theorem and Eq. (19), that 

nρ ρ− = ( )2 1 .k sh + +O  

5. Numerical Experiments 

In our first example we use Gaussian functions i.e. 

( ) ( )2
expj jX X X XΦ − = − −  in Eq. (9). 

1.  Consider Eq. (2) with kernel function and exact 
solution as bellow 

 ( ) ( ) ( )2 2, , , , , exp ,k x y x y x y xyξ η ξ η ρ= + =  

[ ] [ ]0,1 0,1R = × , and suitable right hand side. 
2.  In the second example we use Multiquadric 

functions i.e. ( ) 2
1j jX X X XΦ − = + −  in Eq. (9). 

Consider Eq. (2) with kernel function as example 1 
and exact solution as bellow 

( ) 2 2, 1x y x yρ = + +  

[ ] [ ]0,1 0,1R = × , and suitable right hand side. 
In our third example we use Inverse Multi quadratic 

functions i.e. ( ) ( )2
1 1j jX X X XΦ − = + −  in Eq. 

(9). 
3.  Consider Eq. (2) with kernel function and exact 

solution as bellow 

( ) ( ) ( )

( ) ( )

, , , cos cos ,

, sin

k x y x y

x y x y

ξ η ξ η

ρ

=

= +
 

[ ] [ ]1,1 1,1R = − × − , and suitable right hand side. 
In the last example we use Gaussian functions with 

parameter 0.5α =  i.e. 

( ) ( )2
exp 0.5j jX X X XΦ − = − − . 

4.  Consider Eq. (1) with kernel function and exact 
solution as bellow 

( ) ( ) 2 2, , , 1, ,k x y x y x yξ η ρ= = −  

[ ] [ ]0.5,0.5 0.5,0.5R = − × − , and suitable right hand 
side. 

The absolute error of ( ) ( ), ,n x y x yρ ρ−  in some 

points of function domains for our 4 examples are 
presented in Table 1. 

 
Table 1.  Absolute error of examples 1-3 in some points of 
functions domains 

(xi, yj) ex.1 ex.2 ex.3 ex.4 

(0.1,0.2) 0.235e-6 0.542e-5 0.254e-5 0.433e-7 

(0.2,0.3) 0.564e-7 0.547e-6 0.548e-6 0.571e-7 
     

(0.2,0.5) 0.987e-7 0.657e-6 0.548e-6 0.224e-6 

(0.7,0.4) 0.654e-7 0.587e-6 0.654e-7 - 
     

(0.8,0.9) 0.874e-6 0.524e-5 0.544e-6 - 

(0.5,0.7) 0.547e-7 0.238e-6 0.554e-6 - 
     
     

(-0.4,0.1) - - 0.284e-5 0.226e-7 

(-0.3,-0.1) - - 0.552e-6 0.332e-7 
     

(-0.4,-0.2) - - 0.524e-6 0.245e-7 

(-0.9,-0.7) - - 0.547e-5 - 
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