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Abstract

In this paper, the notion of fuzzy n-polygroups (F" -polygroups) is introduced
and some related properties are investigated. In this regards, the concepts of

normal

F-subpolygroups and homomorphisms of F"-polygroups are adopted.

Also, the quotient of F"-polygroups by defining regular relations are studied.
Finally, the classical isomorphism theorems of groups are generalized to F"-
polygroups provided that the F-subpolygroups considered in them are normal.

Keywords: Hyperstructure; Fuzzy set; F" -Hyperoperation; F" -Polygroup; Regular and strongly

regular relations

Introduction

In this section, we describe the motivation and a
survey of related works. Hyperstructure theory has been
introduced by Marty in [15]. He defined hypergroups,
investigated their properties and applied them to groups
and rational algebraic functions. Later on these subjects
has been studied by many mathematicians. Canonical
hypergroups are a particular case of Marty’s
hypergroups. The notion of canonical hypergroups
independent of other operations, was studied for the first
time by J. Mittas in 1970. Some connected
hyperstructures with canonical hypergroups were
introduced and studied by Corsini, Bonansinga,
Serafimidis, Kostantinidou, Mittas and De Salvo.
Canonical hypergroups were used in the character
theory of finite groups by Roth in 1975. Quasicanonical
hypergroups which satisfy all conditions of canonical
hypergroups except commutativity, were introduced by
Corsini. This class of hypergroups were studied by
Comer independently and he named them polygroups.
There exists a rich bibliography: publications appeared
within 2012 can be found in “Polygroup Theory and
Related Systems" by B. Davvaz [2]. This book contains
the principal definitions endowed with examples and the
basic results of the theory.

N -ary generalizations of algebraic structures is
another topic in hyperstructure theory. The concept of
N -hypergroups which are a nice generalization of
groups were introduced by Davvaz and Vougiouklis in
[6], which is a generalization of the concept of Marty’s
hypergroup and N -group. Later on, N -polygroups
which are a special case of N -hypergroups studied by
Ghadiri and Waphare [11], Leoreanu-Fotea and Davvaz
[5, 14] and others.

Following the introduction of fuzzy set by Zadeh in
1965 [18], fuzzy set theory has been developed by many
others in mathematics and other branches of science. In
1971, the concept of a fuzzy subgroup has defined and
studied by Rosenfeld [16]. He formulated the concept of
a fuzzy subgroup of a group. The connections between
the fuzzy sets and algebraic hyperstructures have been
considered by Corsini, Davvaz, Leoreanu, Zahedi and
others. Some applications of fuzzy algebra, such as in
automata theory and coding theory can be found in [1].
Zahedi et al. introduced the notion of fuzzy
subpolygroups of a polygroup, also see [3, 7]. Then, the
notion of fuzzy N -ary subpolygroups is studied in [8, 9,
10, 12, 13]. The notion of fuzzy polygroup (F -
polygroup), has been introduced and studied by Zahedi
and Hasankhani [20, 21].

* Corresponding author, Tel.: +98(351)812711, Fax: +98(351)8210695, E-mail: davvaz@yazd.ac.ir

259



Vol. 24 No.3 Summer 2013

In this paper by considering the notion of n-

polygroups, first we introduce the notions of F"-
polygroup, F -subpolygroups, regular and strongly
regular relations. Then, by using a normal F -

subpolygroup we construct quotient F " -polygroups
and finally we state isomorphism theorems for F"-
polygroups.

Preliminaries

In this section, we recall some definitions and
simple results of hyperstructures and fuzzy subsets we
need for development of our paper. We shall use the

notation xij to denote the sequence X;,Xj,;,...,X;-
(® i

Also, a denotes the sequence ?71 Let P be a

non-empty set. A hyperoperation on P is a function
o:PxP —P’(P), where P"(P) is the set of all the
non-empty subsets of P . A couple (P,o), endowed
with a bijective function *: P — P (unitary operation),
is called a polygroup if the following three conditions
are satisfied: (i) (Xoy)ez=Xo(yeoZz), for every
X,Y,Z in P; (ii) there exists e€P such that
Xo@e=goX=X, xeP: (i
ZeXoy=>Xezoy ' =>yeXx'oz, for every
X,¥,Z in P. The following elementary facts about
polygroups follow easily from the axioms:

for  every

1 1

Axtox, e =g, (Y T=x and (xey) =y ox
where A" ={a"|ae A}. A fuzzy subset of P is

a mapping 4P — 1, where | is the unit interval
[0,1]1<R. The set of all fuzzy subsets of P will be

geXoX

denoted by |7, that is
IP:{y|y:P—>I isa function}-
Let {4, : @ € A} be a collection of fuzzy subsets of

P, where A is a non-empty index set. Then, we define
the fuzzy subset U as follows: for all xeP,

ael

(Us)¥) = v {1, (0} If 12€ 17, then the support of

aeh aeA

M, is defined by supp(u)={xeP|u(x)>0}. If
AcP and tel, then we define A el” as

follows:
t if xeA,

A(X):{o if xeP\A
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Let I7 =1°\{0}. An F"-hyperoperation on P is
a function f:P"— 1. In other words, for any
x; € P, f(x) is a non-zero fuzzy subset of P . If for
all X! € P, supp(f(x)) is asingleton set, then f is

called an F"-operation. An F"-hyperoperation f
on P iscalled associative if
FOq, O™, X0 = £ £, ¢

forall i, je{l,...,n}and X" " €P.
If 1) €17 then f(us,..., 4,) is defined by

fle,. ) = U f(X,een X))

Xjesupp(u)
Let f4,...,p4, 1€l and X' €P. Then, for
i e{1,...,n} we define
@) £ K00 = T oy o 0 H Zog
(@) 047 AXL) = F (Lo eor T Lo K+ Zany)
@) fl xy) = F ™, Z{x}’ﬂiil) .
@) fla ' Al = (s a1l
where A is a non-empty subset of P and 4, is the
characteristic function of set X .

Definition 2.1 Let P be a non-empty set, f be an

F " -hyperoperation on P and let “:P—>P be a
unitary operation. Then, (P, f) is called an F"-

polygroup if the following axioms hold:
(1) f isassociative,

(2) there exists an element € € P such that el=e
(i-1)  (n-)
and supp(f( e ,x, e ))={x}, forall Xe P and for
all 1e{1,...,n}

(in this case we say € is an F - identity element of
P),

(3) zesupp(f(x')) implies
X € SUpP(F (X 1o X, 2%, X))
all z,x' e P.

for

An F"-polygroup (P, f) is said to be canonical if
f(x)=f(xZ0), forall x! €P and for every oS,
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We can see easily that if (P,f) is an F"-
polygroup, £4,..., 4, 1 € 17 and Xl”,x are arbitrary

elements of P, then

@ (xH)7"=x,

@ upp(f O™ =supp(f (... x "),
where A" ={a|aec A},

@)
supp(f (47", 1, X)) = U supp(f (X, t, X))
tesupp(u)
forall i e{1,...,n},
(4)

supp(f (4, 1)) = |J  supp(f(X,.... x,)).

XiESUPF(ﬂi)
Example 1: Let t € (0,1] and let P be a polygroup.

We define an F " -hyperoperation f on P as follows:

(X, X)) = (X 00X, ), (x), forall x,,...,x,,xeP.
Then, (P, f) isan F"-polygroup.

Definition 2.2 Let (P, f) be an F"-polygroup

and let S be a non-empty subset of P. Then, S is
called an F -subpolygroup if
(1) eeS,

(2) supp(f(x')) =S, forall X' €S,
(3) Xe S implies X * €8S,

Notice that condition (2) of Definition 2.2 is
equivalentto f(x)< y,, forall X €S.

Lemma 2.3 Let (P,f) be a canonical F"-
polygroup and let S;' be F -subpolygroups of P.
Then,

1) supp(f(S,')) isan F -subpolygroup of P,

(2) supp(f (Sli‘l,e,Si”ﬂ)) isan F -subpolygroup of

supp(f (S))), forall i e{1,...,n}.

Quotient F " -polygroups

The goal of this section is to introduce an
equivalence relation S"onan F" -polygroup and to
construct a quotient F " -polygroup.

Let (P, f) be an F"-polygroup and let & be an

equivalence relationon P . If A and B are non-empty
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subsets of P, then

(1) we write AOB if for every a € A, there exists
beB such that adb and for every be B there
exists @ € A such that agb,

) AOB means that for every a€ A and for
every b e B, we have adb.

An equivalence relation @ defined on an F"-

polygroup (P, f) is called regular if for every
X,y €P, X, o X, ¥, implies that
supp( f (x"))Gsupp(f(y")) and € is called

strongly regular if X6&,,...,X. 6y, implies that

supp( f (x{))Osupp(f (7))
It is easy to verify that if @ is a regular relation on
(P, f), then

{01 x esupp(f (... %))} ={O[x]| x e supp(f (A% ]...... o0, )}

where ¢[x] is the equivalence class of X. Also,
whenever @ is a strongly regular relation, reflexivity of
0 implies that for every z,,z, esupp(f(x')) we
have 6[z,]1=6[z,] and so {O[x]| x esupp(f (x/))} is

singleton.

[x:]
0. to

Throughout the paper, we use the notation Tx]
1

denote the sequence g[x,],...,d[x;]-

Theorem 3.1 Let (P, f) bean F"-polygroup and
let & be a regular relation on P. Then,
P/O={0[x]|xe P} is an F"-polygroup with the
F " -hyperoperation f, and unitary operation ~* on

P defined as follows:

X, 1N — n
fﬂ(‘g[xﬂ) Z{e[z]uesupp(f(x{‘))}’ VX P,

6[x]) 't =0[x"], VxeP.

Proof. Since € is a regular relation, f, is well-

defined. We show that f, is associative. For every

ot cPIO . we

i, je{l,...,n} and for every ]

have:

[%_q] Dnsig,  [Xonal

fa(e[xl] ) fe(a[xi] )79[xn il ):
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— U X2n 1)

zes up|:(f(xirHri 71))

" d21.9

o ( [Xl]

LAtItesuprrcy z.xa0; ¥

oM, 2Ny

i—1 j—1 2
{H[t]uesupnf(xl ,f(x';” >Xn:,]7)}

=fe( [xl] ’ .9(6

zes uqu(xin+i_:l))

{dtlltes upr_(f(xfl, f

n+171

Evidently, (0[e]) * = o[e]and 1, (911, del) = {o1x1}
for every X € P, where € is the F -identity element
of (P, f). Now, if g[z] esupp(f, (Q[X] )) then there
exists z' esupp(f(x)) such that g[z]=@[z]. Since
(P, f) isan F"-polygroup, for every i e{1,...,n}
we have X, esupp(f(x5,....x "2 X ... X 5))
which implies that
708 R Y (] R ) I 2 0 Y 4 ) ) I (2 Y ) )
=, (0% D) - (O] Olz), (A1) -
Thus, (P/6, f,) isan F " -polygroup.

Let S be an F -subpolygroup of an F" -polygroup
(P, f). We define the relation S” on P asfollows:

(n-2)
xS’y if and only if xesupp(f(S,y, e )).

Lemma 3.2 The relation S~
relation.

Proof. It is easy to see that S” is reflexive and
symmetric. Let X,Y,Z be elements of P such that

XS”y and ySZ. Then, we have
(n-2)

x esupp(f (S, y, e ))and

is an equivalence

y esupp(f (S, Z, e )) Therefore,
(n-2)
xesupp(f(a,y, e ))and

(n-2)

y esupp(f(b,z, e )) forsome a,bes. So

xesupp(f(a, f(b,z, e ), e )):supp(f(f(a,b, e ),z,(neZ)))

(n-2)
csupp(f(S,z, e)).

Hence, xS'z. Therefore, the relation S” s
transitive.

Definition 3.3 An F -subpolygroup S of (P, f) is
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said to be normal in P if for every X € P,
(n-2) (n-2)

supp(f (x, f(S,x™, e) e ))cS.

Lemma 3.4 For F -subpolygroups Sln of a

canonical F"-polygroup, where Sj is normal, for

some 1< j <n, we have

(1) ﬁsi is a normal F -subpolygroup of Sk,
i=1
where 1<k <n,
2 S, is a

]

supp(f (S,))-

normal F -subpolygroup of

Lemma 3.5 Let S be a normal F -subpolygroup of
(P, f). Then,

(n-2) (n-2)
(1)supp(f(x,S, e ))=supp(f(S,x, e)), for
all xe P,

(n-2) (n-2)
() supp(f(x, f(S,x*, e), e))=S, for all
xeP.
Proof. (1) For every X € P we have
— (n-1)
supp( f(x, S e )) supp(f(f(x S e ) e))
(n-2) (n-2)
gsupp(f(f(x,S, e ),f(x‘l, e ,X), e))
(n-2) (n-2) (n-2)
=supp(f(f(f(x,S, e),x" e)x e))

(n-2)
csupp(f(S,x, e)).

Similarly, we can prove that

(n-2) (n-2)
supp(f(S,x, e ) csupp(f(xS, e)).

(2) For every X € P we have

S =supp(f (6.5, € ) csupp(f (F(x,x%, & ).S, &)
=supp(f(x, f (x3,S, nez) (neZ)))
(n-2) (n-2)

=supp(f(x, f(S,x*, e), e)).
Thus, for every X € S, we have

(-2) (n-2)
supp(f(x, f(S,x™, e ), e ))=S.

Proposition 3.6 Let S be a normal F -
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subpolygroup of (P, f). Then, for X,yeP, the (P, f), then
following assertions are equivalent: . (n-2)
(1) xSy, (1) S [x]=supp(f(S,x, e)),

(2 for every a,eP we have

4 (n-2)
@) supp(f (x.y '(fz))) s, supp(f (S, %)) = S[x] where X € supp(f (S,a7)).
@) supp(f(x,y™", e )NS=J.
Foraset A, we define g a]= LS [al- Obviously

acA

_ (n-2)
Proof.1= 2)Since x esupp(f(S,y, e )),we have

. (n-2)
(n-2) (n-2) (n-2) S [A] = Supp( f (81 A, € )) '
supp(f(x,y™, e ))csupp(f(f(S,y, e ),y™, e))
(n-2) (n-2) Lemma 3.9 Let S be a normal F -subpolygroup of
:Ssupp(f (v, f(S.y™ e ) e)) an F"-polygroup (P, f). Then, for all X/ € P we
o have
2 = 3) Itis obvious. (1) S[supp(f ())1=S'[x], where
x esupp(f (X)),

3=1) Let zesupp(f(x y‘l,(néZ)))ﬂS- Then, . D]
we have x esupp(f (z, y,(néZ)))gsupp(f(S, Y, (n:))). @ S [supp(f (x/ )] =supp(f (S 1)),

Thatis, XS'Y. 3 S"[supp(f (S )= supp((S'))

Proposition 3.7 Let S be a normal F -

n .
subpolygroup  of  (p.f). Then, for every Proof. (1) Assume that X € SUpp(f(x;')) . Itis clear

2 esupp(f (x ¥, (néZ))) e have that S [x] < S [supp(f (x))]. Since

(n-2)
(n-2) (n-2) (n-2) * N7 — n
supp(f (x, F(S,y, € ), e))=supp(f(S,z, ¢ )). x €S [supp(f O] =supp(f (S, (%), e )
we have supp(f (/') =supp(f(S,x, e ))=S"[x].
(n-2) . A .
Proof. Let z esupp(f (x,y, e )) be an arbitrary Therefore, we have S [supp(f(x'))]< S [x]
element. Then, which completes the proof.

Supp(f(S,Z,(néZ))) SSUPRT(S: T y,(n:)),(n;))) Rt y,(n:)),(":))). (2) By using Lemma 3.8, we have

Now, we prove( z?e( ;:)onverse inclusion.  Let Supp(f(S*{:f]])) = supp( f (f(S,Xl,(néZ)) ..... f(S,xn,(néZ))))
2) (- _ -
;ee;:ri?(;h(e);,f\,\(,jh};’vee ), e)) be an arbitrary _ SLipp(f s, f(Xin),( " )))
y esupp(f(f(S,x™, (néZ)), a, (néZ))) . Therefore, =S [supp(f (x))]
SUPR(T (x,y, & ) < spp(T (x (£ (5.x7, ¢ ).a, ), &) (3) By using (2), we have
—supp(F(Fx F(5x %, o), ) a ey S TR (ST = SIS TsupeC OO = S Tsupe( ()
=supp(f (S.a, (":))). Corollary 3.10 The relation S" is a strongly

regular relation.
Proof. Let X, S"Y,,...,X,S"Y, and

x esupp(f(x')) and y esupp(f(y;)). Then,
(n-2) (n-2)
Lemma 3.8 If S isa normal F -subpolygroup of xesupp(f (X)) csupp(f(f(S,y,, € ),.... T(S,y,, €)))

(n-2)
This implies that z esupp(f(S,a, e )) and so we

(n-2)
have a esupp(f(S,z, e )).

263
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n-2
= supp(f (S. T (). © )
= S"[supp(f (y;))]
=S'Tyl

Therefore, we have XSy .

Let S be a normal F -subpolygroup of an F"-
polygroup (P, f). Since S" is a strongly regular
relation, by Theorem 3.1, P/S” is an F"-polygroup
with F " -operation fS* defined as follows:

Y N n
f (S 1)) = Z gy V2 ESUPR(T (X))

andso P/S” is a quotient F" -group.

Results and Discussion

In this section, with respect to the concepts of normal
F -subpolygroups and strongly regular relations and
homomorphisms, we state and prove isomorphism

theorems for F " -polygroups.
Let (P, f,) and (P,, f,) be two F" -polygroups. A

homomorphism from P, to P, is a mapping
@ P, = P, such that

1) (0(6,,1):8,32, where €, and € are F-
identity elements,

(2) (supp(f,(x7))) = supp(t,(¢,")).

a-:
hold for all X' €P,, where ¢, denotes the
1

sequence @(&,),...,»(a;)-

An injective  homomorphism is called a
monomorphism and an onto homomorphism is called an
epimorphism. An injective and onto homomorphism is

called an isomorphism. We say that P, is isomorphic
to P,, denoted by P, =P,, if there exists an

isomorphism from P, to P,.

The next lemma can be proved easily using
previously defined notions and thus we omit its proof.

Lemma 4.1 Let (P, f,) and (P, f,) be two F"-

polygroups and let @ F’l —> P2 be a homomorphism.
Then,

W e(x ) =(p(x))", Vxeh,

Farshi and Davvaz
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(2) ¢ is injective if and only if kerg :{epl},
where kerp ={x e P, | p(x) = epz},

(3) kerg isan F -subpolygroup of |:’1

(4) Img isan F -subpolygroup of P,.

Let @ be a regular relation on (P, f). Clearly, the
natural map 7:P —>P/@ by 7z(X)=6[X] is an
epimorphism. 7 is called the canonical
homomorphism.

Lemma 4.2 Let (B, f,) and (P,, f,) betwo F"
-polygroups and let @ : P, — P, be a homomorphism.
Then, there exists a monomorphism w :RP/p, — P,
such that y o 7z = ¢, where

P, ={(xy) € RxF [o(x) = p(y)}

4
PP——mm P,
K4
m o
P /IJ)
Pi/py

Proof. First, we show that p,, is a regular relation

on P and then P/p, is defined. For X',y € P, if

X0, Y1 %00, Y, and @ esupp( (X)), then we
have

p() € p(supp( f,())) = supp( T, ("))
= supp(f,(¢.")
= p(supp(f,(y)))).

Therefore, there exists b € supp( f,(y;')) such that
(@) = @(b) . This implies that
supp(f,(x;) o, supp(f,(yy)). Hence, p, s
regular. Now, we define y(0,[X]) = @(X) . It is easy
to see that y/ is a monomorphism and o7z = @.

Theorem 4.3 Let ¥ and @ be regular relations on
(P, f) such that ¥ < @. Then, there exists a regular
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relation 2 on P/y such that (P/y)/u is isomorphic

to P/6.
Proof. We define the map ¢@:P/y — P/@ by

o(7[X]) = G[X]. Since y =@, ¢ is well-defined.
For y[x.],...,71X,]1€ P/y we have

(T, () ={p(lz]) | 2 e supp(F ()}

={0lz]| z e supp(f (x))}

= 1,65

= fo(e(IX D), ... o(YIX,]))-

Therefore, ¢ is a homomorphism. Now, if
u={(Ix1, 7IyD € Ply xPly [o(yx]) = o(y1yD},

then by Lemma 4.2, there exists a monomorphism
v (PIy) i — P/@ such that o =¢, and so
is an isomorphism.

Lemma 4.4 Let (P, f), (P, f) and (P, f,) be
F " -polygroups and let ¢,:P —>P, and ¢,:P —>P,
be epimorphisms such that gol‘l op C goz"l °@,. Then,

there exists a unique epimorphism ¥ : P, — P, such
that o @, = @,.

¥1

P—0m P
©2

»
P
Proof. Since ¢, is onto, for every Z, € P, there
exists X € P such that ¢;(X) = ;. We define
w R =P by w(z)=0,(X). If
@ (y) =z, (y € P), we have

(X Y) €@ o S, 2, andso 9,(X) = ¢y(Y)
This proves that i is well-defined. We prove that i/ is

an epimorphism. Clearly, we have l//(epl) = eP2 . Now,

if X, € P, are arbitrary elements, then there exist

y, € P suchthat ¢ (y;) =X, (1<i<n) and we

265

have supp(f, (")) = supp( f, ((0252 )
= ¢, (supp(f (y1)))

={p,(t) [t esupp(f (y; )}

={, (1) | (1) € supp(f, (X))}

={w (@) e (t) esupp(f, ()}

=y (supp(f,(x/))).

It is routine to check that  is surjective and
wo@, =@, The uniqueness is evident.

Theorem 4.5 If  and @ are regular relations on
(P, f) such that ¢, then there exists an
epimorphism P/y — P/0.

Proof. Let 7,:P—>Ply and 7,:P—>P/0 be
canonical homomorphisms. Since )/=7zlflo72'l and

0= 72271 o T, , by Lemma 4.4 the proof is completed.

Proposition 4.6 Let (B, f,) and (P,, f,) be two
F " -polygroups and P =P, xP, ={(x,y)| xR, yeP}
We define fg : P" — 1.7 as follows:
fo (O Y1), (%0 Yo ))(@,0) = min{f, (X, %, )(@), F (Y- ¥, ) (D)}
forall (a,b) € P. Then, (P, f,) isan F" -polygroup.
Recall that for relations p and o on P the product
relation is
poo={(X, y)eP2|(x,u)ep,(u,y)ea forsome ueP}.
The diagonal relation A on P is the set {(a,a)|a < P}
and the full relation P? is denoted by V.

Theorem 4.7 Let (P, f) be an F"-polygroup and
6,6" be regular relations on P suchthat 8@ = A

and o6 =V . Then,
P=P/OxPlO
under the map (x) = (0[x],6'[X]) -

Proof. If X,yeP then

and -y (x) =w(y)
ox]=6ry] and O [x]=60[y], so (X,y)edNEF ;
hence X = Yy. This means that i is injective. Now, let

X,y € P are given. Since #o 6" =V, there exists Z
in P such that X&Z and 20y ,
hence /(z) = (0[z],6'[2]) = (O1x],0°[y]) . so y is
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onto. Now, for every X,...,X, € P, we show that

w(supp(f (7)) = supp( s (w,")).

We have

w (supp(f (x))) ={w(x) | x esupp(f (x))}
={(6x],6°[x]) | x e supp(f (x )}
<{@x1,6°TyD %,y esupp(f (7))}

PR A%,
- fa(e[xl] )X fg* @ [xl])

=supp( . ("), ANd SOy (supp(f (x))) = SUpP( o (v,):
Conversely, suppose that (g[a], 6 [b]) e supp(f,, (z//flﬂ )

Then,
(0[a],0°[b]) e{(0[x1,0°TyD | x, y € supp(f ()}
Since §o@" =V, there exists C in P such that
agc and cg’b, and so (g[a],d'[b]) = (6[c],&'[c]) , Where

cesupp(f (x'))- Therefore, (g[a],&"[b]) e w(supp(f (X))
. This completes the proof.

Theorem 4.8 (First Isomorphism Theorem). Let
(P, f) and (P, f,) be two F " -polygroups and let
@: P, — P, be a homomorphism such that K = kerg is
a normal F -subpolygroup of (B, f). Then,
P/K™ = Imep.

Proof. We consider the map y:P/K™ — Img by
w(K'[X]) = ¢(x). By the following argument y is
well-defined.

- . (n-2) (n-2)
K'[x]= K'[y] < supp(f,(K, x, e )) =supp(f, (K, y, € ))

(n-2 (n-2

) )
= p(supp(f, (K. X, €, ))) = o(supp(f,(K, ¥, € )))
&SP, (p(K). 9(), €, ) = SUPR ,(p(K), (¥). €5, )

= SUDDCE, (85, 04 €5, ) = SUDDCF 85, 0(¥). €5, )

< o(X) = oY)
Obviously, W(K*[epl]) = ¢(e"1) =ep, and for every

X1
%]
*[X

w(supp( fy- (K [xl”]]))) =y (K'[2]) = p(supp( f,(x!)))
= supp(f, ("))
= supp(f, (K D)), (K T, D),

K e R/K”, we have

where Z is an arbitrary element of supp(f,(x)).
Therefore, y is a homomorphism.
If yelImeg is an arbitrary element, then there exist
x e P, such that Y = ¢(X) =y (K [x]) which implies
that i is onto. We have
kery ={K'[x] € R/K" |y (K'[x]) = e, }
={K'[X]eP/K [p(x) =€, }
={K'[x]e P/K"|x €K}
={K [eg I}

Therefore, y is injective and so P/K" = Img.

Theorem 4.9 (Second Isomorphism Theorem). If 81”
are F -subpolygroups of a canonical F"-polygroup
(P, f) such that S; is normal for some je{1,...,n}

then
supp(f(S.™,e,S],))/(supp(f (S} ™,e,S],))NS;)" =supp(f (S}))/S;.

Proof. By Lemma 2.3, supp( f (S/™,e,S,,)) isan
F -subpolygroup of supp(f (S,')). By Lemma 3.4, S,
is a normal F -subpolygroup of supp(f (S;')). Hence,

by Lemma 3.4, supp(f(S/*e,S].,))NS; is a normal

j+1

F -subpolygroup  of  supp(f(S/™ e,S],))). So
supp(f (S))/s]and

supp(f (S/™,e,S].))/(supp(f (S/7.e,S],,))NS))
are defined.

We consider t_he map
w supp(f(S/™,e,S],,)) —>supp(f (S))/S] by
w(X)= S;[X] . Clearly, w(e) = S;[e] and for every
x! esupp(f(S) 7 e, S1.1)) we have
w(supp(f (X)) ={w (X) [ x e supp(f ()}
={S;[X]| x e supp(f (x))}
={S;[zI}

*[xn]
= supp(f. (S}.71)
J

=supp( .. (7)),

where Z is an arbitrary element of supp(f(x/)).
Therefore, is a homomorphism.  Let
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Si[a]lesupp(f(S/))/S; be an arbitrary element. Then,

there exist a, € S;;1<i<n such that a e supp(f (a;))-
Now, for

x esupp(f (a)*,e,a7,,)) csupp(f (S/2,€,5.,))
we have

w(x)=S;[x1=S][supp(f (a/ ", &,a],,))] =supp(f (S, f (a7 e,a],), ")

_ (n-1)
=supp(f(a;™, f(S;, e ).aj,,))
_ (n-2)
=supp(f (@™, f(S;.a;, e ).a},))

= supp(f (S, (@), )
= S;[supp(f (&)))]
=S][a].

Therefore, i is onto. We have

kery ={x esupp(f(S/™ e,S},))IS;[x]=S][el}
={x esupp(f (S1j71’67 S?+1)) |xe Sj}
=supp(f(S/™,e,S.))NS;.

Hence, by the First Isomorphism Theorem the

desired result holds.

Theorem 4.10 (Third Isomorphism Theorem). If S
and J are normal F -subpolygroups of (P, f) such
that S < J, then J/S™ is a normal F -subpolygroup of
P/S* and (P/S™)(JIS™) =P/3".

Proof. First, JIST is an F-

subpolygroup of P/S™. Since eeJ, we have
STeled/S™. If S[x]ed/S” then XeJ and so

xteJ which implies that (S'[x])™"=S"[x "] JS".
J/S”™ and for zesupp(f(x))cJ

we show that

*[x,1

] €
we have supp(fs*(s*{::]])):{5*[z]}g3/5*. Thus, J/S”

For every S

is an F -subpolygroup of P/S”. For all S'[x]eP/S”
and for every t € J we have
SUPR(F . (8°[A] . (5 Tt "X 1. 6 Te) S Te) = supp( . (5 T, S T21 S [eD)
={S"[w]}
c Jis,
where 7 esupp(f(t,x’l,(n:))) and

(n-2) (n-2) (n-2)
wesupp(f(x,z, e ))csupp(f(x, f(J,x%, e), e))=J.
So, J/S” is normal.

If we define y:P/S"—P/J" by w(S[x])=J[x],

267

then it is not difficult to see that y is an onto
homomorphism and kery = J/S™. Therefore, by the

First Isomorphism Theorem the desired result follows
easily.
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