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Abstract

In this paper firt of all we introduce a generalization of torsion freeness of acts
over monoids, called ‘R -torsion freeness. Then in section 1 of results we give
some general properties and in sections 2, 3 and 4 we give a characterization of
monoids for which this property of their right Rees factor, cyclic and acts in
general implies some other properties, respectively.
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Introduction

Throughout this paper S will denote a monoid with
identity element 1. We refer the reader to [11] and [12]
for basic definitions and terminology relating to
semigroups and acts over monoids and to [1], [13] and
[14] for definitions and results on flatness which are
used here.

A monoid S is called left (right) collapsible if for any
s,8' €S there exists Ze S such that zS=27S" (

Sz =5'z). A submonoid P of S is called weakly left
collapsible if for any s,s'eP, zeS, sz=5"zZ
implies the existence of U € P such that us =us’. It
is obvious that every left collapsible submonoid is
weakly left collapsible, but not the converse. A monoid
S is called right (left) reversible, if for any s,s" € S,
there exist U,V € S such that Us =Vvs'(su=s'v). A
submonoid P of S is called weakly right reversible, if
for any s,8'eP, ze€S, sz=5z implies the
existence of U,V € P such that us =Vvs'. A right ideal
K of a monoid S is called left stabilizing, if for any
k € Ky, there exists | € Kgsuch that Ik =k. K is

called left annihilating, if for any teS,

X,y € S\Kg, Xt,yt € Kg implies that Xt = yt.

K is called strongly left annihilating, if for all

s,teS\K; and for all homomorphisms
fi (StuSs)—>¢S f(s), f(t) e K  implies that
f(s)=f(). Kgis called completely left

annihilating, if for all X,y,z,t,t'e S,
[(xt 2yt YAtz =t'z)]=[(xt Ky)
viyt'gKg)v(x eKg)v(y eKg)l
K iscalled Pg -left annihilating, if for all
X, y,t,t'e S,
(xtzyt)=>[(xt e Kg)v(yt'gKy)
vix eKg)v(y eKg)v
(Qu,v €S,e,f €eE(S),et =t
ft'=t'ut =vt' xe zue = xe,ue eKg,
yf zvf = yf vf eK)]
Ks
X,y,teS,

is called E-left annihilating, if for all
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(xt zyt)=[(xt eKg)v(yt Ks)v
(x eKs)v(y eKg)v

(3u,v €S,e,f eE(S),et =t =ft

,ut =vt,xe zue = xe,ue e Ky,

yf #vf = yf vf eK,)]

A nonempty set A is called a right S-act, usually
denoted A , if S acts on A unitarily from the right; that
is, there exists a mapping A xS — A, (a,s) > as,
satisfying the conditions (as)t =a(st) and al=a,
for all aceAand all s,t €S . Left S-acts (A are
defined dually. If Ag be an act, then we define Green’s

equivalence relation R on A by the following rule:
(a,b) e R <aS =bS
forall a,b e A.
A right S-act A satisfies Condition (P), if for all
a,a'e A, s,5'e S, as =a's' implies that there exist
beA, uveS such that a=bu, a'=bv and

us=vs'. A monoid S is called right PCP, if all
principal right ideals of S satisfy Condition (P). A right
S-act A satisfies Condition (P"), if for all a,a'e A,

s,s',zeS, as=a's', sz=szimply that there
exist be A, u,veS such that a=bu, a'=hv
and US = VS'. A right S-act A satisfies Condition ( P;),
if for all a,a'e A, 5,5'eS, as=a's' implies that
there exist be A, u,v,e?=¢, f2=f S such
that ae=bue, a'f =bvf, es=s, fs'=s' and
us =vs'. It is obvious that Condition (P) implies
Condition ( Pg), but not the converse, for this see [2]. A
satisfies Condition (E), if for all a€ A, s,58'€ S,
as = as' implies that there exist b e A, u e S such
that @ =buand us =us'. A satisfies Condition (EP),
ifforall ae€ A, s,8'e S, as = as' implies that there
exist be A, u,veS such that a=Dbu=Dbvand
us =Vvs'. A satisfies Condition (E"), if for all ae€ A,
s,8',z€S, as=as', sz =Sz imply that there exist
be A, ueS such that a=bu and us=us'. A
satisfies Condition (E'P), if forall a€ A, s,5',2e€ S
, as=as', sz=-5zimply that there exist b e A,
U,veS such that a=bu=Dbv and us=vs'. It is

obvious that Condition (E) — Condition (EP) =
Condition (E'P) and Condition (E) = Condition (E")
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= Condition (E'P). In [3] and [4] we gave a
characterization of monoids by Conditions (EP) and
(E'P) of their acts. A right S-act A satisfies Condition
(PWP), if forall a,a'e A, seS, as=a's implies
that there exist be A and u,veS such that
a=bu, a'=bv and US=VS. A right S-act A
satisfies Condition (PWP,), if forall a,a'e A, s S
, as=a's implies that there exist be A and
uv,e’=e f?="feS such that ae=Dbue,
a'f=bvf, es=1fs=s and US=VS. In [7] we
gave a characterization of monoids by Condition
(PWP;) of their acts. A is called regular, if all cyclic
subacts of A are projective. A is called faithful, if for
S,t €S the equality as=at for all a € A implies
s =1. A is called strongly faithful, if for s,t € S the
equality as = at for some a € A implies that S=t.
A is called P-regular, if all cyclic subacts of A satisfy
Condition (P). In [9] we gave a characterization of
monoids by P-regularity of their acts. A is called
strongly (P) -cyclic if for any a e A there exists

ZeSsuch that ker A, =KkerA,and zS satisfies

Condition (P). In [8] we gave a characterization of
monoids by strong (P)-cyclic of their acts.

Let S be a monoid and | be a proper right ideal of S.
Let x, y and z denote elements not belonging to S. If

A= \Dx{x,yPDUU x{z}) and S acts on A

from the right as follows:
us,x), if us ¢l
(u,x)s = ( ) )
(us,z), if us el

_Jus,y), if us el
©.y)s _{(us,z), if us el

(u,z)s =(us,z),
then the right S-act A is called amalgam of S by | and

is denoted by g ]I_[s .

Results

1. General properties

Definition 1.1. An act A is called R -torsion free
if for any a,be A and ce S, c right cancellabe,
ac =bc and aRb implythat a="b.

We use the abbreviation R TF for SR -torsion
freeness. It is clear that torsion freeness implies ‘R -

torsion freeness, but not the converse, see the following
example.
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Example 1.1. Let S =(N,-), and consider the
N1}

amaigam A; =NJJN. Then( x) = (L y), but

(L x)2=(1,y)2. Hence A, is not torsion free. It can

easily be seen that Ag is R -torsion free.

Proposition 1.1. Let S be a monoid. Then:

(1) The one-element act @ is R -torsion free.

(2) Sg is M -torsion free.

(3) If an act is R -torsion free, then all its subacts
are ‘R -torsion free.

(4 A, i€l are R-torsion free if and only if
A = HA is R -torsion free.

iel

() If A, 1€l are R -torsion free right S-acts,

then Ay = HA is R -torsion free.
icl

Proof. It is clear from definitions.

Proposition 1.2. Let S be a monoid. Then:
(1) All right S-acts satisfying Condition (EP) are
‘R -torsion free.
(2) All right S-acts satisfying Condition (E) are
‘R -torsion free.
Proof. (1). Suppose the right S-act Ag satisfies

Condition (EP) and let ac=a'c, aRa', for
a,a'e Ay and right cancellable ¢ € S. Since aRa’,
there exist S,t €S such that a=a's and a'=at.
A, satisfies Condition (EP),
ac=atc implies that there exist be A and

U,v e S suchthat a =bu =bv and uc =Vvtc. Then
the right cancellability of C implies U =Vt, and so
a'=at =bvt=bu = a, as required.

(2). Since Condition (E) = Condition (EP), it is
obvious.

Since the equality

Proposition 1.3. Let S be a monoid. Then:
(1) All P-regular right S-acts are ‘R -torsion free.
(2) All strongly (P)-cyclic right S-acts are R -
torsion free.
(3) All regular right S-acts are ‘R -torsion free.
(4) All strongly faithful right S-acts are ‘R -
torsion free.
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Proof. (1). It follows from [9, Theorem 2.2] and
using the same argument as in the proof of (1) of
Proposition 1.2.

Since strong faithfulness = regularity = strong
(P)-cyclic = P-regularity, (2), (3) and (4) are obvious.

Notice that it is not yet known if the faithfulness
implies ‘R -torsion freeness.

2. Characterization by ‘R -torsion freeness of right
Rees factor acts

In this section we characterize monoids by R -
torsion freeness of right Rees factor acts. We recall that

if K isaright ideal of S, the Rees congruence p, is

defined by (a,b) € p, if a,b e K or a=b and the
resulting factor act is called the Rees factor act and is
denoted by S/ K. We say an ideal K of S satisfies

(*), if Xxc,yceKq xRy,
X,y € S\Kg, c €S right cancellable, imply X =Y .

Condition and

Lemma 2.1. Let S be a monoid and K be a right
ideal of S. Then:
@ [x], RLYl,, implies either X,y € S\ Kg

or X,y eKg,forall X,yeS.

(2 xRy implies [x], RW[y], . for all
X,Y€S.

(3) xWyif and only if [X], R[y], . for all
X,y € S\Kq.

Proof. (1). If [x], M[y], . then there exist
s,teS such that [x], =[y], s=[ys], and
[vl, =[xl t=[xt], . Thus either X=1Yys or
X,ys € Kg and either y=xt or y,xteKs. If
X¢& Kg,then X=Ys,andso y¢& K. If XeKg,
then ye Ky, since y=xt or y,xteKg. Thus
X e Kg ifandonly if y € Ky .

(2). It is obvious.
(3). Let Xx,yeS\Kg. If xRy, then

[x], RIVl,, - If [x], RIyl, . then there exist
S,t €S such that either X=1YS or X,ys € K¢ and
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either y=xt or y,xt e Kg. Since X,y € S\Kq,
we have X =yS and y = Xt, by (1), and so xRy ..

Theorem 2.1. Let S be a monoid and K be a right
ideal of S. Then the right Rees factor S-act S/Kj is

R -torsion free if and only if K satisfies Condition

().
Proof. Necessity. Suppose the right Rees factor S-
act S/Kjy is ‘R -torsion free, and let xc, yc € K,

xRy, for X,y e S\Kg, ceS right cancellable.
Then [X], c=[y], c and [x], M[y], . by (2)of
Lemma 2.1. Hence, [X], =[y], ,andso X=Y or
X,ye K. But X,yeS\K;, and so X=Y, as

required.

Sufficiency.  Suppose  [X], c=[y], ¢ and
[x], MIyl, ., for xyeS, ceS right
cancellable. Then XC=YyCor Xc,yceK;. If

Xc=yc, then x=y, and so [x], =[Y], . as
required. Thus we suppose
[x], MIYl,, . either X,y e Ky orx,y e S\Kq,
by (1) of Lemma 21. If X, yeKj,
[x],, =L[Yl,, . as required. If X,y €S\Kg, then
XKy, by (3) of Lemma 2.1. Thus by the assumption
X=Y,andso [X], =[Y],, ,asrequired.

Xc,yc € Ky . Since

then

Remark 2.1. If Ky is a left annihilating right ideal

of a monoid S, then K satisfies Condition (*), but not

the converse, otherwise, by Theorem 2.1, [12, III,
10.11] and that principal weak flatness implies R -
torsion freeness, all left stabilizing right ideals are left
annihilating, and so by  [14, Theorem 10], all
principally weakly flat right Rees factor S-acts satisfy
Condition (PWP), which is not true. By [6, Lemma 3.4],

all P -left annihilating right ideals are left stabilizing,

thus every Pg-left annihilating right ideal satisfies
Condition (*), but not the converse, otherwise, all
torsion free right Rees factor S-acts are principally
weakly flat, which is not true.

The following example shows that there are monoids
S and right Rees factor S-acts which are not ‘R -torsion
free.

Zare et al.
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Example 2.1.Let S =Z[i]={a+bi |a,b € Z}.
Then S with multiplication is a commutative and

cancellative monoid. If
KS =(1+i)S ={a+bi |a,b €Z,2|a+b}, then
5,—5€S\KS, —5><2:—1OeKS,

5x2=10eK, and 5R -5, but 5= -5, thus the

right Rees factor S-act S/ K is not R -torsion free,
by Theorem 2.1.

As we saw in Example 1.1, the following example
shows also that for Rees factor acts, R -torsion freeness
does not imply torsion freeness.

Example 2.2. Let S =(N,-). If K; =2S, then
S/Kj is not torsion free, but it is R -torsion free.

Thus for Rees factor acts ‘R -torsion freeness does not
imply torsion freeness and all properties which imply
torsion freeness.

Now, it is natural to ask for monoids over which R -
torsion freeness of Rees factor acts implies torsion
freeness and all properties which imply torsion freeness.

Theorem 2.2. Let S be a monoid. Then the following
statements are equivalent:

(1) All R -torsion free right Rees factor S-acts are
torsion free.

(2) If a proper right ideal K of S satisfies

Condition (*), then K, satisfies the following
condition:

Xc e Kg, X,ce S, C right cancellable, implies
XxeKs.

Proof. It follows from Theorem 2.1, and [12, III,
8.10].

Theorem 2.3. Let S be a monoid. Then the following
statements are equivalent:
(1) All $R -torsion free right Rees factor S-acts are
principally weakly flat.

(2) If a proper right ideal K of S satisfies

Condition (*), then K is left stabilizing.

Proof. It follows from Theorem 2.1, and [12, III,
10.11].

Theorem 2.4. Let S be a monoid. Then the following
statements are equivalent:

(1) All ‘R -torsion free right Rees factor S-acts
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satisfy Condition (PWP).

(2) If a proper right ideal Kgof S satisfies
Condition (*), then K is left stabilizing and left
annihilating.

Proof. It follows from Theorem 2.1, and [14,
Theorem 10]. []

Theorem 2.5. Let S be a monoid. Then the following
statements are equivalent:
(1) All ‘R -torsion free right Rees factor S-acts

satisfy Condition ( PWP;).
)
Condition (*), then Ky is left stabilizing and E-left

annihilating.
Proof. It follows from Theorem 2.1, and [7,
Theorem 4.2]. [

If a proper right ideal Kgof S satisfies

Theorem 2.6. Let S be a monoid. Then the following
statements are equivalent:

(1) All ‘R -torsion free right Rees factor S-acts are
flat.

(2) All $R -torsion free right Rees factor S-acts are
weakly flat.

(3) S is right reversible and if a proper right ideal
Kgof S satisfies Condition (*), then Ky is left
stabilizing.

Proof. It follows from Theorem 2.1, [12, IlI, 12.2],
and [12, III, 12.17]. |

Theorem 2.7. Let S be a monoid. Then the following
statements are equivalent:

(1) All ‘R -torsion free right Rees factor S-acts
satisfy Condition (WP).

(2) S is right reversible and if a proper right ideal
Kgof S satisfies Condition (*), then Kg is left

stabilizing and strongly left annihilating.
Proof. It follows from Theorem 2.1, [14, Theorem
17], and [14, Corollary 18].

Theorem 2.8. Let S be a monoid. Then the following
statements are equivalent:

(1) All ‘R -torsion free right Rees factor S-acts
satisfy Condition (P).

(2) S is right reversible and if a proper right ideal
K of S satisfies Condition (*), then | K¢ |=1.

Proof. It follows from Theorem 2.1, [12, IlI, 13.7],
and [12, 111, 13.9].
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Theorem 2.9. Let S be a monoid. Then the following
statements are equivalent:

(1) All ‘R -torsion free right Rees factor S-acts
satisfy Condition ( P;).

(2) S is right reversible and if a proper right ideal
K of S satisfies Condition (*), then K is P -left
annihilating.

Proof. It follows from Theorem 2.1,
Theorem 3.5].

and [6,

Theorem 2.10. Let S be a monoid. Then the
following statements are equivalent:

(1) All ‘R -torsion free right Rees factor S-acts
satisfy Condition (P").

(2) S is weakly right reversible and if a proper right
ideal K of S satisfies Condition (*), then K is left
stabilizing and completely left annihilating.

Proof. It follows from Theorem 2.1,
Theorem 4.3].

and [10,

Theorem 2.11. Let S be a monoid. Then the
following statements are equivalent:

(1) All ‘R -torsion free right Rees factor S-acts
satisfy Condition (E).

(2) S is left collapsible and if a proper right ideal
K of S satisfies Condition (*), then | K¢ |=1.

Proof. It follows from Theorem 2.1, [12, 11, 14.3],
and [12, 11, 14.10].

Theorem 2.12. Let S be a monoid. Then the
following statements are equivalent:

(1) All R -torsion free right Rees factor S-acts are
projective.

(2) S contains a left zero and if a proper right ideal
K of S satisfies Condition (*), then | K¢ |=1.

Proof. It follows from Theorem 2.1, [12, 11, 17.2],
and [12, III, 17.15]. [J

Theorem 2.13. Let S be a monoid. Then the
following statements are equivalent:

(1) All R -torsion free right Rees factor S-acts are
free.

(2) All R -torsion free right Rees factor S-acts are
projective generators.

(3) All ‘R -torsion free right Rees factor S-acts are
generators.

(4) All R -torsion free right Rees factor S-acts are
faithful.

(5) All R -torsion free right Rees factor S-acts are
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strongly faithful.
(6) S={1}.

Proof. Implications (1) = (2) = (3) are obvious.
(3) = (4). It follows from [12, 111, 18.1].

Since ®4 =S/Sg is an R-torsion free cyclic

right Rees factor S-act, and @ is faithful (strongly
faithful) if and only if S = {1}, implications (4) = (6)
and (5) = (6) are obvious.

(6) = (1), (5). If S = {1}, then all right S-acts are
free (strongly faithful). [

Theorem 2.14. Let S be a monoid. Then the
following statements are equivalent:

(1) All ‘R -torsion free right Rees factor S-acts are
P-regular.

(2) S is right reversible, if S contains a left zero, then
S is right PCP, and if a proper right ideal Kgof S

satisfies Condition (*), then | K¢ |=1.

Proof. It follows from Theorem 2.1, and [9,
Theorem 3.1]. [

Theorem 2.15. Let S be a monoid. Then the
following statements are equivalent:

(1) All $R -torsion free right Rees factor S-acts are
strongly (P)-cyclic.

(2) S is right PCP, contains a left zero and if a
proper right ideal K of S satisfies Condition (*), then

|Ks |:1-

Proof. It follows from Theorem 2.1, and [8,
Theorem 3.1]. [

Theorem 2.16. Let S be a monoid. Then the
following statements are equivalent:

(1) All *R -torsion free right Rees factor S-acts are
are regular.

(2) S is right PP, contains a left zero and if a proper

right ideal Ky of S satisfies Condition (*), then
| Ks |=1.

Proof. It follows from Theorem 2.1, [12, III, 19.4],
and [12, 111, 19.6] . [0

3. Characterization by ‘R -torsion freeness of cyclic
right acts
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In this section we characterize monoids by R -
torsion freeness of cyclic right acts.

Let S be a monoid, S,t € S and C, be the set of all
right cancellable elements of S. Set

F={(x,y)eSxS|3ceC,,

(xc,yc) € p(s,t),[X 1,6y RIY Lo )3
F.,={(x,y)eSxS|3ceC,,
(xc,yc) € p(F,),[x ]p(Fi )m[y ]p(Fi )}

for i € N. Itcan easily be seen that F; is reflexive
and symmetric, for every i € N. Also,

p(s,t) < Fl - ,O(Fl) (- Fz - p(Fz)
c.o(R)cFk, c...

It is clear that pye (S,t) = Up(Fi) is a right
congruence on S containing (s,t). -

Theorem 3.1. Let S be a monoid and S,teS.
Then pyre (S,t) is the smallest right congruence
containing (s;t), where S / py1r(S,t) is R -torsion
free.

Proof. If  [X] pore (51) € = [y] pore (s € and
[X]pmp (51) SR[y]me(S’t), for X,yeS and ceC,,
then  there exist l,l, €S such  that
(X, ¥1,), (v, X1,) € pyre (S,t). Thus there exist
i,j,keN such that (xc,yc)ep (F),
(x,yl) € p(F;) and (y,xI,) € p(F,).

If h =max{i, j,k}, then
(xc, ye), (x, y,), (y, x1,) € p(F,), and S0
(xc,yc) € p(F,) and [X]p(Fh)m[y]p(Fh)' By
x,y)eF,.,. and S0
(%, y) € p(Fy.1) S Pyre (1)

Thus [X], s =[Y],,. (1) @ required. Let 7

definition,

be a right congruence on S containing (s,t), where S /7
is R -torsion free. We show that o (S,t) = 7.

pst)cr. If
(x,y) € F, then there exists CeC, such that
(xc,yc) € p(s,t) and [X], s RIY], 1), and so
(xc,yc) ez and [X] R[y],. Since S/7 is R-

Since (s,t)er, we have



ER -torsion free Acts Over Monoids

torsion free, (X,y)erz. Thus F <7, and so

p(F,) < 7. Suppose then that p(F,) =7, i eN.
It (x,y) e Ry,
(xc,yc) e p(F) and [X],\RIY], ) Since
p(F)c 7 and S /7 is R -torsion free, (X,y) e7.
F.c

i+l =

then there exists C € C, such that

Hence 7, and so p(F,)c7. Thus

p(F)cr, foralli eN,andso py(S,t) = 7.0

Theorem 3.2. Let S be a monoid. Then the following
statements are equivalent:

(1) All ‘R -torsion free cyclic right S-acts satisfy
Condition (P).

(2) For any t,t'e S, there exist U,V € S such that
ut =vt' and (u,1),(v,]) € pyre (4, 17).

(3) For any s,t,t'e S, there exist U,v e S such
that ut = vt' and (u,s),(V,S) € pyre (St,st').

Proof. (1) = (2). The «cyclic right S-act
S/ pyre (t,17) is R -torsion free, and so it satisfies
Condition (P). Thus by [12, IIl, 13.4], there exist
uveSsS such that ut =vt' and
u2),(v1) € pyre (L, T).

(2) = (3). Suppose S,t,t'e S. Then there exist

u',v'eS such that u'st =v'st' and
U, (V') € pyre (st,st’). If u=u's and
V=V'S, then ut = vt' and

(u,8),(v,5) € Py (St St').
(3) = (1). Suppose 7 is a right congruence on S,
where S /7 is R-torsion free and let (t,t") ez.

Then by assumption, there exist U,V €S such that
ut=vt' and (u),(v,]) € Py (t,t'). By Theorem
31, purett)cr, and so (u1),(v,]) ez. Thus
S / t satisfies Condition (P), by [12, 111, 13.4].

Theorem 3.3. Let S be a monoid. Then the following
statements are equivalent:
(1) All ‘R -torsion free cyclic right S-acts satisfy

Condition ( Pg).
(2) For any X,Y,t,t'e S, there exist U,v € S and
e, f € E(S) such that ut=vt', et=t, ft'=t’,

(xe,ue), (¥F ,VF) € pure (X, Y1)
Proof. Using [6, Theorem 2.5] and Theorem 3.1, it is
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similar to the proof of Theorem 3.2.

Theorem 3.4. Let S be a monoid. Then the following
statements are equivalent:

(1) All R -torsion free cyclic right S-acts satisfy
Condition (P").

(2) Forany x,y,t,t',z e S, the equality tz =t'z
implies that there exist U,V € Ssuch that ut =vt',

(X, u), (Y, V) € pyre (X, YT').
Proof. Using [10, Theorem 3.1] and Theorem 3.1, it
is similar to the proof of Theorem 3.2. [

Theorem 3.5. Let S be a monoid. Then the following
statements are equivalent:

(1) All ‘R -torsion free cyclic right S-acts satisfy
Condition (E).

(2) For any s,t € S, there exists U € S such that
ut =us and (U,1) € Py (S,1).

Proof. Using [12, I1l, 14.8] and Theorem 3.1, it is
similar to the proof of Theorem 3.2.

Theorem 3.6. Let S be a monoid. Then the following
statements are equivalent:

(1) All R -torsion free cyclic right S-acts satisfy
Condition (E").

(2) For any s,t,zeS, the equality tz =5z
implies that there exists U € S such that ut =us and
(U1) € Py (s11) -

Proof. It follows from Theorem 3.1, definition of

Condition (E") and using the same argument as in the
proof of Theorem 3.2.

Theorem 3.7. Let S be a monoid. Then the following
statements are equivalent:

(1) All ‘R -torsion free cyclic right S-acts satisfy
Condition (E'P).

(2) For any X,Yy,z€ S, the equality XZ =Yz
implies that there exist U,V € S such that UX =Vy
and (U.1), (V1) € pyre (X, Y)

(3) For any X,t,t',ze S, the equality tz=1'z
implies that there exist U,v € S such that ut =vt'
and (U,X ), ,x) e pye (Xt,XE ).

Proof. Using [3, Theorem 2.10] and Theorem 3.1, it
is similar to the proof of Theorem 3.2. []

Theorem 3.8. Let S be a monoid. If all ‘R -torsion
free cyclic right S-acts are flat, then for any left
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congruence 4 on S and any S,teS, there exist
uvesS that (us,vt) e 4,
W) € pyre (S,t) vsa and
(V1) € pyre (s,) VA,

Proof. Suppose A is a left congruence on S and let
S,t € S. Then the cyclic right S-act S / py1r (S,t) is

R -torsion free, and so it is flat. Thus by [12, I,
12.11], there exist U,V € S such that (us,vt) e 4,

(Ud) € pyre (i) v sA
(V1) € pyre (s, ) VIA.

such

and

Theorem 3.9. Let S be a monoid. Then the following
statements are equivalent:

(1) All SR -torsion free cyclic right S-acts are weakly
flat.

(2) Forany s,t € S, there exist U,V € S such that

us = vt, u)) € pgre (S,1) v ker p,
(V1) € pyre (s,1) v ker p,.

Proof. (1) = (2). The cyclic right S-act
S | pyre (S,1) is R -torsion free, and so it is weakly
flat. Thus by [12, Ill, 11.5], there exist U,v € S such
that us=Vvt, (Ul)€ Py (S,t) Vv Kerp,
(v.D) € pyre (s,t) v Ker ;.

(2) = (1). Suppose 7 is a right congruence on S,
where S /7 is R -torsion free and let (S,t) € 7. By

and

and

Theorem 3.1, Py (S,t) =7 and by assumption,
uvesS that  US = Vt,
U.2) € pyre (S, 1) v Ker p, and
V1) € pyre (S,t) v ker p,. Thus (u,1) € 7 v ker pg

there  exist such

and (v,) ez v ker p,,and so S /7 is weakly flat,
by [12, 1L, 11.5]. [

Theorem 3.10. Let S be a monoid. Then the
following statements are equivalent:

(1) All R -torsion free cyclic right S-acts satisfy
Condition (PWP).

(2) For any X,y,t €S, there exist U,v € S such

that Ut =vt and (u, X), (v, Y) € pge (X, yt).

Proof. Using [13, Lemma 2.7] and Theorem 3.1, it is
similar to the proof of Theorem 3.2. [

Theorem 3.11. Let S be a monoid. Then the
following statements are equivalent:
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(1) All ‘R -torsion free cyclic right S-acts satisfy
Condition ( PWP;).

(2) For any X,y,t €S, there exist u,ve S and
e, f e E(S) such  that ut = vt
(Ue, Xe)’ (Vf, yf ) € IO‘J{TF (th yt) '

Proof. Using [7, Theorem 3.7] and Theorem 3.1, it is
similar to the proof of Theorem 3.2.

and

Theorem 3.12. Let S be a monoid. Then the
following statements are equivalent:

(1) All R -torsion free cyclic right S-acts are
principally weakly flat.

2) For

(U,vV) € pyre US,VS) v ker p, .
(1) = (2). Suppose U,v,S €S . The
cyclic right S-act S / pyre (US,VS) is R -torsion free,
and so it is principally  weakly flat.
(us,vs) € pyre (US,VS) we
(U,V) € pyre US,vS) v ker p,, by [12, 111, 10.7].

(2) = (1). Suppose 7 is a right congruence on S,
where S /7 is R -torsion free and let (US,VS) 7.
Then by Theorem 3.1, pu(US,vS)cz. By

assumption, (U,V) € pyre (US,VS) vV Ker p,, and so

any u,v,seS,

Proof.

Since
have

(uv)ezvkerp,.Thus S /7 is principally weakly
flat, by [12, 111, 10.7].

Theorem 3.13. Let S be a monoid. Then:

@) Pyre (1) < pre(si1).

(2) All $R -torsion free cyclic right S-acts are torsion
free if and only if Py (S,t) = e (S, 1)
@ .
containing (S,t), where S / pr(S,t) is torsion free.

Proof. Pre (S,1) s the right congruence

Thus by Theorem 3.1, Py (S,t) < pre (S,1), since

torsion freeness implies *R -torsion freeness.
(2). Using [12, 111, 8.4], Theorem 3.1, and (1), it is
similar to the proof of Theorem 3.2. [

Theorem 3.14. Let S be a monoid. Then the
following statements are equivalent:

(1) All *R -torsion free cyclic right S-acts are free.

(2) All R -torsion free cyclic right S-acts are are
projective generators.

(3) All ‘R -torsion free cyclic right S-acts are
generators.
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(4) All SR -torsion free cyclic right S-acts are
faithful.

(5) All ‘R -torsion free cyclic right S-acts are
strongly faithful.

(6) S={1}.

Proof. It follow from Theorem 2.13. []

4. Characterization by ‘R -torsion freeness of right
acts

In this section we characterize monoids by ‘R -
torsion freeness of right acts.

Lemma 4.1. Let S be a monoid and (U) be a
property of S-acts which implies torsion freeness. Then
the following statements are equivalent:

(1) All right S-acts satisfy (U).

(2) All SR -torsion free right S-acts satisfy (U).

Proof. (1) = (2). Itis obvious.

(2) = (1). We claim that ¢S =S, for any right
cancellable ¢ € S . Otherwise, €S # S, for some right

cS
cancellable Cc €S . Then the right S-act SS]_[SS

satisfies Condition (E), and so by (2) of Proposition 1.2,
cS

it is R -torsion free. Thus by assumption, Sg HSS is

torsion free, and so the equality (1, Xx)c=(1 y)c,
implies (1, X) = (L, y), which is a contradiction. Thus
¢S =S, and so all right cancellable elements of S are
right invertible. Thus all right S-acts are torsion free, by

[12, 1V, 6.1], and so all right S-acts satisfy (U), as
required.

Theorem 4.1. Let S be a monoid. Then the following
statements are equivalent:

(1) All SR -torsion free right S-acts are free.

(2) All ‘R -torsion free right S-acts are projective
generators.

(3) All R -torsion free right S-acts are projective.

(4) All R -torsion free right S-acts are strongly flat.

(5) All R -torsion free right S-acts are generators.

(6) All R -torsion free right S-acts are faithful.

(7) All ‘R -torsion free right S-acts are strongly
faithful.

(8) S={1}.

Proof. (1) = (2) = (B) = (4) and (8) = (1)
are obvious.

(4) = (8). Since strong flatness and pullback
flatness coincide, it follows from Lemma 4.1 and [15,
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Theorem 3.4].
(5) & (6) < (7) < (8). The same argument
can be used as in the proof of Theorem 2.13. [

Theorem 4.2. Let S be a monoid. Then the following
statements are equivalent:
(1) All R -torsion free right S-acts are weakly
pullback flat.
(2) All ‘R -torsion free right S-acts are weakly
kernel flat.
(3) All ‘R -torsion free right S-acts are principally
weakly kernel flat.
(4) All SR -torsion free right S-acts are translation
kernel flat.
(5) All R -torsion free right S-acts satisfy Condition
P).
(6) All SR -torsion free right S-acts satisfy Condition
(WP).
(7) All SR -torsion free right S-acts satisfy Condition
(PWP).
(8) All SR -torsion free right S-acts satisfy Condition

(PY).
(9) Sisagroup.
Proof. Implications (1) << (2) < (3) < (4)

< (B) & 6) < (7)) < (9) follow from Lemma
4.1, and [1, Proposition 9].

(8) < (9). It follows from Lemma 4.1, and [10,
Theorem 2.5].

Theorem 4.3. Let S be a monoid. Then the following
statements are equivalent:

(1) All right S-acts are flat.

(2) All SR -torsion free right S-acts are flat.

Proof. Since flatness implies torsion freeness, it
follow from Lemma 4.1.

Theorem 4.4. Let S be a monoid. Then the following
statements are equivalent:
(1) All SR -torsion free right S-acts satisfy Condition

(Pe).

(2) All *R -torsion free right S-acts are weakly flat.

(3) S is regular and satisfies Condition: (R): for all
s,teS there exists WeSSMSt such that
(w,s) € p(s,1).

Proof. (1) = (2). It follows from [2, Theorem 2.3].

(2) = (3). It follows from Lemma 4.1, and [12, IV,
7.5].

(3) = (1). It follows from [6, Theorem 2.1]. [

Theorem 4.5. Let S be a monoid. Then the following
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statements are equivalent:

(1) All R -torsion free right S-acts are principally
weakly flat.

(2) All ‘R -torsion free right S-acts satisfy Condition
(PWP).

(3) Sisregular.

Proof. (1) < (3). It follows from Lemma 4.1, and
[12, IV, 6.6].

(2) < (3). It follows from Lemma 4.1, and [7,
Theorem 3.1]. [

Theorem 4.6. Let S be a monoid. Then the following
statements are equivalent:

(1) All SR -torsion free right S-acts are torsion free.

(2) Every right cancellable element of S is right
invertible.

Proof.
6.1].

It follows from Lemma 4.1, and [12, IV,

Theorem 4.7. Let S be a monoid. Then the following
statements are equivalent:

(1) All SR -torsion free right S-acts are regular.

(2) All $R -torsion free finitely generated right S-acts
are regular.

(3) All ‘R -torsion free cyclic right S-acts are
regular.

(4) All R -torsion free monocyclic right S-acts are
regular.

(5) S={1} or S={0,1}.

Proof. Implications (1) = (2) = (3) = (4) are
obvious.

(4) = (5). It follows from [5, Theorem 1.8].

(5) = (1). It follows from [12, IV, 14.4]. |

Theorem 4.8. Let S be a monoid. Then the following
statements are equivalent:

(1) All SR -torsion free right S-acts are divisible.

(2) All SR -torsion free finitely generated right S-acts
are divisible.

(3) All R -torsion free cyclic right S-acts are
divisible.

(4) Sq isdivisible.

(5) Every left cancellabe element of S is left
invertible.

Proof. Implications (1) = (2) = (3) are obvious.

(3) = (4). Since S is R -torsion free, it is clear.

(4) = (5). It follows from [12, 111, 2.2].
(5) = (1). It follows from [12, 111, 2.2]. [

Theorem 4.9. Let S be a monoid. Then the following
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statements are equivalent:

(1) All ‘R -torsion free right S-acts are principally
weakly injective.

(2) All $R -torsion free finitely generated right S-acts
are principally weakly injective.

(3) All R -torsion free cyclic right S-acts are
principally weakly injective.

(4) Sis regular.

Proof. Implications (1) = (2) = (3) are obvious.

(3) = (4). All principal right ideals of S are ‘R -
torsion free, by (2) and (3) of Proposition 1.1. Thus all
principal right ideals of S are principally weakly
injective, and so S is regular, by [12, IV, 1.6].

4) = (1).By][12,1V, 1.6], it is obvious. [

It is not yet known that when all right (Rees factor,
cyclic) acts are ‘R -torsion free, but here we give some
equivalents of that.

Theorem 4.10. Let S be a monoid. Then the
following statements are equivalent:

(1) All right S-acts are ‘R -torsion free.

(2) All divisible right S-acts are ‘R -torsion free.

(3) All principally weakly injective right S-acts are
‘R -torsion free.

(4) All fg-weakly injective right S-acts are R -
torsion free.

(5) All weakly injective right S-acts are ‘R -torsion
free.

(6) All injective right S-acts are ‘R -torsion free.

(7) All cofree right S-acts are ‘R -torsion free.

Proof. (1) = (2). Itis obvious.

Since cofreeness = injectivity = weak injectivity
= fg-weak injectivity = principal weak injectivity
= divisibility, implications (2) = (3) = (4) = (5)
= (6) = (7) follow.

(7) = (1). Every right S-act can be embeded into a
cofree right S-act. Thus by (3) of Proposition 1.1, all
right S-acts are ‘R -torsion free. [
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