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Abstract 

In this paper firt of all we introduce a generalization of torsion freeness of acts 

over monoids, called  -torsion freeness. Then in section 1 of results we give 

some general properties and in sections 2, 3 and 4 we give a characterization of 

monoids for which this property of their right Rees factor, cyclic and acts in 

general  implies some other properties, respectively. 
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Introduction 

Throughout this paper S will denote a monoid with 

identity element 1. We refer the reader to [11] and [12] 

for basic definitions and terminology relating to 

semigroups and acts over monoids and to [1], [13] and 

[14] for definitions and results on flatness which are 

used here. 

A monoid S is called left (right) collapsible if for any 

Sss ,  there exists Sz  such that szzs   (

zssz  ). A submonoid P of S is called weakly left 

collapsible if for any Pss , , Sz , zssz 

implies the existence of Pu such that suus  . It 

is obvious that every left collapsible submonoid is 

weakly left collapsible, but not the converse. A monoid 

S is called right (left) reversible, if for any Sss , ,  

there exist Svu , such that svus  ( vssu  ). A 

submonoid P of S is called weakly right reversible, if 

for any Pss , , Sz , zssz   implies the 

existence of Pvu , such that svus  . A right ideal 

SK  of a monoid S is called left stabilizing, if for any 

SKk  , there exists SKl such that klk  . SK  is 

called left annihilating, if for any St ,  

SKSyx \,  , SKytxt ,  implies that ytxt  . 

SK  is called strongly left annihilating, if for all 

SKSts \,   and for all homomorphisms

SSsStf SS  )(: SKtfsf )(),(  implies that 

)()( tfsf  . SK is called completely left 

annihilating, if for all Sttzyx ',,,, , 

[( ') ( ' )] [( )

( ' ) ( ) ( )]

S

S S S

xt yt tz t z xt K

yt K x K y K

    

     
 

SK  is called EP -left annihilating, if for all 

Sttyx ',,, , 

( ') [( ) ( ' )

( ) ( )

( , , , ( ),

' ', ', , ,

, )]

S S

S S

S

S

xt yt xt K yt K

x K y K

u v S e f E S et t

ft t ut vt xe ue xe ue K

yf vf yf vf K

    

    

   

    

  

 

SK  is called E-left annihilating, if for all 

Styx ,, , 
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( ) [( ) ( )

( ) ( )

( , , , ( ),

, , , ,

, )]

S S

S S

S

S

xt yt xt K yt K

x K y K

u v S e f E S et t ft

ut vt xe ue xe ue K

yf vf yf vf K

     

   

    

   

  

 

A nonempty set A is called a right S-act, usually 

denoted 
SA , if S acts on A unitarily from the right; that 

is, there exists a mapping A S A  , ( , )a s as , 

satisfying the conditions ( ) ( )as t a st  and 1a a , 

for all a A and all ,s t S . Left S-acts 
S A are 

defined dually. If SA  be an act, then we define Green’s 

equivalence relation   on 
SA  by the following rule: 

( , )a b aS bS   

for all Aba , . 

A right S-act A satisfies Condition (P), if for all 

Aaa ', , Sss ', , ''saas   implies that there exist 

Ab , Svu ,  such that bua  , bva '  and 

'vsus  .  A monoid S is called  right PCP, if all 

principal right ideals of S satisfy Condition (P). A right 

S-act A satisfies Condition (P'), if for all Aaa ', , 

Szss ,', , ''saas  , zssz  imply that there 

exist Ab , Svu ,  such that bua  , bva '  

and 'vsus  . A right S-act A satisfies Condition ( EP ), 

if for all Aaa ', , Sss ', , ''saas   implies that 

there exist Ab , Sffeevu  22 ,,,  such 

that bueae  , bvffa ' ,  ses  , '' sfs   and 

'vsus  .  It is obvious that Condition (P) implies 

Condition ( EP ), but not the converse, for this see [2]. A 

satisfies Condition (E), if for all Aa , Sss ', , 

'asas   implies that there exist Ab , Su  such 

that bua  and 'usus  .  A satisfies Condition (EP), 

if for all Aa , Sss ', , 'asas   implies that there 

exist Ab , Svu ,  such that bvbua  and 

'vsus  . A satisfies Condition (E'), if for all Aa , 

Szss ,', , 'asas  , zssz  imply that there exist 

Ab , Su  such that bua   and 'usus  . A 

satisfies Condition (E'P), if for all Aa , Szss ,',

, 'asas  , zssz  imply that there exist Ab , 

Svu ,  such that bvbua   and 'vsus  . It is 

obvious that Condition (E)   Condition (EP)   

Condition (E'P) and Condition (E)   Condition (E') 

  Condition (E'P). In [3]  and [4]  we gave a 

characterization of monoids by Conditions (EP) and 

(E'P) of their acts. A right S-act A satisfies Condition 

(PWP), if for all Aaa ', , Ss ,  saas '  implies 

that there exist Ab  and Svu ,  such that 

bua  , bva '  and vsus  . A right S-act A 

satisfies Condition (
EPWP ), if for all Aaa ', , Ss

,  saas '  implies that there exist Ab  and 

Sffeevu  22 ,,,  such that bueae  , 

bvffa ' ,  sfses   and vsus  . In [7]  we 

gave a characterization of monoids by Condition            

(
EPWP ) of their acts.  A is called  regular,  if all cyclic 

subacts of A are projective. A is called  faithful, if for 

Sts ,  the equality atas   for all Aa  implies 

ts  . A is called strongly faithful, if for Sts ,  the 

equality atas   for some Aa  implies that ts  . 

A is called P-regular, if all cyclic subacts of A satisfy 

Condition (P). In [9] we gave a characterization of 

monoids by P-regularity of their acts. A is called 

strongly (P) -cyclic if for any Aa  there exists 

Sz such that aZ  kerker  and zS satisfies 

Condition (P). In [8] we gave a characterization of 

monoids by strong (P)-cyclic of their acts.  

Let S be a monoid and I be a proper right ideal of S. 

Let x, y and z denote elements not belonging to S. If 

(( \ ) { , }) ( { })A S I x y I z    and S acts on A 

from the right as follows: 

( , ),
( , )

( , ),

us x if us I
u x s

us z if us I


 


 

( , ),
( , )

( , ),

us y if us I
u y s

us z if us I


 


 

( , ) ( , ),u z s us z  

then the right S-act A is called amalgam of S by I and 

is denoted by 
I

S S .  

Results 

 

1. General properties 

Definition 1.1. An act SA  is called  -torsion free 

if for any Aba ,  and Sc , c right cancellabe, 

bcac   and ba  imply that ba  . 

  We use the abbreviation  TF for  -torsion 

freeness. It is clear that torsion freeness implies  -

torsion freeness, but not the converse, see the following 

example. 
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Example 1.1. Let ( , )S  N , and consider the 

amalgam 

\{1}

SA 
N

N N . Then ),1(),1( yx  , but

2),1(2),1( yx  . Hence 
SA  is not torsion free. It can 

easily be seen that 
SA  is  -torsion free. 

 

Proposition 1.1. Let S be a monoid. Then: 

    (1) The one-element act 
S  is  -torsion free. 

    (2) SS  is  -torsion free. 

    (3) If an act is  -torsion free, then all its subacts 

are  -torsion free. 

    (4) iA , Ii , are  -torsion free if and only if 


Ii

iS AA


 is  -torsion free. 

    (5) If 
iA , Ii , are  -torsion free right S-acts, 

then 



Ii

iS AA  is  -torsion free. 

Proof.  

 

Proposition 1.2. Let S be a monoid. Then: 

    (1) All right S-acts satisfying Condition (EP) are 

 -torsion free. 

    (2) All right S-acts satisfying Condition (E) are 

 -torsion free. 

Proof.  (1). Suppose the right S-act SA  satisfies 

Condition (EP) and let caac ' , 'aRa , for 

SAaa ',  and right cancellable Sc . Since 'aRa , 

there exist Sts ,  such that saa '  and ata ' . 

Since SA  satisfies Condition (EP), the equality 

atcac   implies that there exist SAb  and 

Svu ,  such that bvbua   and vtcuc  . Then 

the right cancellability of c  implies vtu  , and so 

abubvtata ' , as required. 

(2). Since Condition (E)   Condition (EP), it is 

 

 

Proposition 1.3.  Let S be a monoid. Then: 

    (1) All P-regular right S-acts are  -torsion free. 

    (2) All strongly (P)-cyclic right S-acts are  -

torsion free. 

    (3) All regular right S-acts are  -torsion free. 

    (4) All strongly faithful right S-acts are  -

torsion free. 

Proof. (1). It follows from [9, Theorem 2.2] and 

using the same argument as in the proof of (1) of 

Proposition 1.2. 

Since strong faithfulness   regularity   strong 

(P)-cyclic   P-regularity, (2), (3) and (4) are obvious. 

 

 

Notice that it is not yet known if the faithfulness 

implies  -torsion freeness. 

 

2. Characterization by  -torsion freeness of right 

Rees factor acts 

 

     In this section we characterize monoids by  -

torsion freeness of right Rees factor acts. We recall that 

if SK  is a right ideal of S, the Rees congruence K  is 

defined by Kba ),(  if Kba ,  or ba   and the 

resulting factor act is called the Rees factor act and is 

denoted by
SKS / . We say an ideal SK  of S satisfies 

Condition (*), if SKycxc ,  and yx , 

SKSyx \,  , Sc  right cancellable, imply yx  . 

 

Lemma 2.1. Let S be a monoid and SK  be a right 

ideal of S. Then: 

    (1) 
KK

yx  ][][   implies either SKSyx \,   

or SKyx , , for all Syx , . 

    (2) yx  implies 
KK

yx  ][][  , for all 

Syx , . 

    (3) yx if and only if 
KK

yx  ][][  , for all 

SKSyx \,  . 

Proof. (1). If 
KK

yx  ][][  , then there exist 

Sts ,  such that 
KKK

yssyx  ][][][  and   

KKK
xttxy  ][][][  . Thus either ysx   or 

SKysx ,  and either xty   or SKxty , . If 

SKx , then ysx  , and so SKy . If  SKx , 

then SKy , since xty   or SKxty , . Thus 

SKx  if and only if SKy . 

(2). It is obvious. 

(3). Let SKSyx \,  . If yx , then 

KK
yx  ][][  . If 

KK
yx  ][][  , then there exist 

Sts ,  such that either ysx   or SKysx ,  and 
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either xty   or 
SKxty , . Since 

SKSyx \,  , 

we have ysx   and xty  , by (1), and so yx  

 

Theorem 2.1. Let S be a monoid and SK  be a right 

ideal of S. Then the right Rees factor S-act 
SKS /  is 

 -torsion free if and only if 
SK  satisfies Condition 

(*). 

Proof.  Necessity. Suppose the right Rees factor S-

act 
SKS /  is  -torsion free, and let 

SKycxc , , 

yx , for SKSyx \,  , Sc  right cancellable. 

Then cycx
KK  ][][   and 

KK
yx  ][][  , by (2) of 

Lemma 2.1. Hence, 
KK

yx  ][][  , and so yx   or 

SKyx , . But SKSyx \,  , and so yx  , as 

required. 

Sufficiency. Suppose cycx
KK  ][][   and 

KK
yx  ][][  , for Syx , , Sc  right 

cancellable. Then ycxc  or SKycxc , . If 

ycxc  , then yx  , and so 
KK

yx  ][][  , as 

required. Thus we suppose SKycxc , . Since 

KK
yx  ][][  , either SKyx ,  or SKSyx \,  ,  

by (1) of Lemma 2.1. If SKyx , , then 

KK
yx  ][][  , as required. If SKSyx \,  , then 

yx , by (3) of  Lemma 2.1. Thus by the assumption 

yx  , and so 
KK

yx  ][][   

 

Remark 2.1. If SK  is a left annihilating right ideal 

of a monoid S, then SK  satisfies Condition (*), but not 

the converse, otherwise, by Theorem 2.1, [12, III, 

10.11] and that principal weak flatness implies  -

torsion freeness, all left stabilizing right ideals are left 

annihilating, and so by  [14, Theorem 10], all 

principally weakly flat right Rees factor S-acts satisfy 

Condition (PWP), which is not true. By [6, Lemma 3.4], 

all EP -left annihilating right ideals are left stabilizing, 

thus every EP -left annihilating right ideal satisfies 

Condition (*), but not the converse, otherwise, all 

torsion free right Rees factor S-acts are principally 

weakly flat, which is not true. 

The following example shows that there are monoids 

S and right Rees factor S-acts which are not  -torsion 

free. 

 

Example 2.1.Let [ ] { | , }S i a bi a b   Z Z . 

Then S with multiplication is a commutative and 

cancellative monoid. If 

(1 ) { | , ,2 | }SK i S a bi a b a b     Z , then 

SKS \5,5  , 5 2 10 SK     , 

5 2 10 SK   , and 55  ,  but 55  , thus the 

right Rees factor S-act 
SKS /  is not  -torsion free, 

by Theorem 2.1. 

 

As we saw in Example 1.1, the following example 

shows also that for Rees factor acts,  -torsion freeness 

does not imply torsion freeness. 

 

Example 2.2.  Let ( , )S  N . If SKS 2 , then 

SKS /  is not torsion free, but it is  -torsion free. 

Thus for Rees factor acts  -torsion freeness does not 

imply torsion freeness and all properties which imply 

torsion freeness. 

Now, it is natural to ask for monoids over which  -

torsion freeness of Rees factor acts implies torsion 

freeness and all properties which imply torsion freeness. 

 

Theorem 2.2. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts are 

torsion free. 

(2) If a proper right ideal SK  of S satisfies 

Condition (*), then SK  satisfies the following 

condition: 

SKxc , Scx , , c  right cancellable, implies 

SKx . 

Proof. It follows from Theorem 2.1, and [12, III, 

 

 

Theorem 2.3. Let S be a monoid. Then the following 

statements are equivalent: 

    (1) All  -torsion free right Rees factor S-acts are 

principally weakly flat. 

(2) If a proper right ideal SK  of S satisfies 

Condition (*), then SK  is left stabilizing. 

Proof. It follows from Theorem 2.1, and [12, III, 

 

Theorem 2.4. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts 
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satisfy Condition (PWP). 

(2) If a proper right ideal 
SK of S satisfies 

Condition (*), then SK  is left stabilizing and left 

annihilating. 

Proof. It follows from Theorem 2.1, and [14, 

 

 

Theorem 2.5. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts 

satisfy Condition ( EPWP ). 

(2) If a proper right ideal SK of S satisfies 

Condition (*), then SK  is left stabilizing and E-left 

annihilating. 

Proof. It follows from Theorem 2.1, and [7, 

Theorem 4.2].  

 

Theorem 2.6. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts are 

flat. 

(2) All  -torsion free right Rees factor S-acts are 

weakly flat. 

(3) S is right reversible and if a proper right ideal 

SK of S satisfies Condition (*), then SK  is left 

stabilizing. 

Proof. It follows from Theorem 2.1, [12, III, 12.2], 

 

 

Theorem 2.7. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts 

satisfy Condition (WP). 

(2) S is right reversible and if a proper right ideal 

SK of S satisfies Condition (*), then SK  is left 

stabilizing and strongly left annihilating. 

Proof. It follows from Theorem 2.1, [14, Theorem 

 

 

Theorem 2.8. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts 

satisfy Condition (P). 

(2) S is right reversible and if a proper right ideal 

SK of S satisfies Condition (*), then 1|| SK . 

Proof. It follows from Theorem 2.1,  [12, III, 13.7], 

 

 

Theorem 2.9. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts 

satisfy Condition ( EP ). 

(2) S is right reversible and if a proper right ideal 

SK of S satisfies Condition (*), then 
SK  is EP -left 

annihilating. 

Proof. It follows from Theorem 2.1,  and [6, 

 

 

Theorem 2.10. Let S be a monoid. Then the 

following statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts 

satisfy Condition (P'). 

(2) S is weakly right reversible and if a proper right 

ideal SK of S satisfies Condition (*), then SK  is left 

stabilizing and completely left annihilating. 

Proof. It follows from Theorem 2.1,  and  [10, 

 

 

Theorem 2.11. Let S be a monoid. Then the 

following statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts 

satisfy Condition (E). 

(2) S is left collapsible and if a proper right ideal 

SK of S satisfies Condition (*), then 1|| SK . 

Proof. It follows from Theorem 2.1, [12, III, 14.3], 

and [12, III, 1  

 

Theorem 2.12. Let S be a monoid. Then the 

following statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts are 

projective. 

(2) S contains a left zero and if a proper right ideal 

SK of S satisfies Condition (*), then 1|| SK . 

Proof. It follows from Theorem 2.1, [12, III, 17.2], 

 

 

Theorem 2.13. Let S be a monoid. Then the 

following statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts are 

free. 

(2) All  -torsion free right Rees factor S-acts are 

projective generators. 

(3) All  -torsion free right Rees factor S-acts are 

generators. 

(4) All  -torsion free right Rees factor S-acts are 

faithful. 

(5) All  -torsion free right Rees factor S-acts are 
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strongly faithful. 

(6) S = {1}. 

Proof. Implications (1)   (2)   (3) are obvious. 

(3)   (4). It follows from [12, III, 18.1]. 

Since 
SS SS /  is an  -torsion free cyclic 

right Rees factor S-act, and S  is faithful (strongly 

faithful) if and only if S = {1}, implications (4)   (6) 

and (5)   (6) are obvious. 

(6)   (1), (5). If S = {1}, then all right S-acts are 

 

 

Theorem 2.14. Let S be a monoid. Then the 

following statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts are 

P-regular. 

(2) S is right reversible, if S contains a left zero, then 

S is right PCP, and if a proper right ideal SK of S 

satisfies Condition (*), then 1|| SK . 

Proof. It follows from Theorem 2.1, and [9, 

 

 

Theorem 2.15. Let S be a monoid. Then the 

following statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts are 

strongly (P)-cyclic. 

(2) S is right PCP, contains a left zero and if a 

proper right ideal SK of S satisfies Condition (*), then 

1|| SK . 

Proof. It follows from Theorem 2.1, and [8, 

 

 

Theorem 2.16. Let S be a monoid. Then the 

following statements are equivalent: 

(1) All  -torsion free right Rees factor S-acts are 

are regular. 

(2) S is right PP, contains a left zero and if a proper 

right ideal SK  of S satisfies Condition (*), then 

1|| SK . 

Proof. It follows from Theorem 2.1,  [12, III, 19.4], 

 

 

 

 

 

 

3. Characterization by  -torsion freeness of cyclic 

right acts 

In this section we characterize monoids by  -

torsion freeness of cyclic right acts. 

Let S be a monoid, Sts ,  and rC  be the set of all 

right cancellable elements of S. Set 

1

( , ) ( , )

{( , ) | ,

( , ) ( , ),[ ] [ ] },

r

s t s t

F x y S S c C

xc yc s t x y 

    

 
 

1

( ) ( )

{( , ) | ,

( , ) ( ),[ ] [ ] }
i i

i r

i F F

F x y S S c C

xc yc F x y 

     

 
 

for i N .  It can easily be seen that 
iF  is reflexive 

and symmetric, for every i N . Also, 

1 1 2 2

1

( , ) ( ) ( )

..... ( ) .....i i

s t F F F F

F F

  

 

   

  
 

It is clear that ( , ) ( )TF i

i

s t F 




N

 is a right 

congruence on S containing (s,t). 

 

Theorem 3.1.  Let S be a monoid and Sts , . 

Then ( , )TF s t
 is the smallest right congruence 

containing (s,t), where / ( , )TFS s t
 is  -torsion 

free. 

Proof. If cycx tsts TFTF ),(),( ][][


   and 

),(),( ][][ tsts TFTF
yx


  , for Syx ,  and rCc , 

then there exist Sll 21,  such that 

),(),(),,( 21 tsxlyylx TF . Thus there exist 

, ,i j k N  such that )(),( iFycxc  , 

)(),( 1 jFylx   and )(),( 2 kFxly  .  

If },,max{ kjih  , then 

)(),(),,(),,( 21 hFxlyylxycxc  , and so 

)(),( hFycxc   and )()( ][][
hh FF yx   . By 

definition, 1),(  hFyx , and so 

),()(),( 1 tsFyx TFh    . 

Thus ),(),( ][][ tsts TFTF
yx


  , as required. Let   

be a right congruence on S containing (s,t), where /S   

is  -torsion free. We show that   ),( tsTF . 

Since ),( ts , we have  ),( ts . If 

1),( Fyx  , then there exists rCc  such that 

),(),( tsycxc   and ),(),( ][][ tsts yx   , and so 

),( ycxc  and  ][][ yx  . Since /S   is  -
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torsion free, ),( yx . Thus 1F , and so 

 )( 1F . Suppose then that  )( iF , i N . 

If 
1),(  iFyx , then there exists rCc  such that 

)(),( iFycxc   and ( ) ( )[ ] [ ]
i iF Fx y  . Since 

 )( iF  and /S   is  -torsion free, ),( yx . 

Hence 1iF , and so   )( 1iF . Thus 

 )( iF , for all i N , and so   ),( tsTF
 

 

Theorem 3.2. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free cyclic right S-acts satisfy 

Condition (P). 

(2) For any Stt ', , there exist Svu ,  such that 

'vtut   and )',()1,(),1,( ttvu TF . 

(3) For any Stts ',, , there exist Svu ,  such 

that 'vtut   and )',(),(),,( ststsvsu TF . 

Proof. (1)   (2). The cyclic right S-act 

/ ( , ')TFS t t
 is  -torsion free, and so it satisfies 

Condition (P). Thus by [12, III, 13.4], there exist 

Svu ,  such that 'vtut   and 

)',()1,(),1,( ttvu TF . 

(2)   (3). Suppose Stts ',, . Then there exist 

Svu ','  such that ''' stvstu   and 

)',()1,'(),1,'( ststvu TF . If suu ':  and 

svv ': , then 'vtut   and 

)',(),(),,( ststsvsu TF . 

(3)   (1). Suppose   is a right congruence on S, 

where /S   is  -torsion free and let )',( tt . 

Then by assumption, there exist Svu ,  such that 

'vtut   and )',()1,(),1,( ttvu TF . By Theorem 

3.1,   )',( ttTF , and so )1,(),1,( vu . Thus 

/S   satisfies Condition (P  

 

Theorem 3.3. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free cyclic right S-acts satisfy 

Condition ( EP ). 

(2) For any Sttyx ',,, , there exist Svu ,  and 

)(, SEfe   such that 'vtut  , tet  , '' tft  , 

)',(),(),,( ytxtvfyfuexe TF . 

Proof. Using [6, Theorem 2.5] and Theorem 3.1, it is 

 

 

Theorem 3.4. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free cyclic right S-acts satisfy 

Condition (P'). 

(2) For any Szttyx ,',,, , the equality zttz '  

implies that there exist Svu , such that 'vtut  , 

)',(),(),,( ytxtvyux TF . 

Proof. Using [10, Theorem 3.1] and Theorem 3.1, it 

 

 

Theorem 3.5. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free cyclic right S-acts satisfy 

Condition (E). 

(2) For any Sts , , there exists Su  such that 

usut   and ),()1,( tsu TF . 

Proof. Using [12, III, 14.8] and Theorem 3.1, it is 

 

 

Theorem 3.6. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free cyclic right S-acts satisfy 

Condition (E'). 

(2) For any Szts ,, , the equality sztz   

implies that there exists Su  such that usut   and 

),()1,( tsu TF . 

Proof. It follows from Theorem 3.1, definition of 

Condition (E') and using the same argument as in the 

 

 

Theorem 3.7. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free cyclic right S-acts satisfy 

Condition (E'P). 

(2) For any Szyx ,, , the equality yzxz   

implies that there exist Svu ,  such that ux vy  

and ),()1,(),1,( yxvu TF . 

(3) For any Szttx ,',, , the equality zttz '  

implies that there exist Svu ,  such that 'vtut   

and ( , ), ( , ) ( , ')TFu x v x xt xt . 

Proof. Using [3, Theorem 2.10]  and Theorem 3.1, it 

 

 

Theorem 3.8. Let S be a monoid. If all  -torsion 

free cyclic right S-acts are flat, then for any left 
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congruence   on S and any Sts , , there exist 

Svu ,  such that ),( vtus , 

 stsu TF   ),()1,(  and 

 ttsv TF   ),()1,( . 

Proof. Suppose   is a left congruence on S and let 

Sts , . Then the cyclic right S-act / ( , )TFS s t
 is 

 -torsion free, and so it is flat. Thus by [12, III, 

12.11], there exist Svu ,  such that ),( vtus , 

 stsu TF   ),()1,(  and 

 ttsv TF   ),()1,(  

 

Theorem 3.9. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free cyclic right S-acts are weakly 

flat. 

(2) For any Sts , , there exist Svu ,  such that 

vtus  , sTF tsu  ker),()1,(    and 

tTF tsv  ker),()1,(   . 

Proof.  (1)   (2). The cyclic right S-act 

/ ( , )TFS s t
 is  -torsion free, and so it is weakly 

flat. Thus by [12, III, 11.5], there exist Svu ,  such 

that vtus  , sTF tsu  ker),()1,(    and 

tTF tsv  ker),()1,(   . 

(2)   (1). Suppose   is a right congruence on S, 

where /S   is  -torsion free and let ),( ts . By 

Theorem 3.1,   ),( tsTF  and by assumption, 

there exist Svu ,  such that vtus  , 

sTF tsu  ker),()1,(    and 

tTF tsv  ker),()1,(   . Thus su  ker)1,(   

and tv  ker)1,(  , and so  /S   is weakly flat, 

 

 

Theorem 3.10. Let S be a monoid. Then the 

following statements are equivalent: 

(1) All  -torsion free cyclic right S-acts satisfy 

Condition (PWP). 

(2) For any Styx ,, , there exist Svu ,  such 

that ut vt  and ),(),(),,( ytxtyvxu TF . 

Proof. Using [13, Lemma 2.7] and Theorem 3.1, it is 

 

 

Theorem 3.11. Let S be a monoid. Then the 

following statements are equivalent: 

 (1) All  -torsion free cyclic right S-acts satisfy 

Condition ( EPWP ). 

 (2) For any Styx ,, , there exist Svu ,  and 

)(, SEfe   such that vtut   and 

),(),(),,( ytxtyfvfxeue TF . 

Proof. Using [7, Theorem 3.7] and Theorem 3.1, it is 

 

 

Theorem 3.12. Let S be a monoid. Then the 

following statements are equivalent: 

(1) All  -torsion free cyclic right S-acts are 

principally weakly flat. 

    (2) For any Ssvu ,, , 

( , ) ( , ) kerTF su v us vs   . 

Proof.  (1)   (2). Suppose , ,u v s S .  The 

cyclic right S-act / ( , )TFS us vs
 is  -torsion free, 

and so it is principally  weakly flat.  Since 

( , ) ( , )TFus vs us vs  we have 

( , ) ( , ) kerTF su v us vs   , by [12, III, 10.7]. 

(2)   (1). Suppose   is a right congruence on S, 

where /S   is  -torsion free and let ),( vsus . 

Then by Theorem 3.1,   ),( vsusTF .  By 

assumption, ( , ) ( , ) kerTF su v us vs   , and so 

( , ) ker su v    . Thus /S   is principally weakly 

 

 

Theorem 3.13. Let S be a monoid. Then: 

(1) ),(),( tsts TFTF   . 

(2) All  -torsion free cyclic right S-acts are torsion 

free if and only if ),(),( tsts TFTF   . 

Proof.  (1) . ),( tsTF  is the right congruence 

containing ),( ts , where  / ( , )TFS s t  is torsion free. 

Thus by Theorem 3.1, ),(),( tsts TFTF   , since 

torsion freeness implies  -torsion freeness. 

(2). Using [12, III, 8.4], Theorem 3.1, and (1), it is 

 

 

Theorem 3.14. Let S be a monoid. Then the 

following statements are equivalent: 

(1) All  -torsion free cyclic right S-acts are free. 

(2) All  -torsion free cyclic right S-acts are are 

projective generators. 

(3) All  -torsion free cyclic right S-acts are 

generators. 
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(4) All  -torsion free cyclic right S-acts are 

faithful. 

(5) All  -torsion free cyclic right S-acts are 

strongly faithful. 

(6) S = {1}. 

Proof.   

 

4. Characterization by  -torsion freeness of right 

acts 

In this section we characterize monoids by  -

torsion freeness of right acts. 

 

Lemma 4.1. Let S be a monoid and (U) be a 

property of S-acts which implies torsion freeness. Then 

the following statements are equivalent: 

(1) All right S-acts satisfy (U). 

(2) All  -torsion free right S-acts satisfy (U). 

Proof.  (1)   (2).  It is obvious. 

(2)   (1). We claim that ScS  , for any right 

cancellable Sc . Otherwise, ScS  , for some right 

cancellable Sc . Then the right S-act 
cS

SS SS  

satisfies Condition (E), and so by (2) of Proposition 1.2, 

it is  -torsion free. Thus by assumption, 
cS

SS SS is 

torsion free, and so the equality cycx ),1(),1(  , 

implies ),1(),1( yx  , which is a contradiction. Thus 

ScS  , and so all right cancellable elements of S are 

right invertible. Thus all right S-acts are torsion free, by 

[12, IV, 6.1], and so all right S-acts satisfy (U), as 

 

 

Theorem 4.1. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right S-acts are free. 

(2) All  -torsion free right S-acts are projective 

generators. 

(3) All  -torsion free right S-acts are projective. 

(4) All  -torsion free right S-acts are strongly flat. 

(5) All  -torsion free right S-acts are generators. 

(6) All  -torsion free right S-acts are faithful. 

(7) All  -torsion free right S-acts are strongly 

faithful. 

(8) S = {1}. 

Proof. (1)   (2)    (3)   (4) and (8)   (1) 

are obvious. 

(4)   (8). Since strong flatness and pullback 

flatness coincide, it follows from Lemma 4.1 and [15, 

Theorem 3.4]. 

 (5)   (6)   (7)   (8). The same argument 

 

 

Theorem 4.2. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right S-acts are weakly 

pullback flat. 

    (2) All  -torsion free right S-acts are weakly 

kernel flat. 

    (3) All  -torsion free right S-acts are principally 

weakly kernel flat. 

(4) All  -torsion free right S-acts are translation 

kernel flat. 

(5) All  -torsion free right S-acts satisfy Condition 

(P). 

(6) All  -torsion free right S-acts satisfy Condition 

(WP). 

(7) All  -torsion free right S-acts satisfy Condition 

(PWP). 

(8) All  -torsion free right S-acts satisfy Condition 

(P'). 

(9) S is a group. 

Proof.  Implications (1)   (2)   (3)   (4) 

  (5)   (6)   (7)   (9) follow from Lemma 

4.1, and [1, Proposition 9]. 

 (8)   (9). It follows from Lemma 4.1, and [10, 

 

 

Theorem 4.3. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All right S-acts are flat. 

(2) All  -torsion free right S-acts are flat. 

Proof. Since flatness implies torsion freeness, it 

 

 

Theorem 4.4. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right S-acts satisfy Condition 

( EP ). 

(2) All  -torsion free right S-acts are weakly flat. 

 (3) S is regular and satisfies Condition: (R): for all 

Sts ,  there exists StSsw   such that 

),(),( tssw  . 

Proof.  (1)   (2). It follows from [2, Theorem 2.3]. 

 (2)   (3). It follows from Lemma 4.1, and [12, IV, 

7.5]. 

(3)    

 

Theorem 4.5. Let S be a monoid. Then the following 
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statements are equivalent: 

 (1) All  -torsion free right S-acts are principally 

weakly flat. 

(2) All  -torsion free right S-acts satisfy Condition 

( EPWP ). 

(3) S is regular. 

Proof.  (1)   (3). It follows from Lemma 4.1, and 

[12, IV, 6.6]. 

(2)   (3). It follows from Lemma 4.1, and [7, 

 

 

Theorem 4.6. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right S-acts are torsion free. 

(2) Every right cancellable element of S is right 

invertible. 

Proof.  It follows from Lemma 4.1, and [12, IV, 

 

 

Theorem 4.7. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right S-acts are regular. 

(2) All  -torsion free finitely generated right S-acts 

are regular. 

(3) All  -torsion free cyclic right S-acts are 

regular. 

(4) All  -torsion free monocyclic right S-acts are 

regular. 

(5) S ={1} or S = {0,1}. 

Proof.  Implications (1)   (2)   (3)   (4) are 

obvious. 

(4)   (5). It follows from [5, Theorem 1.8]. 

(5)    

 

Theorem 4.8. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right S-acts are divisible. 

(2) All  -torsion free finitely generated right S-acts 

are divisible. 

(3) All  -torsion free cyclic right S-acts are 

divisible. 

(4) SS  is divisible. 

(5) Every left cancellabe element of S is left 

invertible. 

Proof.  Implications (1)   (2)   (3) are obvious. 

(3)   (4). Since SS  is  -torsion free, it is clear. 

(4)   (5). It follows from [12, III, 2.2]. 

(5)    

 

Theorem 4.9. Let S be a monoid. Then the following 

statements are equivalent: 

(1) All  -torsion free right S-acts are principally 

weakly injective. 

(2) All  -torsion free finitely generated right S-acts 

are principally weakly injective. 

(3) All  -torsion free cyclic right S-acts are 

principally weakly injective. 

(4) S is regular. 

Proof.  Implications (1)   (2)   (3) are obvious. 

 (3)   (4). All principal right ideals of S are  -

torsion free, by (2) and (3) of Proposition 1.1. Thus all 

principal right ideals of S are principally weakly 

injective, and so S is regular, by [12, IV, 1.6]. 

(4)    (1  

 

It is not yet known that when all right (Rees factor, 

cyclic) acts are  -torsion free, but here we give some 

equivalents of that. 

 

Theorem 4.10. Let S be a monoid. Then the 

following statements are equivalent: 

(1) All right S-acts are  -torsion free. 

(2) All divisible right S-acts are  -torsion free. 

(3) All principally weakly injective right S-acts are 

 -torsion free. 

(4) All fg-weakly injective right S-acts are  -

torsion free. 

(5) All weakly injective right S-acts are  -torsion 

free. 

(6) All injective right S-acts are  -torsion free. 

(7) All cofree right S-acts are  -torsion free. 

Proof.  (1)   (2). It is obvious. 

Since cofreeness   injectivity   weak injectivity 

  fg-weak injectivity   principal weak injectivity 

  divisibility, implications (2)   (3)   (4)   (5) 

  (6)   (7) follow. 

(7)   (1). Every right S-act can be embeded into a 

cofree right S-act. Thus by (3) of Proposition 1.1, all 

right S-acts are  -  
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