
 

Journal of Ultrafine Grained and Nanostructured Materials, Vol. 46, No. 1, 2013, pp. 01-09  1 

 

1- Aerospace Engineering Department, K. N. Toosi University of Technology, Tehran, 16569-83911, Iran. Tel.: +98-21-73064217; fax: +98-21-

77791045. 

 
Corresponding author: 

M. Zakeri, Aerospace Engineering Department, K. N. Toosi University of Technology, Tehran, 16569-83911, Iran. Tel.: +98-21-73064217; fax: +98-

21-77791045. 

Email: m.zakeri@kntu.ac.ir 

On the Mechanical Properties of Chiral Carbon Nanotubes 
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Abstract 
Carbon nanotubes (CNTs) are specific structures with valuable characteristics. In general, the structure of each 
nanotube is defined by a unique chiral vector. In this paper, different structures of short single-walled CNTs 

are simulated and their mechanical properties are determined using finite element method. For this aim, a 

simple algorithm is presented which is able to model the geometry of single-walled CNTs with any desired 
structure based on nano-scale continuum mechanics approach. By changing the chiral angle from 0 to 30 

degree for constant length to radius ratio, the effect of nanotube chirality on its mechanical properties is 

evaluated. It is observed that the tensile modulus of CNTs changes between 0.93-1.02 TPa for different 

structures, and it can be higher for chiral structures than zigzag and armchair ones. Also, for different chiral 
angles, the bending modulus changes between 0.76-0.82 TPa, while the torsional modulus varies in the range 

of 0.283-0.301TPa. 
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1. Introduction 

Many researchers employed numerical 

approaches including molecular dynamics 

(MD) and continuum mechanics to simulate 

CNTs structures. In recent decades, continuum 

mechanics approaches based on finite element 

method (FEM) have been widely used to 

evaluate the elastic properties of CNTs via 

micromechanical methods. Different types of 

finite elements, including rods, trusses, 

springs, and beams using linear and nonlinear 

interatomic potentials have been utilized to 

model the carbon–carbon (C–C) bond in CNTs 

[e.g. 3-6]. For example, Meo and Rossi [3] 

simulated CNT using non-linear spring for 

modeling the bond stretch, and linear torsional 

spring for modeling the bond angle variation. 

In this model, bending of a bond is surrounded 

using additional elements as diameters of the 

hexagon. 

Li and Chou [7] stated that a CNT is a 

geometrical frame-like structure and the 

primary covalent bonds between two nearest-

neighboring atoms act like load-bearing beam 

elements, whereas the atoms act as the joints of 

the related beam members. By establishing a 

linkage between structural mechanics and 

molecular mechanics, they determined the 

sectional properties of these beam members. 

Tserpes et al. [8, 9] used beam elements based 

on linear and nonlinear interatomic potentials. 

They concluded that Young’s modulus of 

chiral CNTs is larger than zigzag and armchair 

structures. Giannopoulos et al. [10] explored 

the mechanical properties of CNTs by using 

spring elements. They used atomistic 

microstructure of CNTs and found that 

armchair nanotubes provide slightly higher 

values of Young’s modulus and lower values 

of  shear modulus than zigzag ones for small 

values of radius, and the results tented to 

converge for higher values of radius. However, 

Ávila and Lacerda [11] reported that Young’s 

modulus of zigzag is larger than armchair and 

chiral structures.  

In 2012, Rafiee and Heidarhaei [12] studied 

the effect of structure type (only armchair and 

zigzag) on Young’s modulus (E) of CNTs. 

They presented a brief summary of some 

previously published values for E obtained 

from different approaches of MD and FEM, 

and claimed that the Young’s modulus of 

CNTs is independent of their structure. In 

another research, Lu and Hu [13] investigated 

the mechanical properties of three structures of 

armchair, zigzag and chiral with angle of 19.1 
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degree, and reported that the largest Young’s 

modulus is calculated for zigzag CNT. Also, 

they reported that the shear modulus increases 

as the chiral angel increases. 

Although extensive studies have been done 

to explore the mechanical properties of carbon 

nanotubes; most of these studies have been 

restricted only to symmetric structures of 

CNTs including zigzag and armchair ones. In 

this paper, short CNTs with any desired 

structure are modeled using a new developed 

simple algorithm based on nanoscale 

continuum mechanics. Then, these models are 

analyzed using finite element method to 

examine the mechanical behavior of CNTs 

under different loading conditions including 

tension, bending, and torsion in order to 

determine the effect of chiral angle on the 

mechanical properties. In the following 

section, details of the CNTs modeling 

technique are described. 

 

2. Modeling of Carbon Nanotubes 

2.1. Carbon Nanotube Geometry  

A single-walled carbon nanotube 

(SWCNT) can be considered as a rolled up 

rectangular plane of graphene layer in shape of 

a hollow cylindrical tube (Fig. 1). Graphene 

sheets are flat thin plates consisted of carbon 

atom bonds in a lattice of regular hexagons. In 

this structure, each carbon atom has a covalent 

C–C bond with three other atoms. A roll-up 

vector is defined in the graphene sheet using 

two points of the lattice (Fig. 2). The roll-up 

vector (Ch), commonly called chiral vector, 

determines the direction along which the 

graphene sheet is rolled to form a tubular CNT 

structure. This vector can be expressed as: 

 

 Ch= n a1 + m a2                                 (1) 

 

where the indices (n,m) are integer values 

called the chiral index of nanotube, and a1, a2 

are unit vectors of the lattice. A pair of integers 

(n,m) describes a single-walled nanotube  

uniquely, and other geometrical parameters of 

CNT such as its diameter (D) and chiral angle 

(θ) can be calculated using m and n according 

to [14]: 

 

 
1/ 2

2 23 a
D m mn n



 
    
   

(2) 

   1tan 3 2m m n    
   

(3) 

where a is lattice parameter that is the nearest 

neighbor carbon atom distance, taken as 1.42 

angstrom. 

Because of hexagonal symmetry of the 

honeycomb lattice and the chiral symmetry of 

(n,m) and (m,n) tubes, chiral angles to describe 

all CNTs are limited to the range of 300  . 

Regarding to the size of chiral angle, two 

particular types of nanotube configurations are 

created which are symmetric with respect to 

the tube axis: zigzag nanotube with m = 0 (0-

degree structure); and armchair nanotube with 

n = m (30-degree structure). All the remaining 

asymmetric structures with arbitrary values of 
300   are known as chiral nanotubes [15]. 

For modeling a carbon nanotube with 

different structures of zigzag, armchair and 

desired chiral angle, a precise algorithm for 

programming is needed. In the currently 

developed algorithm, first, the chiral angle and 

other required parameters for creating the 

geometric model are calculated by receiving 

three input data of n, m and L (nanotube 

length). Then, a formula is derived and used 

for determining the coordinates of graphene 

sheet points which specifies the situation of 

each carbon atom. For this purpose, the 

coordinates of initial reference atom are 

considered as the starting point and the 

coordinates of its three neighbor points are 

calculated. Then, each determined neighbor 

atom is considered as a new reference point 

and the calculations are repeated for 

determining the coordinates of other atoms.   

For these calculations, two main groups of 

Type-1 and Type-2 points are defined 

regarding to their situation. Fig. 2 shows the 

way of selecting Type-1 and Type-2 points in 

 
Fig. 1. Rolling up a graphene sheet to form a carbon 

nanotube 
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the graphene sheet.  The relations between the 

coordinates of reference points and new points 

are derived according to equations 4 to 7. 

Expressions 4 and 5 are used for Type-1 points 

and expressions 6 and 7 are used for Type-2 

points: 

 

where nX  and nY  are coordinates of the 

neighbor point while 0X  and 0Y  are 

coordinates of the reference atom in Cartesian 

coordinate system. After determining the 

coordinates of all points and generating the 

bonds between them, the prepared model is 

transferred to three-dimensional cylindrical 

coordinate system to obtain the final structural 

model of carbon nanotube.   

In this research, all of the above described 

steps to determine the location of carbon atoms 

and create the nanotube geometric model have 

been prepared as a computer code. Fig. 3 

shows a flowchart of this code which simulates 

SWCNTs with any desired dimension and 

structure. Finally, this model is exported to 

commercial finite element software ANSYS12 

to analyze the nanotube static behavior and 

examine its mechanical properties. 

 

2.2. Finite Element Modeling of CNTs 

Based on the structural mechanics approach 

developed by Li and Chou [7] the existing 

covalent force between two carbon atoms of 

CNT can be simulated by using a beam 

element which bears all three types of tensile, 

bending and torsion deformations. 

At the molecular level, the interaction 

between atoms is described based on 

molecular potential energies. Although 

nanotubes are structures with nonlinear 

behavior, chemical calculations have shown 

that for studying molecular networks under 

small deformations, bonding potential energy 

can be well approximated by simple harmonic 

functions [16]. Inter-molecular potential 

energy of covalent bonds ( totalE ) can be 

calculated by using harmonic functions 

according to relation (8): 

 

222

2

1

2

1

2

1
)(k)(k)r(kE rtotal   

     
(8)  

 

where rk , k , and k  are bond stretching, 

bond angle bending and torsional resistance 

force constants, and r ،   and   

represent the variations of bond lengths, 

bending angle and twisting angle, respectively. 

On the other hand, according to the physical 

similarity between the molecular energy and 

structure strain energy, the constants rk , k  

and k  are obtained as: 

 

Equations 9 create the basis for replacement 

of C–C bonds in the graphene sheet and carbon 

nanotube with a continuous frame-like 

  3,2,1;)1(12090cos0  iiaXX n                                                                                         

(4) 

  3,2,1;)1(12090sin0  iiaYYn   
(5) 

  3,2,1;)1(12030sin0  iiaXXn   
(6) 
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Fig. 2. Type-1 and Type-2 points in the graphene sheet 

to determine the neighbor atoms position 
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structure. The bond equivalent beam 

characteristic parameters such as its length (a), 

cross sectional area (Ael), moments of inertia 

(Iel, Jel), Young’s modulus (Eel), and torsional 

modulus (Gel) are derived based on the force 

constants of molecular mechanics field. rk ,

k  and k are equal to 6.52
710 N/nm, 8.76

1010  N.nm/ rad2, and 2.78
1010  N.nm/rad2, 

respectively [8]. 

In this research, the covalent bonds between 

carbon atoms of CNT are modeled with linear 

beam elements including shear effects using 

ANSYS software.  

Calculation of coordinates 

for neighbor atoms 
 

Calculation of geometric parameters 

(diameter, chiral angle,...) 
 

Nanotube length and 
 (n,m) values  

 

Coordinates of  
reference atom 

 

Defining the coordinates of first atom, 

and acceptable area of the atoms location 

on the graphene sheet 
 

Start 

No 

Convert two-dimensional Cartesian coordinates 
 to three-dimensional cylindrical coordinates 

 

End 

Yes 

All of three neighbor 

atoms are determined 

 

Yes Coordinates of new 

determined atom is in 

the acceptable area 

 

Calculated 

coordinates are 

repetitive 

Yes 

No 

Generate a carbon-carbon bond 

between reference and neighbor atoms 

 

Record the neighbor 

atoms’ coordinate 

1-1-1-1- 

Fig. 3. Flowchart of the algorithm used for CNT geometric modeling. 
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The geometrical and mechanical properties 

of the element are selected as Table 1. By 

assuming a solid circular cross section, cross 

sectional area (Ael) and moments of inertia (Iel 

, Jel) could be calculated as 42dAel  , 

644dI el   and 324dJ el  .  Fig. 4 shows 

three samples of simulated nanotubes with 

different structures of zigzag, chiral, and 

armchair. After generating FE models of 

CNTs, they are subjected to three different 

load cases of tension, bending, and torsion. 

 

3. Result and Discussion  

3.1. Results for Different Chiral Angles 

In this study, all CNT structures with the 

same value of n and different chiral angles are 

considered as a structural group, for briefness. 

For example, (12,0) ,(12,3), (12,6), (12,9), and 

(12,12) CNTs are referred as structural group 

of (12,m), and their chiral angle varies from 0 

to 30 degree by increasing the value of m. 

Three structural groups of (12,m), (15,m), and 

(18,m) CNTs are simulated and analyzed using 

FEM. All of the modeled CNTs have 

approximately the same length to radius ratio. 

Table 2 shows the characteristics of the 

modeled CNTs. 

 

3.1.1. Tensile Behavior 

Tensile behavior of each nanotube is 

investigated by applying a small tensile axial 

displacement at one of its ends, while the other 

end is restricted to move (Fig. 4). Then, the 

Table 1. Geometrical and mechanical properties of 

beam element used to simulate the bond between  

carbon atoms in finite element model 

Quantity Formulation [8] 
Element 

Parameters 

1.42 (A) -------- 
Element/bond 

length (a) 

1.46 (A) rkkd 4 
Element 
diameter (d) 

5.48 

(TPa) 
 k

ak
E r

el
4

2

 
Elasticity 

)el Emodulus ( 

0.87 

(TPa) 2

2

8 



 k

akk
G

r
el  

Torsional 

)el Gmodulus ( 

 

 

   

 
Fig. 4. Samples of FEM models of CNTs with different structures: a) zigzag, b) chiral, c) armchair. 

 

Table 2. Characteristics of the simulated CNTs. 

Length 

(A) 

Radius 

(A) 
Chirality 

)
o 

(Ɵ 

Chiral 

Index 

(n,m) 

Structural 

Group 

25.64 4.69 0 (12,0) 
(12,m) 

27.63 4.90 3.96 (12,1) 

29.81 5.38 10.89 (12,3)  

33.94 6.21 19.10 (12,6)  

40.38 7.14 25.28 (12,9)  

46.77 8.13 30 (12,12)  

32. 5.87 0 (15,0) (15,m) 

34.8 6.30 6.18 (15,2)  

39.5 7.06 13.90 (15,5)  

42.64 7.33 16.10 (15,6)  

44.86 7.92 20.03 (15,8)  

52.07 9.17 26.32 (15,12)  

58.96 10.17 30 (15,15)  

38.39 7.04 0 (18,0) (18,m) 

43.52 7.70 7.59 (18,3)  

48.44 8.47 13.90 (18,6)  

53.25 9.32 19.10 (18,9)  

59.12 10.23 23.41 (18,12)  

64.56 11.20 27 (18,15)  

70.09 12.20 30 (18,18)  
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maximum axial force amount at the fixed end 

of nanotube is calculated using FEM method. 

Consequently, tensile Young’s modulus in the 

longitudinal direction (ET) can be calculated 

using equation 10 based on the linear 

relationship between stress and strain: 

(10) 
AL

FL
ET

.


 

where L, L , A and  F are nanotube length, 

changes in nanotube length, cross sectional 

area, and axial force, respectively. For a CNT 

with radius of R and wall thickness of t=0.34 

nm, cross sectional area is calculated as:  

(11)  22
inout RRA    

in which 2tRRout   and 2tRRin  . 

Figs. 5-7 present the variation of 

longitudinal elasticity modulus for different 

structures of CNTs. Also, applying the cross 

sectional area, tensile rigidity (ET A) for three 

structural groups of CNTs is obtained 

according to Fig. 8. It is observed that the 

nanotube's tensile rigidity increases rapidly by 

increasing the chiral angle in a structural 

group, and in general, its amount for armchair 

structure has been about 80 percent higher than 

that of zigzag one. Moreover, according to Fig. 

8, increasing the number of atomic networks in 

the structures causes increasing of tensile 

rigidity. By considering the impact of both 

factors, tensile stiffness of studied nanotubes is 

variable in the range of 4100 AN to 11000 AN. 

 

3.1.2. Bending Behavior 

To simulate the bending condition, the free 

end of CNT is subjected to a small transverse 

displacement ( ). After applying the bending 

movement, amount of the maximum force 

perpendicular to cross section at the fixed 

support nodes of nanotube is reported by 

ANSYS software. Then, the bending elasticity 

modulus ( BE ) can be calculated from: 

 

(12) 
.3

3

I

FL
EB 

 
 

where F, L,    and I are bending force, CNT 

length, deflection amount of free end, and the 

second moment of inertia, respectively. The 

changes in bending elasticity modulus for 

 
Fig. 5. Variation of longitudinal Young’s modulus vs. 

chiral angle for (12,m) CNTs. 
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Fig. 8. Variation of CNT tensile rigidity vs. chiral 

angle. 
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Fig. 7. Variation of longitudinal Young’s modulus vs. 

chiral angle for (18,m) CNTs. 
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Fig. 6. Variation of longitudinal Young’s modulus vs. 

chiral angle for (15,m) CNTs. 
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different structures of nanotubes are illustrated 

in Fig. 9 for three structural groups. 

After computing elasticity modulus in 

bending state, the amount of bending rigidity 

(EB I) is calculated, and the accomplished 

results are presented in Fig. 10. It is observed 

that EB I is variable between 0.39 ×106 AN.A 

m2 to 6.38 ×106 AN.Am2 based on the CNT 

structure. By increasing the chiral angle for a 

particular structural group, the bending rigidity 

is increased intensively. For example, in the 

(18, m) group, its amount for armchair 

structure is 6.38 ×106 AN.Am2 that is five 

times more than 1.25 ×106 AN.Am2 obtained 

for zigzag structure. Also, comparing different 

structural groups in Fig. 10 indicates that 

increasing the number of atomic networks of 

structures leads to increase in bending rigidity. 

 

3.1.3. Torsional Behavior 

For applying torsional condition on 

nanotubes, Cartesian coordinates are changed 

to cylindrical coordinates. Then, a small twist 

angle is applied to the free end of CNT while 

the other end is fixed. After applying the 

torsion, the amount of created torsional torque 

at the constrained end of CNT is determined 

and torsional modulus G is calculated from: 

(13) 
J

TL
G 

 

where T, L, J and   are torsional moment, 

nanotube length, polar moment of inertia and 

twist angle, respectively. Fig. 11 shows the 

variations of G for different structures of CNTs 

for three structural groups. Also, the amount of 

torsional rigidity (GJ) is calculated according 

to Fig. 12. It is observed that by increasing 

chiral angle, torsional rigidity is increased 

intensively. For (12,m) group, its amount for 

armchair structure is 1.42×106 AN.Am2 which 

is over five times larger than 0.27×106 

AN.Am2 for zigzag structure. Comparing 

different structural groups indicates that the 

torsional rigidity is increased by increasing the 

number of atomic networks of structures. 

 

3.2. Discussions 

Based on the results of this research, the 

structure type has not a significant effect on the 

amount of the tensile Young’s modulus of 

short CNTs. ET for different structures of 

 
Fig. 10. Variation of CNT bending rigidity vs. chiral 

angle. 
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Fig. 9. Variation of bending elasticity modulus vs. 

chiral angle for three groups of CNTs. 
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Fig. 12. Variation of CNT torsional rigidity vs. chiral 

angle 
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Fig. 11. Variation of torsional modulus vs. chiral angle 

for three groups of CNTs. 
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studied CNTs changes from 0.93TPa to 1.02 

TPa by changing their structure, and it is 

generally around 1 TPa. Figs. 5-7 indicates that 

for (12, m) and (15, m) nanotubes, zigzag 

structure is a slighty stiffer than armchair one. 

In contrast, for (18, m) nanotubes, armchair 

structure has a Young’s modulus larger than 

zigzag one. In this group, armchair CNT is the 

stiffest structure. 

The bending modulus of the studied 

nanotubes has always been lower than their 

tensile modulus. According to Fig. 9, bending 

modulus of nanotubes varies between 0.76TPa 

to 0.82TPa; and it has a higher value for zigzag 

structure in comparison with armchair one in a 

particular structural group. For example, its 

amount for armchair structure in the (15, m) 

group is 0.764TPa that is a bit less than 

0.794TPa obtained for zigzag structure. Also, 

comparing different structural groups in Fig. 6 

indicates that increasing the number of atomic 

network of structures, generally leads to 

decrease in bending modulus.  

Based on the results presented in Fig. 11, 

although shear modulus (G) of chiral 

nanotubes is a little more than symmetric ones, 

it does not change significantly by changing 

nanotubes structure and increasing the chiral 

angle. Also, its value for zigzag CNT is very 

near to armchair structure. In general, torsional 

modulus is variable from minimum value of 

282.86MPa for (18, 18) nanotube to maximum 

of 300.82MPa for (12, 3) structure, and 

average torsional modulus for different 

nanotubes is about 0.29TPa. As another result, 

comparing different structural groups indicates 

that by increasing the number of atomic 

networks of structures the torsional modulus is 

decreased.  

Table 3 shows a summary of the results of 

this research, in comparison with available 

reported values for tensile, bending, and 

torsional moduli of CNTs from literature. It is 

observed that the overall trend of the present 

results agrees well with the results reported 

previously. 

 

4. Conclusions 

In this paper, three groups of short carbon 

nanotubes with different structures were 

simulated using a simple algorithm. These 

models were analyzed using finite element 

method in order to evaluate their mechanical 

properties including tensile, bending, and 

torsional modulus and rigidity.  By changing 

chiral angle from  0 (zigzag) to  30  

(armchair) the effect of CNT structure on its 

mechanical properties was investigated. The 

obtained results can be concluded as: 

1- The tensile modulus of studied nanotubes 

changes between 0.93TPa and 1.02TPa for 

different structures, and it can be higher for 

chiral CNTs than zigzag and armchair ones. 

2- The bending modulus of CNTs changes 

between 0.76TPa to 0.82TPa. In general, the 

bending modulus decreases by increasing the 

number of atomic networks of structures. 

3- The torsional modulus of CNTs varies in the 

range of 0.283TPa to 0.301TPa. Also, similar 

to bending modulus, the torsional modulus 

decreases by increasing the number of atomic 

networks (n). 

4- Tensile rigidity (ET A), bending rigidity (EB 

I), and torsional rigidity (GJ) of CNTs were 

calculated. It is observed that all of these 

parameters increase intensively by increasing 

the chiral angle from 0 to 30 degree.  

 

Table 3. The obtained results in comparison with previous results available in the literature. 

Tensile 
 Modulus (TPa) 

Wernik et al [17] Shokrieh  et al.[18] Lu  et al. [13] Present Work 

Zigzag:  0.9202 
Armchair:  0.9448  

1.033-1.042 1.067-1.197 0.93-1.02 

Bending 
 Modulus (TPa) 

Ayatollahi et al. [19] Poncharal et al. [20] Wong et al. [21] Present Work 

Zigzag:  0.83 
Armchair:  0.74-1.3 

0.1-1 0.78- 1.78 0.76-0.82 

Torsional 
 Modulus (TPa) 

Wernik et al [17] Wu et al [22] Lu  et al. [13] Present Work 

Zigzag:  0.3442 
Armchair:  0.3434 

0.418 0.237-0.469 0.283-0.301 
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