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ABSTRACT: In this study, cadmium (Cd) accumulation was studied in an experimental aquatic exposure.
Mosquitofish (Gambusia affinis) were acutely exposed for 96 h to a high concentration of Cd (12 mg/L) and
were chronically exposed to a low concentration of Cd(0.4 mg/L) for 30 days. Cd accumulation profiles
differed between the two Cd exposures. The Cd concentation in G. affinis tissues increased linearly during
acute exposure. In contrast, chronic exposure presented a biphasic pattern of accumulation, with Cd accumulation
increasing until 20 days post-exposure then decreasing by the 30th day of the experiment. Histopathological
investigations revealed greater changes in gills, kidney and liver tissues after chronic exposure than those
recorded during acute exposure. The changes in gill were characterized by epithelial lifting, total and partial
lamellar fusion, epithelial necrosis as well as telangiectasis. Necrosis of epithelial cells of renal tubules,
glomerular contraction and reduction of Bowman’s space were observed in the kidney tissue of exposed fish.
The liver hepatocytes showed cytoplasmic vacuolization with lipid droplets and glycogen accumulation.
Desquamation of hepatic tissue, congestion of the hepatic central vein and an increase in sinusoidal space were
also observed. The result showed that, although Cd accumulation, following acute and chronic exposure,
severely affects vital organs in mosquitofish; G. affinis adapts to continued metal accumulation. We hypothesise
that this adaptation occurs through activation of a metal resistance mechanism.
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INTRODUCTION
Aquatic organisms such as fish are, in most cases,

exposed to multitudes of stressors that are either natural
or anthropogenically introduced into environment.
Contamination of fish with pollutants might adversely
impact exploitation of aquatic resources. Heavy metals
occur naturally in the environment and are found, at
varying levels, in all ground and surface waters (Martin
and Coughtrey, 1982; Vinodhini and Narayanan, 2009;
Mehrdadi et al., 2009; Shetty and Rajkumar, 2009;
Nasrabadi et al., 2010). Some metals (zinc, iron) are
essential elements for normal metabolism while others
are non-essential and do not have significant biological
roles (Prosi, 1979; Rainbow, 1985; Sanders, 1997;
Sahmoune et al., 2009 ).

According to Mason, (1991) and Sanders, (1997),
cadmium (Cd) is one of the five major types of toxic

pollutants and causes an ecological problem that tend
to be accumulated in living organisms (Jensen and
Bio-Rasiriussen, 1992; Alazemi et al., 1996). Natural as
well as anthropogenic sources, which include
industrial emissions and the application of fertilizer
and sewage sludge to farmland, have increased Cd
levels in the environment (ATSDR, 2003b). It is a non-
essential element (Viarengo, 1985) and it is commonly
used in ecotoxicological studies due (Wright and
Welborn, 1994; Goering et al., 1995). Low exposure
concentrations of Cd can adversely affect organisms
(Cope et al., 1994) and leads to pathological conditions
in some tissues (Friedman and Gesek, 1994; Yamano
et al., 1998; Novelli et al., 1999). As a persistent
environmental pollutant, Cd can alter trophic levels
for centuries, and freshwater fish are particularly
vulnerable to cadmium exposure (Sorensen, 1991).
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As an indicator of exposure to contaminants,
histology represents a useful tool to assess the effects
of pollution, particularly for sub-lethal and chronic
effects (Cengiz and Unlu, 2005). Histopathology has
been widely used as a biomarker in the evaluation of
the health of fish exposed to cadmium both in
laboratory (Wester and Canton, 1991; Randi et al., 1996;
Thophon et al., 2003; Au, 2004) and field studies
(Schwaiger et al., 1997; Teh et al., 1997). However, the
alterations observed in the field cannot be specifically
related to individual pollutants. In fish, cadmium
accumulates in the liver, gills, kidney and
gastrointestinal tract (Norey et al., 1990). The results
are histopathological alterations of these organs. In
teleost fish, the kidney and gills are responsible for
excretion and maintenance of ion homeostasis (Hinton
et al., 1992; Evans, 1993). Kidney is one of the main
targets for cadmium accumulation (Brown et al., 1984;
Allen, 1995; De Conto Cinier et al., 1997) while liver is
considered as a detoxification organ and essential for
both metabolism and excretion of toxic substances in
the body (Hinton and Lauren, 1990). Thus, this paper
aims to investigate cadmium accumulation in
mosquitofish (Gambusia affinis) tissues in relation to
different concentrations and exposure times, and
determine the structural damages induced by this metal
in G. affinis gills, kidney and liver.

For this purpose, G. affinis was selected as the
model organism in the present study. It is widespread
in small streams in the Tunisian environment, and is a
euryhaline organism widely distributed in both
freshwater systems and estuaries of temperate regions.
It is also amenable to laboratory studies. This fish
possesses an important key role in ecosystem and has
been considered as a representative of secondary
consumers in aquatic ecosystems.

MATERIALS & METHODS
G. affinis samples were collected from an

uncontaminated freshwater source “Oued El Gsil” in
the town of Moknine, situated 20 Km away from the
city of Monastir (Annabi et al., 2009). A first phase of
laboratory maintenance involved a period of quarantine
in which the fish samples were acclimated to the
laboratory conditions for at least two weeks (15-30
days) prior to the experiment. The samples were kept
in glass aquaria (20 × 25 × 40) filled with dechlorinated
tap water (pH = 7.09, salinity = 0.9 %), with continuous
aeration and temperature of 20 ± 1°C. During the
acclimatization period, inspections were conducted
twice a day in order to discard wounded, diseased and
dead individuals. The photoperiod was 16:8 (16 light
hours/8 darkness hours) and fish were fed twice daily
with commercially balanced fish food sticks (Tetramine,

Hagen, France). The medium was renewed every two
days.

The stock solution of Cd was prepared by
dissolving analytical grade of cadmium chloride
(CdCl2.H2O) in distilled water. The concentration of
cadmium chloride was expressed in term of Cd ion in
mg/L. The mosquitofish were exposed during 24, 48,
72 and 96 h to nominal Cd concentration of 12 mg/L.
This dose was chosen according to our preliminary
results (Annabi et al., 2009), from a toxicity study (to
determine LC50 values for mosquitofish), but to avoid
fish death. Control and treated fish were placed in
separate glass aquaria (n=20) filled with dechlorinated
tap water at 20 ±1°C, 16:8 photoperiod and continuous
aeration. Three replicates were performed for each
group. Fish were starved for 24 h prior to and during
the experiment.

In the subchronic exposure, 13 fish were removed
randomly from each aquarium to prepare for
accumulation study. G. affinis were exposed to a
nominal concentration of 0.4 mg CdCl2/L for 30 days.
The dose chosen was theoretically sub-lethal; it was
10 % of the 96 h-LC50 value (Annabi et al., 2009). Three
replicates per group were performed. Mortality and
behaviour were observed during the experiment and
fish were fed twice daily with commercially balanced
fish food sticks (Tetramine, Hagen, France). Uneaten
food was quickly removed from the system. 50 % of
the experimental water was changed every 2 days.

To evaluate cadmium accumulation in G. affinis,
metal determinations were carried out. Fish were killed
after 24, 48 and 96 h of exposure to 12 mg CdCl2/L for
acute exposure and after 10, 20 and 30 days to 0.4
mgCdCl2/L for chronic exposure.

Fish whole tissues were dried for 48 h at 60°C in
Pyrex test tubes. Dried tissues were weighted and
digested with concentrated nitric acid (Merck, 65 %)
at 120°C. When fumes were white and the solution
was completely clear, the samples were cooled to room
temperature and the tubes were filled to 10 mL with
ultra pure water (Warchalowska-Sliwa et al., 2005;
Annabi et al., 2009). Water samples were stabilized at
pH 2 with 1 M nitric acid prior to direct determination
of total metal concentrations (Bervoets and Blust
2003). To check for possible metal loss during chronic
exposure, Cd levels in water were analyzed.

In the case of the control group, Cd concentrations
in the acid solutions were measured by Graphite-
Furnace atomic absorption spectrophotometry (AAS);
while flame AAS was adopted for the exposure group.
These were implemented using a ZEEnit 700-Analytik-
Jena, Germany (Flame and Graphite-Furnace AAS),
equipped with deuterium and Zeeman background
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correction, respectively, as recommended by the
manufacturer. Detection limits were 0.046 µg/L for Flame
AAS and 0.002 µg/L for Graphite-Furnace AAS. The
accuracy and precision of the analyses for tissue Cd
content were based on the analysis of Cd in a standard
reference bovine liver preparation (NIST). We found
0.43 ± 0.02 µgCd/g (n=7) in bovine liver, as compared
with the certified level of 0.40 ± 0.03 µg/g. These results
show that the analytical results of this study are of
satisfactory quality.

Samples were analyzed in triplicate.
Concentrations of the metal in tissues were calculated
on a dry weight basis and expressed as µg/g dry weight,
while that of Cd was expressed as µg/L in water.

Histopathological alterations were evaluated after
48 h and 96 h of exposure to 12 mg CdCl2/L and after 30
days to 0.4 mg CdCl2/L. Fish samples were fixed in
Bouin’s solution for 24 h, and prepared for histological
analysis according to standard procedures
(dehydrated in successive grades of ethanol series (70
and 95°) and embedded in paraffin. Serial longitudinal
sections (thickness 4–5 µm) were stained with
haematoxylin and eosin (H/E) for histological
examination under a light microscope. A semi-statistical
evaluation of the histopathological findings in the gills,
kidney and the liver was done and we used the
following symbols to design the degree and the extent
of the structural changes: (-) no alteration, (+) mild, (+
+) moderate and (+ + +) severe occurrence.

Statistics
Data related to metal concentrations are given as

mean ±S.E. Statistical analyses were performed with
unpaired t-test using STATVIEW statistical software
package. Normality and homogeneity of data were
confirmed before unpaired t-test. Differences between
means were regarded as significant if the p value was
lower than 0.05.

RESULTS & DISCUSSION
Cadmium level in control fish tissues was found

to be 0.678 ±0.12 µg Cd/g of dry weight. After 24, 48
and 96 h of exposure to 12 mg CdCl2/L, these levels
became highly significantly elevated and were
respectively 6.25±2.74, 30.14±19.18 and 63.24±18.89
µgCd/g of dry weight (Fig.1). During the acute exposure,
we noted a positive correlation between Cd levels in G.
affinis tissues and exposure time (R=0.986).

Following 10 and 20 days of exposure to 0.4 mg
CdCl2/L (10% of LC50 for 96 h), Cd levels were
significantly increased (P<0.01) and were 46.14±7.03
µgCd/g and 155.24±27.56 µgCd/g dry weight,
respectively (Fig. 2). In contrast, Cd levels dropped
significantly (P<0.01) after 30 days of exposure to a
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The gills of the control fish were normal at all times.
They were made up of primary lamellae and secondary
lamellae (Fig. 3a). The secondary lamellae were regularly
lined up along both sides of the primary lamellae.
Secondary lamellar were formed by an epithelium and
blood capillaries kept aside by pillar cells. Spaces
between this pillar cells were the blood spaces of the
secondary lamellae (Fig. 3a).
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Fig. 1. Cadmium uptake during acute exposure to 12
mg CdCl2/L

Asterisks (**) denote significant difference between
control and application method (P< 0.01).

concentration of 55.48±11.93 µgCd/g dry weight (Fig.
2). During chronic exposure, Cd concentration in
aquaria water is 0.36 ± 0.007 mgCd/L.
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Fig. 2. Cadmium uptake during chronic exposure of
0.4 mg CdCl2/L (n=7)

Asterisks (**) denote significant difference between
control and application method (P< 0.01)
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After 48-h of exposure, we observed histological
alterations consisting mainly of epithelial cells and
disorganization of many areas, causing congestion of
pillar cells of blood capillaries (Fig. 3b). Alterations of
the gill structure became more pronounced after 96 h
of exposure. These changes were reflected by the
hypertrophy and hyperplasia of the secondary lamellar
epithelium, incipient telangiectasis and fusion of
adjacent secondary lamellae (Fig. 3c; Table 1). After 30
days of exposure, gills showed a very pronounced

Fig. 3. a) Gill structure of control G. affinis  (x 40).
GF: gill filament
PC: pillar cells
PL: primary lamellae
SL: secondary lamellae

Fig. 3. b) Gill structure after 48 h of exposure to 12
mgCdCl2 /L (x 100).
 NEC: necrosis of epithelial cells
 RPC: rupture of pillar cells

Fig. 3. c) Gill structure after 96 h of exposure to 12
mgCdCl2 /L (x 10).
EL: epithelium lifting
PFSL: partial fusion of secondary lamellae
TFSL: total fusion of secondary lamellae

separation of respiratory epithelium, oedema and
complete fusion and shortening of adjacent secondary
lamellae (Fig.3d). Oedema of epithelial cells and
telangiectasis detected in chronically exposed fish
were more severe than those observed in acutely
exposed fish (Fig. 3d; Table 1).

The kidney is made up of renal corpuscles and
renal tubules. The glomerulus is a tuft of capillaries
(Fig. 4a). Proximal tubules were characterized by

Fig. 3. d) Gill structure after 30 days of exposure to
0.4 mg CdCl2/L (x 10).
EL: epithelium lifting
TFSL: total fusion of secondary lamellae
T: telangiectasis
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Table 1. Semiquantitative scoring of gills lesions during acute and chronic exposure to 12 mg CdCl2/L and 0.4
mg CdCl2/L, respectively, in G. affinis

Lesions Acute exposure  Chronic exposure 
 48-h 96-h 30 (days) 
Epithelial lifting + + + + + + 
Total fusion of secondary lamellae - + + + + + 
Partia l fusion of secondary lamellae - - +  +  
Shortening of secondary lamellae - - +  +  
Telangiec tasis - - + +  + 

columnar cells with brush border located along the
apices of the cells while distal tubules were low
columnar epithelium cells with basally round nucleus.
Most of the changes that occurred in the histological
structure of kidney as a result of acute exposure were
related to areas involved in excretory function,
including clusters, proximal and distal tubules, and the
haematopoitic tissue. These histological alterations
consisted mainly of clusters alteration and vacuolation
of tubular epithelial cells, noted after 48 h of exposure to
cadmium (Fig. 4b). However, after 96 h of experimentation,
alteration of clusters and vacuolation of epithelial cells
became very pronounced. Tubular necrosis and the
accumulation of fat inclusions in the epithelial cells were
also observed (Fig. 4c; Table 2). The effect of chronic
exposure on the histological structure of the kidney
yielded mainly glomerular distortion and swelling of
Bowman’s space (Fig. 4d; Table 2).

The liver tissue is formed from parenchyma called
hepatocytes. These were located among the sinusoids
forming cordlike structures known as hepatic cell
cords. The hepatocyte has a polyhedral cell body with
a central core containing generally one spherical
nucleolus (Fig. 5a).

The main histological alterations of this tissue,
noted during the acute contamination, were
hypertrophy of  hepatocytes and liver tissue necrosis,
observed after 48 h (Fig. 5b) and a significant
desquamation of the liver tissue was noted after 96 h
of exposure (Fig. 5c; Table 3). After 30 days of exposure
the liver of treated fish showed a congestion of the
central hepatic vein (Fig. 5d) with a notable hypertrophy
of hepatocytes and accumulation of lipid droplets (Fig.
5d; Table 3).

The main goal of this study was to assess cadmium
accumulation in G. affinis tissues after acute and chronic
exposure and determine the histological lesions
following this exposure. A growing number of evidence
has shown that several factors influence Cd
accumulation in fish tissues. These factors include the
environmental metal concentration and time of
exposure. Indeed, several authors showed that animals

tissues, contaminated in the laboratory, accumulate
heavy metals in a concentration and contamination
period dependent manner (Allen, 1995; Kraal et al.,
1995;  Roméo et al., 1999;  McGeer et al., 2000; Francis
et al., 2004). Fish have the ability to accumulate heavy
metal in their tissues by the absorption along the gill
surface and gut tract wall to higher levels than the
toxic concentration in their environment (Chevreuil et
al., 1995). Moreover, it was reported that Cd is rarely
distributed uniformly within the fish body tissues, and
it is nevertheless accumulated by particular target
organs (Surech et al., 1993). During an acute exposure,
we observed a continuous accumulation of Cd
throughout the experimental period and there were
significantly higher Cd levels after 96 h of exposure
than after 24 and 48 h. During chronic exposure, two
major patterns of accumulation were observed: Cd
accumulation increased significantly until 20 days
post-exposure and then decreased by the 30th day of
exposure. De Conto Cinier et al., (1999) stated on
cadmium uptake in fish liver and kidney can be divided
into two groups according to the presence or absence
of a plateau in the cadmium accumulation kinetic
curves. Plateaus in cadmium accumulation after 2 or 3
months have been reported in liver and kidney of
zebrafish (Danio rerio) (Rehwoldt and Karimian-
Teherani, 1976) and in one-summer-old carp (Cyprinus
carpio) exposed to 446 µgCd/l (De Conto Cinier et al.,
1997). Continuing accumulation has been observed in
rainbow trout (Oncorhynchus mykiss) exposed to 3.6
and 6.4 µgCd/L for 178 days (Giles, 1988). Entry of
heavy metals into the organs of a fish mainly takes
place by the adsorption and absorption and the rate of
accumulation is a function of uptake and depuration
rates (Sreedevi et al., 1992). McDonald and Wood,
(1993), suggest that, after the initial shock phase of
metal exposure, fish physiologically adapts to
compensate for ion losses by secreting mucus and
altering gill structure at the cellular and subcellular
level. A reduction of accumulation has been reported
in many other taxonomic groups as a physiological
mechanism for metal resistance and adaptation (Hall et
al., 1979; Bariaud et al., 1985; Tsuchiya and Ochi, 1994;
Yanagiya et al., 1999).

(-) none, (+) mild, (++) moderate and (+ + +) severe occurrence
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Fig. 4. a) Kidney structure of control G. affinis (x 40).
BS: Bowman’s space
DT: distal tubule
G: glomerule
HPT: hematopoitic tissue
PT: proximal tubule

Fig. 4. b) Kidney tissue structure after 48 h of
exposure to 12 mg CdCl2 /L (x 40).
GD: Glomerular distortion
RBS: reduction of Bowman’s space
VEC: vacuolization of epithelial cells

Fig. 4. c) Kidney tissue structure after 96 h of
exposure to 12 mg CdCl2 /L (x 40).
FI: fat inclusions
GD: glomerular distortion
PN: pyknotic nucleus
TN: tubule necrosis

Fig. 4. d) Kidney structure after 30 days of exposure
to 0.4 mg CdCl2/L (x 40).
GD: glomerular distortion
RBS: reduction of Bowman’s space

Table 2. Semiquantitative scoring of kidney lesions during acute and chronic exposure to 12 mg CdCl2 /L  and
0.4 mg CdCl2 /L, respectively, in G. affinis

Lesions Acute  exposure Chronic  exposure 
 48-h 96-h 30 (days) 
Pyknotic nuclei + + + + + + 
Hyaline droplet - + + + + + 
Tubular necrosis - + + + + + 
Glomerular a lteration - - + + 
Reduction of  Bowman’s spaces + + + + 

Annabi, A.   et al.

(-) none, (+) mild, (++) moderate and (+ + +) severe occurrence
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Fig. 5. a) Liver structure of control G. affinis (x 40).
BS: Blood sinusoid
H: hepatocyte
VH: hepatic vein

Fig. 5. b) Liver structure after 48 h of exposure to 12
mg CdCl2 /L (x 40).
DBS: dilatation of blood sinusoid
HH: hypertrophy of hepatocyte

Fig. 5. c) Liver structure after 96 h of exposure to 12
mg CdCl2 /L (x 40).
DBS: dilatation of blood sinusoid
HH: hypertrophy of hepatocyte
NTH: necrosis of hepatic tissue

Fig. 5. d) Liver structure after 30 days of exposure to
0.4 mg CdCl2/L (x 40).
CCHV: congestion of central hepatic vein
Gly: Glycogen
HH: hypertrophy of hepatocyte
LI: lipid inclusions

Table 3. Semiquantitative scoring of Liver lesions during acute and chronic exposure to 12 mg CdCl2 /L  and
0.4 mg CdCl2 /L, respectively, in G. affinis

Lesions Acute exposure Chronic exposure 
 48-h 96-h 30 (days) 
Dilatation of blood sinusoid  - +  + + +  +  
Lipid droplet accumulation - +  + + +  +  
Hepatic central vein congestion  - - + +  +  
Hyper trophy of hepatocyte + +  + +  
Glycogen content - - + +  

(-) none, (+) mild, (++) moderate, and (+ + +) severe occurrence
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As gills come in direct contact with ionic cadmium,
failure of gill function during acute exposure to this
pollutant can lead to the death of fish (Laurent and
Perry, 1991). Gills play an important role in the capture,
accumulation and transfer of metal toward internal
compartments via blood transport. As noted herein,
lamellae structure of gills was severely damaged by
cadmium exposure. The gills are the site of respiration
and transport system involved in osmoregulation, and
it has been confirmed that accumulation of metal ions
within them may have an effect on these functions
(Thurberg et al., 1973; Jones, 1975). After thirty days
of exposure, a total and partial fusion of secondary
lamellae, mainly epithelial oedema and telangiectasis
were observed. The changes in appearance of the
secondary lamellae result from the collapse of the pillar
cell system and breakdown of vascular integrity with
release of large quantities of blood that push the
lamellar epithelium outward (Alazemi et al., 1996).
Cengiz and Unlu, (2005) confirmed that epithelial
oedema increases distance between the contaminant
and the bloodstream, while secondary lamellae fusion
significantly reduces the gill surface and thus decreases
the contact between the pollutant and gill epithelium.
Gill structural alteration found in G. affinis during an
acute as well as chronic exposure may be classified
into two groups: the first constitutes the lesions linked
to the direct effect of the toxic element and the other
constitutes the defence responses of gills. Necrosis
and cell desquamation of the gill epithelium, observed
during the acute contamination, were due to the direct
toxic effect of cadmium, while epithelial oedema and
partial and total fusion of the lamellae represent a
defence response.

The teleostean kidney is one of the first
organs to be affected by contaminants in the water
(Thophon et al., 2003) and is considered as preferential
site for Cd accumulation in fish (Brown et al., 1984;
Allen, 1995). Alterations of kidney tissue during the
acute exposure were severe. They were composed
principally of tubule necrosis, glomerular alteration and
lipid inclusion accumulation in epithelial cells.
Following the chronic contamination, severe
glomerular alteration was noted in this tissue. These
findings confirm those noted in Salmo gairdneri
(Forlin et al., 1986) and Lates calcalifer (Thophon et
al., 2003). Hawkins et al., (1980) found renal tubule
necrosis and degeneration in Leiostomus xanthorus
exposed to 10, 15 and 25 mg CdCl2/L during 96 hours.
Hypertrophy and degeneration of renal tubule have
also been observed in Puntius conchonius following
cadmium exposure (Gill et al., 1988). Handy and Penrice,
(1993) found swollen Bowman’s capsule cells in the
kidney of trout (Salmo trutta) and tilapia (Oreochromis
mossambicus) exposed to mercuric chloride. Cattani et
al., (1996) showed that Cd is accumulated first in kidney,

second in liver and third in gills of Dicentrarchus
labrax living in contaminated waters. Weber et al.,
(2003) showed that pyknotic and fragmented nuclei,
as indicators of apoptotic and necrotic cell death, were
mostly observed in the epithelial cells of proximal and
distal convoluted tubules and were rarely associated
with other renal cells. Moreover, they added that the
occurrence of dilated tubules appears to be a
consequence of dead and dying epithelial cells, while
a thickening of Bowman’s capsule can arise as a result
of fibrosis.

Liver is one of the secondary site of cadmium
accumulation, and the first site of detoxification (Brown
et al., 1984; Olsson et al., 1996; Thophon et al., 2003).
In hepatic tissue, the histological alterations noted in
G. affinis during the acute exposure to Cd were
hepatocyte atrophy, desquamation and necrosis of
hepatic tissue. During the chronic exposure, central
hepatic vein congestion, hepatocyte hypertrophy and
the presence of lipid inclusions were recognized. These
findings are consistent with cadmium inducing greater
hepatic alteration in fish after chronic exposure than
after acute exposure (Wani and Latey, 1983; Brown et
al., 1984; Tophon et al., 2003; Van Dyk et al., 2007).
The histological alterations of hepatocytes identified
in this study may be the result of various biochemical
lesions and act as a signal of degenerative processes
that suggests metabolic damage (Pacheco and Santos,
2002). Hinton and Lauren, (1990) verified that
vacuolation of hepatocytes is associated with the
inhibition of protein synthesis, energy depletion or a
shift in substrate utilization. Many authors (Kohler,
1990; Teinen-Moslen, 2001; Teh et al., 2004) have
confirmed that hepatocyte vacuolation and abnormal
accumulation of neutral lipids such as triglycerides are
common responses of the liver to perturbations in lipid
metabolism that arise from contaminant exposure.

The structural lesions of gills during chronic
exposure, including epithelial oedema and  total and
partial fusion of secondary lamellae, may impair blood-
water exchange by reducing distances between
lamellae, leading to the reduction of the contact surface
area available for cadmium uptake (Wood, 2001). These
responses, whether adaptive or pathological, invariably
affect homeostatic regulation of the internal
environment (Laurent and Perry, 1991), in particular
decreasing the efficiency of gas exchange (Jagoe et
al., 1996; De Oliveira Ribeiro et al., 2002). Lipids
inclusion accumulation noted in the G. affinis kidney
may be the result of glomerular alteration and an
increase in permeability (Bucher and Hofer, 1993). After
chronic and acute exposure, some of the histological
alterations in different tissues were specific to cadmium.
The fusion of secondary lamellae and telangiectasis in
gills tissue may represent a cadmium-specific damage.

Cadmium Accumulation in Mosquitofish
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However, secondary lamellae hyperplasia may be non-
specific, indeed Richmonds and Dutta, (1989) detected
secondary lamellae hyperplasia after 96 h of exposure
to malathion. Accumulation patterns of contaminants
in fish depend both on uptake and on elimination rates
(Hakanson, 1984) and a low rate of elimination observed
during acute exposure could also lead to greater
accumulation (Albert, 1973). In gill epithelium, Cd
readily enters via the lanthanum (La)-sensitive apical
voltage independent calcium (Ca) channels (Verbost
et al., 1987; Verbost et al., 1989; Wicklund Glynn et al.,
1994). Numerous authors found that competitive
interaction between Cd and Ca lead to reduce Cd
accumulation in fish (Hollis et al., 2000; Wu et al., 2007;
Zhang and Wang, 2007). A reduction in gill epithelial
Ca-Channels expression, observed when fish are fed a
Ca-enriched diet, would limit uptake of both Cd and Ca
(Galvez et al., 2007). Like other teleosts belonging to
the Cyprinidae family, G. affinis has cellular bone tissue
(Moss, 1961; 1965). Therefore, a Cd-induced
disturbance of the Ca balance would probably lead to
a situation, in which hypocalcaemia is compensated
by an increased release of Ca from skeletal bone. In
the hepatic tissue, cadmium not bound to
metallothionein, wich represents the main transport
and storage protein for cadmium (Jin et al., 1998),
induces synthesis of the protein as a protective
mechanism (Nordberg and Nordberg, 2000). However,
Cd bound to metallothionein re-enters the blood stream
and is filtered at the glomeruli of the kidney and
reabsorbed by the proximal tubule cells. Excess of free
cadmium in the kidney, damage the proximal tubules
resulting in renal dysfunction (Brzoska et al., 2003)
and apoptosis of kidney cells (Ishido et al., 1995).
Many study of gene expression following acute and
chronic Cd exposure found that heat shock protein
(hsp70 family) was a short term adaptation to Cd
exposure while metallothionein was likely used for long-
term detoxification and sequestring of Cd (Blechinger
et al., 2002; Chen et al., 2007). Indeed, Gonzalez et al.,
(2006) found that strong hsp70 gene expression in the
gill of Danio rerio was present after 7 day of Cd
exposure while after 21 days, hsp70 expression had
returned to normal levels and metallothionein
expression was induced.

CONCLUSION
The present study showed that cadmium uptake

was both time- and dose-dependent. Indeed, we
observed a different pattern of metal accumulation
following acute and chronic exposure. The histological
changes observed in the gills, kidney and liver of the
G. affinis, after exposure, were characteristic of direct
damage by cadmium and the secondary effects caused
by a stress response. The findings of the present

histological investigations demonstrate a direct
correlation between cadmium accumulation and
histopathological damage in gill, kidney and liver. Such
results support that mosquitofish has developed
cadmium-sequestering detoxifying systems and may
enhance further elucidation of physiological and
biochemical mechanisms of resistance to metal toxicity.
G. affinis is a species that was shown to be appropriate
for in situ tests and for metal environmental monitoring.
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