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 Abstract 
In this research, adsorption of dibenzothiophene (DBT) as a model of sulfur containing material has 

been studied by Pb exchanged Y-zeolite under different experimental conditions. The adsorption was 
kinetically fast and high adsorption capacity was obtained. The equilibrium adsorption data were 
analyzed using Langmuir and Freunlich isotherm models. The corresponding parameters and correlation 
coefficients of each model are reported and the data was well fitted by the Langmuir isotherm. Pseudo-
first order, pseudo-second order and intra-particle diffusion models were evaluated to examine the 
kinetic of the adsorption process. It was concluded that removal of DBT was obeys the second-order 
model of kinetic. The adsorbent was tested for five successive regeneration cycles and the considerable 
capacity of the adsorbent was remained after regeneration.       
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Introduction 
    Sulfur content of transportation fuels 
have been continually regulated around the 
World due to its environmental effects as 
well as the effects on engines and catalytic 
systems. Sulfur removal has also gained 
prominence in recent years due to the need 
for sulfur free reformation fuels for various 
applications including fuel cells [1]. 
Conventional hydro-desulfurization (HDS) 
process has been widely used to remove 
sulfur compounds from the liquid fuels. 
However, the HDS process which is 
generally operated at high temperature and 
pressure decreases octane number of the 
fuels. It is efficient for removing thiols and 
sulfides while being less effective for the 
refractory sulfur compounds such as 
dibenzothiophene. To reduce the energy 
needed for desulfurization, a large number 
of non-HDS processes, such as alkylation, 
extraction, precipitation, oxidation and 
adsorption have been investigated. Of these, 
adsorption process is a promising process. 
That is because it can be applied at ambient 
temperature and pressure [2-4]. Many 
attentions have been focused on novel 
materials including mesoporous materials, 
mixed metal oxides, activated alumina, 
carbon and zeolites as adsorbents [5-7]. 

Zeolites are efficient and attractive 
adsorbents for desulfurization of liquid fuel 
due to their high ion-exchange and size-
selective adsorption capacities as well as 
thermal and mechanical stabilities. During 
the last decade, zeolites such as 13X [8], 
ZSM-5 [9] and HY [10] have been studied 
for desulfurization of transportation fuels. 
Yang and co-workers [11-14] studied Y-
type zeolites ion-exchanged with Cu, Ag, 
and Ni ions for removal of sulfur 
compounds in fuels. Song et al. [15-17] 
reported that cation-exchanged Y zeolites 
(Cu, Ni, Zn, Pd and Ce) are effective 
adsorbents for sulfur compounds. Among 
previous experimental works on zeolite-
based desulfurization, no report on 
application of Pb-exchanged form of Y-
zeolite for removal of DBT was observed. 
Therefore, the objective of this paper is to 
investigate adsorption of DBT by Pb loaded 
Y-zeolite. The experimental parameters 
were systematically investigated and 
optimized. XRD, FT-IR, and TG/DTG 
techniques were adopted to characterize the 
adsorbent before and after adsorption 
process. The regeneration of the adsorbent 
was also examined for 5 successive cycles. 
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DBT. Because of desirable capacity and 
reaction kinetic, the removal of DBT from 
the fuels by column operation is feasible. 
    The effect of contact time and initial 
DBT concentration was studied by Zhang 
and his co-workers. They reported DBT 
removal using Ag-Y sorbent. A capacity of 
45mg S/g for DBT concentration 1500mg/L 
and equilibration time of 1h were obtained 
[20]. 
    Wang reported the DBT adsorption to be 
11mg/g, using NiCe-Y with DBT content of 
500mg/L and at equilibration time of 2 h 
[21]. 
 

3.3. Adsorbent regeneration 
    The equilibrium adsorbent was 
regenerated by thermal treatment in the 
atmosphere at 450°C for 6 h [20]. Small 
reduction in the adsorption capacity was 
observed after the first regeneration (Table 
2). The adsorption capacity of the adsorbent 
decreased within 17% after 5 successive 
regeneration cycles. The reduction in 
removal capacity can be attributed to the 
deposition of decomposed products on the 
adsorbent surface. However the adsorbent 
can be used at least for 3 regeneration 
cycles with 90% capacity. 
 

Table 2: Effect of regeneration cycles on 
adsorption capacity. Adsorption conditions:  

Temperature: 25°C, initial DBT concentration: 
1500 mg/L 

Adsorption(%) Adsorption 
capacity(mg/g) 

Recycle 
No. 

100 108.77 0 
96.99 105.5 1 
94.41 102.7 2 
91.2 99.2 3 
87.7 95.4 4 
83.84 91.2 5 

 
3.4. Adsorption isotherms 
    The equilibrium adsorption isotherm is 
important for the design and operation of 
adsorption systems. By plotting solid phase 
concentration against liquid phase 
concentration at the equilibrium condition, 
it is possible to depict the equilibrium 
adsorption isotherm. Here, the adsorption 
isotherm was studied by fitting experimental 

data to Langmuir and Freundlich isotherms. 
The Langmuir model is developed to 
represent adsorption sites having the same 
sorption energies which are independent of 
surface coverage and have no interaction 
between adsorbed molecules. The Langmuir 
equation is represented in the linear form 
[22]: 

mm

ee

bqq

C

q

C 1
  

 

    where q is the amount of DBT adsorbed 
at equilibrium (mg/g), Ce is the equilibrium 
DBT concentration in solution (mg/L), qm is 
the maximum adsorption capacity (mg/g), 
and b is the Langmuir adsorption 
equilibrium constant (L/mg). Maximum 
sorption capacity (qm) represents monolayer 
coverage of adsorbent and b represents the 
affinity between the adsorbent and the 
sorbate [23]. As shown in (Figure 5), the 
plot of Ce/q versus Ce yielded a straight line. 
From the slope and intercept, the values of 
qm and b for the DBT adsorption are 
determined as 125 mg S/g and 0.03 
respectively, with a correlation coefficient 
of 0.9982. It demonstrates that the DBT 
adsorption onto Pb-Y can be well explained 
by the Langmuir monolayer adsorption 
model.  
    The Freundlich isotherm gives an 
empirical model that assumes 
heterogeneous adsorption due to the 
diversity of adsorption sites. This isotherm 
does not predict any saturation of the 
adsorbent by the sorbate thus infinite 
surface coverage is mathematically 
predicted indicating a multilayer sorption of 
the surface. The linear form of Freundlich 
sorption is [24]:  

ef C
n

kq log
1

loglog 
 

    where Kf and n are equilibrium constants 
indicative of adsorption capacity and 
adsorption intensity, respectively. Using the 
experimental data, a log scale plot of q 
against Ce is performed and the values of K 
and n were estimated as 14/92 L/mg and 
3/17, respectively, with a correlation 
coefficient of 0.8976. This result is 
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graphically depicted in (Figure 6). The 
numerical value of 1/n <1 (1/n = 0.31) 
indicates that sorption capacity is only 
slightly suppressed at lower equilibrium 
concentration. The adsorption equilibrium 
analysis (Figure 5 and 6) showed that 
Langmuir model gives a better fit to the 
adsorption isotherms - in the investigated 
concentration range - than that of the 
Freundlich model. 
 

Figure 5: Langmuir isotherm at 25ºC. Adsorbent 
to solution ratio: 0.1g/10mL; contact time= 10 min 

 

Figure 6: Freundlich isotherm at 25ºC. Adsorbent 
to solution ratio: 0.1g/10mL; contact time= 10 min 

 

3.5. Kinetic analysis 
In order to gain a better understanding of 
the adsorption process, the kinetic models 
are used to test the experimental data. 
Adsorption kinetics were investigated by 
applying pseudo-first order, pseudo-second 
order and intra particle models. 
The pseudo-first order model indicates that 
adsorption of adsorbate is a diffusion based 
process. The linearized form of pseudo-first 
order Lagergren model is [25]: 

t
k

qqq ete 303/2
log)log( 1   

    where qt (mg /g) is the amount of 
adsorbed DBT on the adsorbent at time t 
(min), k1 (min-1) is the rate constant of the 
pseudo-first order adsorption and qe (mg/g) 
is the equilibrium sorption uptake. 
Consistency of the experimental data with 
the pseudo-second order kinetic model 
indicated that adsorption is controlled by 
chemical process. The equation of pseudo-
second order model is [25]: 

ee q

t

qkq

t


2
2

1  

    where k2 (g/mg.min) is the rate constant 
of pseudo-second order adsorption. qe and k 
can be determined by plotting t/q versus t . 
The intra particle diffusion model which is 
written as: 
q=Ki t

1/2+C 
 

    Where Ki is the intra particle diffusion 
rate constant (mg g-1 min-0.5) and C (mg g-1) 
is a constant related to the adsorption 
energy that is also examined [26]. Intra 
particle diffusion model constants can be 
determined as slope and intercept of linear 
plot of q versus t1/2, respectively. If the 
regression of q versus t1/2 is linear and 
passes through the origin, then intra particle 
diffusion is the proper rate-limiting step. 
Because of the regression for intra particle 
diffusion, the model was not linear and did 
not pass through the origin (table 3), 
suggesting that the adsorption is not 
influenced by the intra particle diffusion and 
that it was not the rate controlling step. 
    The results of kinetic analysis are given 
in (Table 3). According to such data, the 
equilibrium sorption uptake value calculated 
from pseudo-first order model differ 
substantially from measured adsorption 
capacity while the qe value attained from 
pseudo-second order model are only slightly 
lower. This result together with the fact that 
the points on the graphic interpretation of 
pseudo-second order model lies on the 
straight line and the correlation coefficient, 
R2  value  is  close  to  1;  suggest  that  the  

y = 0.008x + 0.259
R² = 0.998
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kinetic of adsorption of DBT on Pb-Y 
zeolite is described by the pseudo- second 
order model.  
 

Table 3: Kinetic parameters of adsorption 

pseudo-first 
order 

  K1                         qe                   R
2

     

0.021           0.079       0.2908 

pseudo-
second order 

 K2                  qe                   R
2 

4.07             7.93         0.9998 

intra particle 
 Ki                           C             R2 

0.0485         7.58          0.1449 

 
Table 4: Experimental and calculated values of qe 

and the relative error of kinetic models 
 qe (exp) qe (cal) RE% 
pseudo-first 
order 

7.94 0.079 -99.005  

pseudo-second 
order 

7.94 7.93 -0.12 

 

3.6. Comparison of accuracy of models 
    The above two mentioned kinetic models 
were used for modeling the adsorption 
kinetic of dibenzothiophene ono Pb-Y 
zeolite. Statistical parameters such as the 
correlation coefficient (r2) and relative error 
(RE) are evaluated as guiding parameters to 
find out the condition of best fit. The 
relative error is defined as: 
RE= qcal- qexp / qexp ×100 
 

    Where qexp and qcal  are the experimental 
and calculated values of q at equilibration 
time respectively. The experimental value 
of qe, calculated value of qe and the relative 
error (RE) for both models are listed in 
Table 4. The low relative error for pseudo- 
second order model indicates that this 

model is a suitable model for description of 
adsorption kinetic. 
 

4. Conclusion 
    In the present study, the adsorptive 
removal of DBT from organic medium by 
Pb-Y zeolite was systematically studied. 
The effects of experimental parameters such 
as initial DBT concentration and adsorption 
time were investigated and optimized. The 
optimal conditions were recognized as: 
contact time of 10 min and DBT 
concentration of 1500 mg.L-1. The 
maximum adsorption capacity of 108.77 mg 
S.g-1 was obtained. The large adsorption 
capacity of the adsorbent was attributed to 
the high specific surface area of zeolite 
(Table 5). 
    Equilibrium studies showed that the 
experimental data were fitted to Lungmuir 
isotherm. The equilibrium adsorbent can be 
effectively regenerated by air-calcinations at 
450°C. As the reaction kinetic was fast and 
desirable adsorption capacity was obtained, 
it is assumed that the prepared adsorbent 
could be used for removal of DBT at an 
ambient temperature and pressure. 
 

Table 5: Surface area and pore volume data of 
ion exchanged Y zeolite 

sample 
Surface area          Pore volume 

(m2/g)                     (ml/g) 

HY 546                               0.3045 

NaY 540                               0.3021 

FeY 529                               0.2982 

CoY 532                               02986 

NiY 528                               0.2974 

CuY 530                               0.2983 

PdY 500                               0.2870 
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