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ABSTRACT: The computation of structural failure probability is vital importance in the 

reliability analysis and may be carried out on the basis of the first-order reliability method 

using various mathematical iterative approaches such as Hasofer-Lind and Rackwitz-

Fiessler (HL-RF). This method may not converge in complicated problems and nonlinear 

limit state functions, which usually shows itself in the form of periodic, bifurcation and 

chaos solution. In this paper, the HL-RF method has been improved based on the relaxed 

method to overcome these numerical instabilities. An appropriate relaxed coefficient has 

been defined, ranging between 0 and 1, to enhance the HL-RF method. This coefficient can 

be computed using the information from the new and previous iterations of the HL-RF 

algorithm based on second-order fitting. Capability, robustness and efficiency of the 

proposed algorithm have been studied by results of several examples compared to the HL-

RF. Results illustrated that the proposed method is more efficient and robust in the 

computation of the failure probability compared to the HL-RF method. 

 

Keywords: Failure Probability, First-Order Reliability Method, HL-RF Method, Relaxed 

Method, Reliability Index. 

 

 

INTRODUCTION 

 

In engineering practices, structural 

performances may exhibit uncertainties in 

relation to material properties, 

environmental loads and geometrical 

dimensions. These uncertainties in structural 

systems are modelled as design random 

variables; the probabilistic reliability theory 

can provide a powerful methodology to take 

into account those uncertainties in evaluating 

failure probability. Physical phenomena can 

be subjected to reliability analysis with the 

help of an idealized mathematical relation 

between resistance (R) and load (S) (Nowak 

and Collins, 2000). These mathematical 

models are known as limit state or 

performance functions (G=R-S). Such a 

function is a combination of basic random 

variables that may be determined based on 

the function itself and the failure probability 

can be calculated by (Luo et al., 2009):  
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where, 
f  is the structural failure probability, 

 UG  is the limit state function in the 

normal standard space, 0)( Xg  defines the 

failure region of the structural components 

(S>R) and Xf  is the Joint Probability 

Density Function (JPDF) for the basic 

random variables X. 

In probabilistic theories, a closed form 

solution of the above equation is less likely 

since it involves multiple integrals in 

addition to the JPDFs of the random 

variables for general cases (Santosh et al., 

2006). Approximate solutions of the failure 

probability for this type of problem are 

found by simulation methods such as: the 

Monte Carlo simulation, the importance 

sampling and the quasi-Monte Carlo (Latin 

hypercube sampling) simulation (Nowak and 

Collins, 2000; Choi et al., 2007). These 

methods are time-consuming in estimating 

low failure probabilities due to a high 

number of simulations undertaken (Naess et 

al., 2009). Moment methods such as: the 

First-Order Second-Moment (FOSM), the 

Second-Order Second-Moment (SOSM) and 

the Mean Value First-Order Second-Moment 

method (MVFOSM) are for the estimation 

of failure probability of the explicit limit 

state functions based on the reliability index 

(Choi et al., 2007; Naess et al., 2009). 
 

   
G

G

f



  ,1  (2) 

 

where,   is the standard normal cumulative 

distribution function,   is the reliability 

index, G  and G  are mean and standard 

deviation of the limit state function G, 

respectively. The moment methods do not 

consider an appropriate probability density 

function for the basic random variables 

(Nowak and Collins, 2000). Mathematical 

iterative methods e.g. the First-order 

reliability method (FORM) have been 

established for estimation of failure 

probability (Choi et al., 2007; Hasofer and 

Lind, 1974). The main idea of the FORM 

method was established by Hasofer and Lind 

(HL), who proposed an appropriate method 

for the determination of the safety index. In 

this method, the safety index is the objective 

of a constrained optimization problem in the 

standard normal space, which is calculate by 

the following equation (Nowak and Collins, 

2000; Elegbede, 2005). 
 

0)(

).(min 2/1





UGUtosubjected

UU T
 (3) 

 

where, U is the standard normal variable 

with the mean equal to zero and the standard 

deviation equal to one.  
 

X

XX
U
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where, X  and X  are the mean and the 

standard deviation of the basic random 

variable X respectively.  

According to Equation 3, the acceptable 

probabilistic determination of the safety 

index is obtained when a point can be 

approximated on the limit state surface that 

has the maximum likelihood probability of 

failure (most probable point) (Yang, 2010; 

Santosh et al., 2006). This point specifies the 

minimum distance from the origin in the 

standard normal space to the limit state 

surface; this distance defines the reliability 

index and it is computed as:  
 

2/1** ).( UU
T

  (5) 

 

in which *U  is the design point of the 

problem considering Eq. 3. The difficulty 

with the HL-RF method for the reliability 

analysis of the FORM in some nonlinear and 

complex performance functions is the 

numerical instability such as; periodic, 

bifurcation and chaos (Yang, 2010). 



Civil Engineering Infrastructures Journal, 46(1): 69 – 80, June 2013 

71 

 

In order to improve the efficiency and 

robustness of the HL–RF method, certain 

modifications have been suggested by 

several researchers (Luo et al., 2009; Liu and 

Der Kiureghian, 1991; Lee et al., 2002; 

Yang, 2010). Liu and Kiureghian (1991) 

introduced a merit function, which monitors 

the convergence of the sequence and at each 

step and the new iteration point is selected 

by a line search along the direction vector 

(Liu and Der Kiureghian, 1991; Yang, 2010; 

Santosh et al., 2006). Recently, Santosh et 

al. (2006) have improved the modified HL-

RF method by selecting an appropriate 

stepsize based on Armijo rules. Wang and 

Grandhi (1994, 1996) improved the known 

HL-RF method based on intervening 

variables and considering the adaptive 

nonlinear two-point approximation of the 

limit state function. Their algorithm yields 

stable results in problems with high 

nonlinearity (Wang and Grandhi, 1996), but 

if the performance function has several local 

minimum points, this method may converge 

to the local minimum point (Liu and Der 

Kiureghian, 1991; Yang, 2010). Lee et al. 

(2002) enhanced the HL-RF algorithm by 

eliminating its iteration zigzags in each step, 

based on the results of the new and previous 

design vector. Elegbede (2005) established 

the particle swarm optimization algorithm to 

compute the safety index. He considered 

random variables with a normal distribution 

density function in his proposed approach. 

Yang et al. (2006) has analyzed the FORM 

algorithm with the help of a nonlinear 

transformation in the form of a discrete 

dynamic system using the chaos theory. 

Yang (2010) has performed the reliability 

analysis of several examples using a stability 

transformation approach. Their algorithm 

converges very slowly in complicated 

problems with high-order nonlinearity. 

In summary, all these efforts have been 

made to develop an efficient and robust 

algorithm for structural reliability analysis. 

In this paper, the HL-RF method has been 

introduced first. Then, according to the 

presented HL-RF algorithm, a new method 

has been developed to enhance it using the 

relaxed approach. An appropriate relaxed 

coefficient was then established on the basis 

of a quadratic fitting, using two successive 

design points information. The efficiency, 

robustness and capability of the new 

proposed algorithm have been evaluated 

using a number of examples. 

 

THE HL-RF ALGORITHM 

 

Hasofer and Lind (1974) proposed a new 

iterative approach for the first-order 

reliability analysis which approximates the 

hypersurface using the linearization of the 

LSF at the most probable failure point on the 

failure surface. It is based on Taylor’s series 

expansion of the limit state function at the 

design point. 
 

0))(()()( **

1
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T
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where, )( kUG  is the gradient vector of the 

limit state function in the normal standard 

space at the design point 
T

nuGuGuGUG ]/,...,/,/[)( 21  . 

Rearranging the above relation, the new 

design vector will be computed as: 
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The HL algorithm could consider normal 

random variables for the determination of 

the MPP point. However, many structural 

reliability problems involve non-normal 

random variables. There are many methods 

available for conducting the transformations, 

such as Rosenblatt (Rackwitz and Fiessler, 

1978; Santosh et al., 2006). Rackwitz and 

Fiessler (1978) extended algorithm 

developed by the Hasofer and Lind 
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algorithm in order to include the distribution 

information of the basic random variables. 

The extended algorithm could consider non-

normal basic random variables with a simple 

and approximate transformation. Hence, Eq. 

4 can be written as follows (Rackwitz and 

Fiessler, 1978; Santosh et al., 2006): 
 

e

X

e

XX
U



 )( 
  (8) 

 

where, e

x  and e

x  are the equivalent mean 

and the standard deviation respectively, 

which are given as (Rackwitz and Fiessler, 

1978; Santosh et al., 2006; Choi et al., 

2007): 
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Based on the above approximation 

equations, the computational steps can be 

easily implemented for the safety index 

calculation into a computer program as 

summarized below: 

1. Define the limit state function 0)( XG , 

choose a feasible initial design point 

 T

noX  ,...,,, 321 and set k=0  

2. Normalize the basic random variables 

(the mean and standard deviation of the 

variable are zero and unit, respectively) 

using the transformation relations given in 

Eqs. (8-10). 

3. Calculate the gradient vector of the limit-

state function (
*

)(
)( *

kU

i

k
u

UG
UG




 ) and 

compute the corresponding value of the limit 

state function at the design point ( )( *

kUG ). 

4. Determine the new value of the design 

vector according to Eq. (7). 

5. Compute the value of the reliability index 

in the form 2/1

111 )(   k

T

kk UU  

6. If 6

1 10

  kk   then stop. 

7. Set k=k+1 and return to step 2. 

This method may not converge in some 

nonlinear problems. Therefore, some 

modifications have been suggested to 

improve its stability in the following section.  

 

ENHANCED HL-RF (EHL-RF) 

ALGORITHM 

 

The Lagrangian associated with the 

optimization relation, Eq. (3), is defined by: 
 

)(
2

.
)( UG

UU
Uf

T

  (11) 

 

where, f(U) is the unconstrained reliability 

function and   is the penalty coefficient. 

The penalty coefficient for a local minimum 

point of the LSF must satisfy 

0)(  UGU   and 0)( UG . Therefore 

the penalty coefficient is computed from the 

following equation:  
 

2
)(

).(

UG

UUGT




  (12) 

 

The calculation of   has been developed 

by Liu and Kiureghian which further details 

on that can be found in (Liu and Der 

Kiureghian, 1991). According to the 

deviational methods and the HL-RF method, 

the differential design vector is written as 

follows: 
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(13) 

 

 

where, kd  is the search direction vector in 

optimization problems and its value is the 

counterpart of the reliability function 

gradient vector of Eq. (11) ( )( *

1 kk Ufd ) 

(Rao, 1996).  
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The new design point can be iteratively 

computed considering the attained design 

vector from the HL-RF method and its 

variations (based on the search direction 

vector and calculating the relaxed coefficient 

( k )) as: 

 

])(
)()(

)()(
[ **

**

***

*

1

kk

kk

T

kkk

T

kk

kkkk

UUG
UGUG

UGUUG
U

dUU













 

 

 

(14) 

 

in which, k is the iteration number and k  is 

known as the relaxed coefficient at the k
th

 

iteration (a real and positive number selected 

between zero and one). If the relaxed 

coefficient is selected equal to one, the 

obtained algorithm will conform to the HL-

RF algorithm.  

The determination of the relaxed 

coefficient is vital in reliability problems. 

So, we may first compute the value of 

)( *

kUf  and k

T

k dd .1  for 0k , and the 

value of )( *

1kUf  for 1k . Then, a 

second-order function may be fitted for the 

computation of the optimum relaxed 

coefficient as follows: 
 

2)(  CBAf   (15) 

 

By expanding Taylor’s series of the 

objective function, considering Eqs. (11) and 

(13), we will have 
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 (16) 

in which,  H  is the Hessian matrix 

(
ji

ji
uu

f
H






2

,
) (Rao, 1996; Yang et al. 

2006). Assuming 0  Eqs. (15) and (16), 

parameter A can be found as follows: 
 

AUff k  )()0( *  (17) 

 

Nevertheless, since the relaxed coefficient 

has been optimized for the previous 

iteration, the differentiation of Eq. (16) with 

respect to   should satisfy the differential 

of Eq. (15). This is as follows: 
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By Equating Eqs. (18) and (19), 

parameter B is computed as follows: 
 

k

T

k ddB .1  (20) 

 

Eq. (14) shows that for 1  the new 

value of the design point is written as
kk dU * , 

so Eq. (15) can be written as:  
 

)()1( kk dUfCBAf  *  (21) 

 

Substituting Eqs. (17) and (20) in Eq. 

(21), parameter C can be computed as 
 

k

T

kkkk ddUfdUfC .**
1)()(   (22) 

 

By inserting A, B and C into Eq. (15), the 

following equation is obtained: 
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The optimum relaxed coefficient in the 

proposed method is the extermum of Eq. 

(15), so it can be computed as: 
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(24) 

 

where, kd  is the search direction vector (Eq. 

(13)) and )( kUf *  is the value of the 

reliability function at the design point. 

According to Eq. (11) it can be computed 

from: 
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Furthermore, the value of )( kk dUf *  is 

proposed by: 
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in which *

1kU  is the new design point, 

which is calculated using the HL-RF 

algorithm. Limiting the relaxed coefficient 

between zero and one ( 10  k ) prevents 

it from getting large and negative amounts, 

therefore the stable results can be obtained 

using the proposed method. In this state, the 

periodic-oscillation convergence of the 

iterative procedure can be prevented. 

According to the above, the new proposed 

algorithm is written as follows:  

1. Define the limit state function 0)( XG , 

choose parameter 10  , 0  and set k=0; 

given the initial design point. 

2. Normalize the basic random variables 

using the transformation relations given in 

Eqs. (8-10). (mean and standard deviation of 

variable are zero and unit respectively). 

3. Calculate the gradient vector of the limit-

state function (
*

)(
)( *

kU

i

k
u

UG
UG




 ) and 

compute the corresponding value of the limit 

state function at the design point ( )( *

kUG ). 

4. Determine the new value of the design 

vector in terms of Eq. (7). 

5. Compute the search direction vector (dk) 

according to Eq. (13). 

6. If k>1 then compute the relaxed 

coefficient based on Eqs. (24 – 26). 

7. Determine the new design vector on the 

basis of Eq. (14). 

8. Calculate the reliability index in the form 
2/1

111 )(   k

T

kk UU  

9. If 6

1 10

  kk   then stop. 

10. Set k=k+1 and return to Step 2.  

 

ILLUSTRATIVE EXAMPLES  

 

Considering the previous sections, the 

possibility of applying the HL-RF and the 

new proposed algorithms (EHL-RF) in the 

reliability analysis of structures has been 

investigated. These two algorithms are 

coded into a computer program so that their 

performances can be further investigated 

through numerical examples. Five numerical 

examples including the mathematical 

problems with nonlinear performance 

functions and the structural problems with 

complex LSF are selected from the literature 

to demonstrate the efficiency and robustness 

of the EHL-RF method. Numerical examples 

which are widely used to investigate the 

performance of a new algorithm in reliability 

analysis were selected with a wide range of 

variables and limit state function to cover 

most area of the problems. The numbers of 

)(UG computations (i.e. central finite 

difference), CPU run time required by each 

method to converge and the reliability index 

are selected as measures for comparison in 

these algorithms. 
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Example 1 

A high nonlinear mathematical function 

A high nonlinear performance function 

has been selected in this example with the 

following limit state function (Wang and 

Grandhi, 1994): 
 

202 4

2

4

11  xxG  (27) 

 

where, 1x  and 2x  are the normally-

distributed independent random variables 

whose means and standard deviations are 

1021    and 521  , respectively. 

The reliability index is equal to 2.3654 for 

this example, which is extracted from (Wang 

and Grandhi, 1994). Figure 1 shows the 

iterative history of the proposed and HL-RF 

algorithms. This example has periodically 

converged to two- design points using the 

HL-RF algorithm and yielded a safety index, 

(), of 2.365373 after 67 iterations through 

the reliability analysis of the proposed 

algorithm. This result shows a very close 

agreement with the result found in (Wang 

and Grandhi, 1994).  
 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Iterative history comparison of Example 1. 
 

Example 2 

A Nonlinear Mathematical Function 
The nonlinear limit state function 

presented for this example is in the 

following form (Wang and Grandhi, 1996): 
 

183

22

2

1

3

12  xxxxG  (28) 

where, 1x  and 2x  are the normally-

distributed independent random variables 

with means 101   and 9.92  , 

respectively and standard deviations 

521  .  

In this example, the reliability index is 

extracted from (Wang and Grandhi, 1996) 

with a value of 2.2983. Figure 2 illustrates 

the convergence history of the EHL-RF and 

HL-RF method for this example. As seen, 

the HL-RF algorithm is not a suitable and 

stable solution, but the proposed algorithm 

needs 38 iterations to attain the stable 

solution. In this state, the reliability index 

equals 2.298243, which is basically in 

agreement with the figure presented in 

(Wang and Grandhi, 1994). This example 

clearly indicates the robustness of the new 

proposed algorithm in the reliability analysis 

with high nonlinearity compared with the 

HL-RF algorithm.  

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

Fig. 2. Iterative history comparison of Example 2. 

 

Example 3 

A Complex Non-Linear Function 
A complex problem which is highly non-

linear performance function and has non-

normal variables is taken from (Liu and Der 

Kiureghian, 1991; Yang, 2010). This 

problem is taken from the reliability analysis 

of a pipeline where the limit state surface 

was generated by response-surface fitting. 
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The performance function takes the 

following form: 

 

2
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(29) 

 

where, 1x  to 4x  are statistically independent 

basic random variables. The random variable 

1x  has the type-II largest value distribution 

with a mean of 10 and standard deviation of 

5. 2x  and 3x  are the normally-distributed 

random variables with the means of 25 and 

0.8, and standard deviations of 5 and 0.2, 

respectively. The random variable 4x  

follows a lognormal distribution density 

function with a mean of 0.0625 and standard 

deviation of 0.0625.  

Based on the results extracted from (Liu 

and Der Kiureghian, 1991) for this example, 

the reliability index is equal to 1.36 and the 

design vector is X
*
= [15.09, 25.027, 0.8653, 

0.03582]. This example has been recently 

analyzed by Yang (2010) so that the 

converged results, after 285 iterations, have 

given a safety index equal of 1.3304 and a 

design vector X
*
= [14.906, 25.067, 0.8995, 

0.04606]. Using the new proposed algorithm 

after 33 iterations, the converged values of 

the reliability index and the design vector 

have respectively been =1.33053 and    

X
*
= [14.905, 25.067, 0.85956, 0.046061]. 

The convergence history of this example has 

shown in Figure 3. In this example, it is 

evident that the HL-RF algorithm has 

yielded the periodic-2 solutions i.e. 

{1.04958, 1.15364}, but the reliability 

analysis of the new proposed algorithm 

converged to a stable solution of 1.33053, 

which is in a good agreement with the 

results obtained by (Yang, 2010).   
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3. Iterative history comparison of Example 3. 
 

Example 4 

A Conical Structure 
Figure 4 shows the geometrical and 

mechanical features of a conical structure 

under a compressive axial load P, and a 

bending moment M. The main mechanisms 

of the structure failure are the loss of 

strength and buckling due to instability. 

Hence, the buckling criterion is considered 

as the failure mode for this structure as 

shown in the following mathematical 

equation (Elegbede, 2005): 

 

t

M P



r1 r2

-

 
 

Fig. 4. The conical structure of Example 4 

(Elegbede, 2005). 
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P  (30) 

 

where, P and M are the compressive axial 

load and bending moment due to external 

loading and Pcr and Mcr are the critical axial 

load and bending moment (for buckling) 

respectively (Elegbede, 2005). 
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where,   and   are coefficients to correlate 

between theoretical and experimental results 

of P and M, which are considered to be 0.33 

and 0.41, respectively in this example 

(Elegbede, 2005), and v is Poisson's ratio, 

which is 0.3.  

Based on Eqs. (33-35), the limit state 

function for this structure can be presented 

in the following form (Elegbede, 2005): 
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
  (33) 

 

This problem consists of six normal 

independent basic random variables whose 

statistical characteristics are listed in Table 

1. 

Extracted from (Elegbede, 2005), the 

reliability index for this problem is about 

4.883. Based on the reliability analysis 

undertaken using the proposed method, the 

converged safety index and design vector are 

estimated to be = 4.79429 and X
*
= [63697, 

0.002, 0.8281, 0.8874, 90064, 74247], 

respectively. Figure 5 shows a comparison 

on the iterative history. It also indicates that 

the HL-RF algorithm has not converged to a 

final solution given the tolerance level 

defined for convergence in this example (i.e. 
6

1 10

  kk  ). The proposed algorithm 

indicates a stable and accurate solution 

compared with the HL-RF method. 
 

Table. 1.  Basic random variables for Example 4. 

Coefficient of Variation Mean Distribution Description Variables 

0.05 70000 normal Young's modulus (MPa) E 

0.05 0.0025 normal Thickness(m) t 
0.02 0.524 normal Slop angle (rad)  

0.025 0.9 normal Internal radius(m) 
1r 

0.08 80000 normal Bending moment(N-m) M 

0.08 70000 normal Axial load(N) P 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 5. Iterative history comparison of Example 4. 
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Example 5 

A 10-Bar Truss 
This example studies a 10-bar truss 

structure as shown in Figure 6. The vertical, 

horizontal and diagonal truss members are 

aluminum rods with three different cross-

sectional areas A1, A2 and A3, respectively. In 

this structure, the diagonal members do not 

intersect at the intersection point. The 

structure is subjected to an external load, P, 

as shown in Figure 6. The performance 

function for the vertical displacement at a 

specified point (see Figure 6 for the location 

of the point) on the truss structure with 

allowable displacement can be written (Choi 

et al., 2007; Naess et al., 2009): 

 
 

 

 

 
 

 

 

 

 

 
 

 
Fig. 6. The 10-bar truss structure (Naess et al., 2009). 
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where,  
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


  

and E is the Young's module. 

The random variable B has been 

introduced to account for model 

uncertainties in this example. The basic 

random variables A1, A2, A3, B, P and E have 

been assumed to be independent and their 

statistical properties are summarized in 

Table 2. L and d0 are deterministic variables 

having values equal to 0.1 and 9 meter 

respectively. The failure probability 

calculated using the reliability analysis was 

3.5 × 10
-6

 (Naess et al., 2009); and the 

reliability index was estimated to be about 

4.4937 using Monte Carlo simulation with 

1.7 × 10
9
 samples. 

 
Table. 2.  Basic random variables for Example 5. 

Coefficient of Variation Mean Distribution Variable 

0.05 m
2
 10

-2
 normal A1 

0.05 m
2
 10

-3
×1.5 normal A2 

0.05 m
2
 10

-3
×6 normal A3 

0.10 1 normal B 

0.10 N 10
5
×2.5 Gumbel P 

0.05 MPa 10
4
×6.9 Log-normal E 
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Figure 7 shows the comparison of 

iterative history of converged reliability 

indices for both methods in this example. 

Both methods, converged to the reliability 

indices of 4.30064 after 28 iterations and 

4.29946 after 20 iterations using the HL-RF 

and EHL-RF algorithms, respectively. This 

implies that the new method is more 

efficient than the HL-RF method. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 7. Iterative history comparison of Example 5. 
 

 

 

DISCUSSION 

 

The results of this study revealed that an 

appropriate relaxed coefficient in the EHL-

RF method not only could improve the 

efficiency of the HL-RF algorithm but also 

made the proposed algorithm more robust 

and stable. In this study, five examples were 

solved using the EHL-RF and the HL-RF 

algorithm. The results obtained using both 

algorithms for all examples along with the 

CPU time required to converge have been 

presented in Table 3. The results showed 

that the HL–RF iterative algorithm is 

diverged in most engineering nonlinear 

problems, while the EHL-RF method can 

offer a robust, efficient solution so that the 

proposed relaxed method can control the 

numerical instability of the HL-RF iterative 

algorithm. From a practical point of view, 

the proposed method does not require a prior 

knowledge of the LSF value and gradient 

vector of the HL-RF results at the new and 

the previous iterations.  

 
Table. 3.  Comparison of the convergence for the EHL-RF and HL-RF. 

Example 

HL-RF EHL-RF 
Reference 

Reliability Index 
Reliability 

index 

Run time 

(Sec) 

No. of 

Iterations 

Reliability 

index 

Run time 

(Sec) 

No. of 

Iterations 

1 not converged failed ---- 2.36537 2.36 67 
2.3654 (Wang and 

Grandhi, 1994) 

2 not converged failed ---- 2.29824 0.58 38 
2.2983 (Wang and 

Grandhi, 1996) 

3 not converged failed ---- 1.33053 0.24 33 

1.36 (Liu and Der 

Kiureghian, 1991) 

1.3304 (Yang, 2010) 

4 not converged failed ---- 4.79429 0.58 27 
4.883 (Elegbede, 

2005) 

5 4.30064 1.415 28 4.29946 0.602 20 
4.4937 (Naess et al., 

2009) 
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CONCLUSIONS 

 

In this paper, a new algorithm has been 

proposed to enhance the capability of the 

HL-RF method for the determination of the 

reliability index. This new algorithm is 

based on a combination of the HL-RF 

algorithm and the relaxed method that 

defines an appropriate relaxed coefficient. 

The results showed that it works in such a 

way that it not only guarantees the numerical 

stability, but also, in some cases, it decreases 

the number of iterations. In addition, it is 

more efficient, robust and stable than the 

HL-RF method and has acceptable 

convergence for complex limit state 

functions and complicated high nonlinear 

performance functions in structural 

reliability analyses. In such problems, the 

proposed method outperforms the HL-RF 

method and it can be recommended as a 

general method for reliability analysis of 

structures as well as a vast range of 

reliability problems. This method is similar 

to other common reliability that methods 

with an exception that can include any type 

of the modified HL-RF methods. The main 

difference between this and the other 

modified HL-RF methods is that it 

establishes an appropriate relaxed coefficient 

obtained from the results of the new and the 

previous iterations. The choice of an 

appropriate relaxed coefficient in the 

proposed algorithm considerably increased 

its robustness compared with the HL-RF 

method. 
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