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ABSTRACT: An infinitely long hollow cylinder containing isotropic linear elastic 

materials is considered to be under the effect of arbitrary boundary stress and thermal 

condition. The two-dimensional coupled thermoelastodynamic PDEs are specified based on 

motion and energy equations, which are uncoupled using Deresiewicz-Zorski potential 

functions. The Laplace integral transform and Bessel-Fourier series are used to derive 

solutions for the potential functions, then the displacements-, stresses- and temperature-

potential relationships are used to determine displacements, stresses and temperature fields. 

It is shown that the formulation presented here is collapsed on the solution existed in the 

literature for a simpler case of axis-symmetric configuration. To solve the equation used 

and evaluate the displacements, stresses and temperature at any point and time, a numerical 

procedure is needed.  In this case, the numerical inversion method proposed by Durbin is 

applied to evaluate the inverse Laplace transforms of different functions involved in this 

paper. For numerical inversion, there exist many difficulties such as singular points in the 

integrand functions, infinite limit of the integral and the time step of integration. Finally, 

the desired functions are numerically evaluated and the results show that the boundary 

conditions are accurately satisfied. The numerical evaluations are presented graphically to 

make engineering sense for the problem involved in this paper for different cases of 

boundary conditions. The results also indicate that although the thermal induced wave 

propagates with an infinite velocity, the time lag of receiving stress waves with significant 

amplitude is not zero. The effect of thermal boundary conditions are shown to be somehow 

oscillatory, which is due to reflective boundary conditions and may be used in designing of 

such an element. 

 

Keywords: Bessel-Fourier Series, Coupled Thermoelasticity, Laplace Transform, 

Numerical Inversion, Potential Functions, Series Expansion, Singular Points. 
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INTRODUCTION 

 

The linear theories of thermoelastostatics 

and thermoelastodynamics have been the 

subject of numerous investigations for many 

years. The theory of thermoelasticity is 

mathematically analogous to the 

deformation theory of a fluid-saturated 

porous elastic material, which is often 

denoted by the theory of consolidation of 

porous media. Because of this, the solutions 

for the thermoelastodynamic equations are 

more general. Considering the coupling 

behavior in a three-dimensional space, the 

thermoelastodynamics leads to greater 

analytical complications than 

thermoelastostatics. When bodies are 

subjected to stress or thermal shock and/or 

loading with high time gradient, the 

governing equations for the initial boundary 

value problem are in the form of coupled 

thermoelastodynamic, which arises from 

coupling displacement-temperature 

equations of motion and energy equations 

(Carlson, 1972). These problems are of great 

importance in aeronautics, nuclear 

engineering and military industries.  

In the equilibrium theory, where every 

function is independent of time, body force 

analogy introduced by Duhamel in 1838 (see 

Carlson, 1972) has been used to determine 

the governing equations, which are called 

displacement-temperature equations of 

equilibrium, and equilibrium heat equation 

in elastostatic cases. In this method, a 

reduced stress and body force are substitutes 

for the actual stress and body force, 

respectively (Carlson, 1972). However, this 

is not a valid theory in 

thermoelastodynamics. Biot (1956) was the 

first, who formulated the coupled 

elastodynamics and energy equations. These 

are called displacement-temperature 

equations of motion and coupled heat 

equation, known as thermoelastodynamic 

formulations. Nowacki (1959, 1964a, 1964b) 

proposed a set of potential functions 

containing a vector function and a scalar 

function to derive the Green’s function for 

an infinite thermoelastic medium (see also 

Nowacki, 1986). Later, Nowacki (1967) 

proved the completeness of Kaliski-

Padstrigacz-Rudiger solution proposed for 

displacement-temperature equations of 

motion. Another set of complete solution for 

the displacement-temperature equations of 

motion and the coupled heat equation for 

isotropic materials was given by 

Deresiewicz and Zorski denoted as the 

Deresiewicz-Zorski solution (Deresiewicz, 

1958; Zorski, 1958; Carlson, 1972). 

There exist some mathematical 

difficulties for solving a fully coupled 

system of thermoelasticity, containing 

coupling terms in both equations of motion 

and energy balance equation. Nickell and 

Sackman (1968) presented an approximate 

solution for the coupled 

thermoelastodynamics with the aid of direct 

variational method mixed with the general 

Ritz method. McQuillen and Brull (1970) 

studied the effect of dynamic parameters 

(damping and inertia) on the solution of 

thermoelastodynamics in cylindrical shells 

using Galerkin method. Li et al. (1983) 

solved this problem for an axisymmetric 

cylinder by a finite element method in which 

spatial and time variables are discretized by 

the central explicit scheme and a time 

marching scheme, respectively. Tei-Chen et 

al. (1989) proposed a finite element model to 

deal with the transient response in an 

axisymmetric infinitely long elastic circular 

cylinder subjected to arbitrary thermal 

loadings over the cylindrical surface of the 

domain of interest by the generalized 

coupled thermoelastic theory. The method 

proposed by Tei-Chen et al. (1989) was 

based on the application of the Laplace 

transform technique, and would utilize the 

numerical inversion of a transformed 

solution to obtain a time-domain response. 



Civil Engineering Infrastructures Journal, 46(2): 107 – 123, December 2013 

109 

 

Eslami and Vahedi (1992) have considered 

the stress wave in spherical continuum due 

to a suddenly applied force using a finite 

element approach. Based on the Radon 

transform and elements of the distribution 

theory, Lykotrafitisa and Georgiadis (2003) 

have developed a procedure to obtain 

fundamental thermoelastic three-

dimensional solutions for thermal and/or 

mechanical point sources moving steadily 

over the surface of a half space. In the work 

of Lykotrafitisa and Georgiadis (2003), the 

thermal source was defined by a 

concentrated heat flux, while the mechanical 

source consisted of normal and tangential 

concentrated loads. 

The current research  deals with the 

equations of coupled thermoelastodynamic 

in a long hollow cylinder in the case of plane 

strain with arbitrary traction or thermal 

boundary conditions applied at inside or/and 

outside of the cylinder. The 

thermoelastodynamic equations get 

uncoupled using the Deresiewicz-Zorski 

solution (Deresiewicz, 1958; Zorski, 1958), 

whose completeness (see, for example, 

Gurtin, 1972) is given in Carlson (1972). 

The governing equations for potential 

functions in a polar coordinate system are 

solved with the aid of Bessel-Fourier series 

in circumferential direction and Laplace 

transform with respect to time. Thus, the 

solutions in the Laplace transform domain 

are given in the form of Fourier-Bessel 

series. For validity of the solutions given 

here, they are degenerated for a simple case 

of the axisymmetric problem. Because of 

complexity of the integrands, the Laplace 

inverse theorem cannot be used analytically, 

and thus a numerical procedure should be 

used. After a detailed investigation of 

different methods for the numerical 

evaluation of inverse Laplace transform 

listed in Cohen (2007), the numerical 

approach proposed by Dubrin (1973) is used 

in this treatment. To have a deep 

understanding of the physical phenomena 

considered here, some illustrations for 

displacements, stresses and changes of 

temperature are given in this paper.  

 

MATHEMATICAL MODEL AND THE 

SOLUTION 

 

Consider a body B in the form of a hollow 

long cylinder of inner radius   and outer 

radius    containing isotropic linear elastic 

materials to be regular in the sense of 

Kellogg (1953), (see also Gurtin, 1972) at 

time t in the time interval  , where   can be 

infinite. In the absence of body force and 

heat source, the classical displacement-

temperature equations of motion and the 

coupled heat equation in the linear isotropic 

thermoelastic material take the following 

form (Carlson, 1972):   

 
2 ( ) ( ) T           u u u  (1) 

2 1
0uT T 


      (2) 

 

where u  is the displacement vector, T the 

change of temperature with respect to the 

ambient temperature,   and   the Lame’s 

constants,  the mass density,  the thermal 

diffusivity, and andare the operators of 

gradient and divergence, respectively. In this 

equation, the superscript dot is used for time 

derivatives. In Eqs. (1) and (2) the 

parameters and are defined as: 

 

tt k 3)23(  ,          

T T

c K

 


 
  , 

(3) 

 

where t  is the thermal expansion 

coefficient, c  the heat capacity, K c   the 

thermal conductivity, and k  is the bulk 

modulus. In Eq. (3), T  is a reference 
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temperature. To avoid any difficulty in 

dealing with the coupled partial differential 

equations in Eqs. (1) and (2),  Deresiewicz-

Zorski (Deresiewicz, 1958; Zorski, 1958) 

proposed a general representation using one 

scalar and one vector potential function for 

solving thermoelastodynamic initial-

boundary value problems in the isotropic 

materials. It degenerates to the Helmholtz 

decomposition in the elastodyamics. Thus, 

considering the scalar filed   of class 34,C  

and the vector filed ψ  of class 23,C  on 

B ),(
0

0 t , the displacement and temperature 

fields are given by:  

 
2

2

2 2

1

2 1
, T

c t

  
     

 
u ψ

 
 


 (4) 

 

where 

2

2

2 2

2

1

c t

 
   

 
ψ 0  (5) 

2

2 2 2

2 2

1

1 1
0

2t c t t


 

  

     
         

      

 

 (6) 

 

in which 
1

c and 
2

c  are the longitudinal and 

shear wave velocities, which are define as: 

 

1 2

2
,c c

  

 


   (7) 

 

and  2 2 2 2r r r r r           is the two 

dimensional Laplace operator in any plane 

perpendicular to the z-axis of the cylindrical 

coordinate system. As seen in Figure 1, the 

domain of interest is a long hollow cylinder 

of inner radius 1r  and outer radius 
2

r . A 

cylindrical coordinate system is attached to 

the domain as shown in Figure 1.    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Configuration of The Problem. 
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To proceed the solution of partial 

differential Eqs. (5) and (6), some 

dimensionless variables should be initially 

introduced: 

 

1

1 1 1

1

( , , )
ˆ ˆˆ ˆ ˆ, , ( , , ) ,

( , , ) ( , , )ˆˆ ˆˆ ˆ ˆ( , , ) , ( , , ) ,

r

r

c u r tr
r t t u r t

r r r

u r t T r t
u r t T r t

r T

  

 





 
 

 

 (8) 

 

where T  is the ambient temperature, and   

and ru  are u  the radial and tangential 

components of displacement vector. With 

the use of these dimensionless variables, the 

Laplace operator and the time derivative are 

in the form of 

 2 2 2 2 2 2

1
ˆ ˆ ˆ ˆ ˆ ˆr r r r r r            and 

1 1
t̂ r c t     , respectively. In this 

treatment, the Fourier series of a general 

function ˆ ˆˆ( , , )f r t  in the circumferential 

direction:   

 

2

0

ˆ ˆˆ ˆˆ ˆ( , , ) ( , ) ,

1ˆ ˆˆ ˆˆ ˆ( , ) ( , , ) ,
2

im

m

m

im

m

f r t f r t e

f r t f r t e d






















 


 (9) 

 

and the Laplace transform in terms of 

dimensionless time for ˆ ˆˆ( , )
m

f r t  (Sneddon, 

1951): 

 
ˆ

0

ˆ ˆ ˆˆ ˆ( ; ) ( , ) pt

m m
f r p f r t e dt


   (10) 

 

with the inverse Laplace transform:  

 
ˆ1

2
ˆ ˆˆ ˆ( , ) ( ; ) ,

i
pt

m m
ii

f r t f r p e dp




 

 
   (11) 

 

are used, where p is the Laplace transform 

parameter and 0  . Since, the boundary 

value problem is two-dimensional, ˆˆ( , , )r tψ  

has only the z-component, which is denoted 

as ˆˆ( , , )
z

r t  . By using the Fourier series and 

applying the Laplace transform with zero 

initial conditions on Eqs. (5) and (6), Bessel 

differential equations are generated so that 

their solutions are derived as: 
 





1 1

2 2

ˆ( ; )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

m

m m m m

m

im

m m m m

r p

A I r B K r

C I r D K r e









 






 

 

 (12) 

 3 3
ˆ ˆ ˆ( ; ) ( ) ( ) im

zm m m m m

m

r p E I r F K r e 
 





   (13) 

 

where 
m

I  and 
m

K  are the modified m
th

 order 

Bessel functions of the first and the second 

kind, respectively. ( )
m

A p  to ( )
m

F p  are the 

functions to be determined by the boundary 

conditions. In Eq. (13), and the parameters   

and   in Eq. (12) are the roots of 

characteristic equation which is: 
 

3

4 2 2 1 1

1 1

1
[( ) ] 0

p r c
prc p


  


      (14) 

 

Substituting the functions ˆ( ; )
m

r p  and 

ˆ ˆ( ; ) (0,0, ( ; ))
m zm

r p r pψ  in the transformed 

format of Eq. (4), the displacement 

components and the temperature are 

obtained in the Fourier-Laplace space as: 
 

 

 

 

 

 

2

1

1

1 1 1 1

1

1 1 1 1

2

1 2 1 2

2

1 2 1 2

3 1 3

ˆ( , ; )

ˆ ˆ( ) ( )
2

ˆ ˆ( ) ( )
2

ˆ ˆ( ) ( )
2

ˆ ˆ( ) ( )
2

ˆ ˆ( ) ( )
ˆ

r

m m m

m

m m m

m m m

m m m

i m

m m m m

r u r p

A I r I r

B K r K r

C I r I r

D K r K r

i m
E I r F I r e

r



 



 

 

 




 



 

 

 


  










 


 


 


 

 

 

 (15) 
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



3

2

1 11

2 2

1 3 1 3

1 3 1 3

ˆ ˆ( ) ( )
ˆ

2

ˆ( , ; )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

m m m m

m

m m m m

m m m m

i m

m m m m

im
r r

r
r u r p A I B K

C I r D K r

E I r E I r

F K r F K r e





 

 


 




  

 

  





 





 

 

 

 

 (16) 
 

 

 

 

 

2

1 0

2

1

2 1 1 2 1

2
1 2

1 1 1 1 12

2

1

2 1 1 2 1

2
1

1 1 1 1

ˆ( , ; )

ˆ ˆ ˆ( ) 2 ( ) ( )
4

ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ2

ˆ ˆ ˆ( ) 2 ( ) ( )
4

ˆ ˆ( ) ( )
ˆ ˆ2

i m

m

m m m m

m m m

m m m m

m m

r T T r p e

A I r I r I r

m
I r I r p I r

r r

B K r K r K r

m
K r K r

r





 

 

 

 



 
  

 

 
     

  


  



  


 


  


  


  


 

 

 

 

 

2

12

2

2

2 2 2 2 2

2
2 2

1 2 1 2 22

2

2

2 2 2 2 2

2
2 2

1 2 1 2 2

ˆ( )

ˆ ˆ ˆ( ) 2 ( ) ( )
4

ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ2

ˆ ˆ ˆ( ) 2 ( ) ( )
4

ˆ ˆ( ) ( )
ˆ ˆ2

m

m m m m

m m m

m m m m

m m

p K r
r

C I r I r I r

m
I r I r p I r

r r

D K r K r K r

m
K r K r p

r r

 

 

 

 

 
  

  


  



 
     

  


  



 
   

 




  


  


  


 

2
ˆ( )

m
K r







 

 (17) 

 

In addition, the stresses may be 

determined with the use of stress-

displacement-temperature relationships 

2 ( )
ij ij ij

e TT       , where 
ij
  is the 

strain tensor and 
ij

  is the Kronecker delta. 

Therefore, the non-zero stress components 

are:  
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 (21) 

 

The boundary conditions at inner and 

outer radii are considered to be in the form 

of traction and temperature conditions, 

which are more applicable especially in the 

vessel design. The following conditions are 

considered at inner radius, 
1

r r , and outer 

radius, 
2

r r , (see Figure 1).  
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 (23) 

 

where Kh11  , Kh22  , and 1h and 2h  

are the heat transfer coefficients at inner and 

outer radii, respectively. Eqs. (22) and (23) 

are thermal boundary conditions, and the 

functions 1F , 3F , 4F , and 6F  are tractions 

boundary conditions. The traction conditions 

are enough to be piecewise continuous 

functions of time on a finite interval in the 

range of ˆ 0t  .  
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Writing the boundary conditions (22) and 

(23) in the form of Fourier series in terms of 

circumferential direction and taking their 

Laplace transform, the boundary conditions 

will be obtained in a transformed space, 

where one may use the relations (17) to (21) 

to have a set of six algebraic equations for 

six unknown functions ( )
m

A p  to ( )
m

F p . By 

solving these equations and using the results 

in the relations (15) to (21), one may obtain 

the displacements, stresses and temperature 

in the Laplace domain. By virtue of the 

theorem of inverse Laplace transform, one 

may write the displacements, stresses and 

temperature in the form of line integrals as 

indicated in Eq. (11).  

In cases where the boundary conditions 

are independent from  , resulting in an 

axisymmetric situation, the unknown 

functions ( )
m

A p  to ( )
m

F p  for all 0m   are 

identically zero. This means that the 

unknown functions will be only the six 

functions 
0
( )A p  to 

0
( )F p , and thus the non-

vanishing displacement and stresses are: 
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where, of course, the displacement u
 and 

the stress 
r  are identically zero. In such 

cases, all functions are independent from  , 

and the boundary conditions (22) and (23) 

change to the following form: 
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The formulations (24) to (28) are exactly the 

same as the solutions given by Rahimian et 

al. (1999a, 1999b) and Li et al. (1983). 

 

NUMERICAL EVALUATIONS 

 

As indicated in Eqs. (9) and (10), the 

Laplace transform of the function ( )f t  is 

given as 
0

( ) ( )ptF p e f t dt



  , where p is 

generally a complex number and the inverse 



Civil Engineering Infrastructures Journal, 46(2): 107 – 123, December 2013 

115 

 

Laplace transform of ( )F p  is 

1
( ) ( )

2

i

pt

i

f t e F p dp
i





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 

  , where the constant 

0   is the real part of p. There exist several 

methods for numerically inverting the 

Laplace transforms (Cohen, 2007). In this 

study, the numerical method proposed by 

Dubrin (1973) is used. To do so, one may 

write the complex function ( )F p  as.  
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where   is the imaginary part of  p  i.e. 

p i   , and   is a real constant. The 

function ( )F p  may be written in the form of 

( ) ( , )F i F     . Since 0   is constant, 

the function ( , )F    may be thought as a 

function of   only. Using of the Eq. (31), 

one may recognize that the real part of 

( , )F    is an even function, while its 

imaginary part is an odd function. Since   is 

constant, one may write dp id , then 

considering these properties of the real and 

imaginary parts of ( )F p , its inverse Laplace 

transform is written as: 
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Utilizing this relation with the aid of 

trapezoidal rule, one may use the following 

series to evaluate the integrations (32) for 

the function ( )f t   (Dubrin, 1973). 
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 (33) 

 

where / T  is the integration step for 

numerical evaluation, and ( ) /te N T   is the 

error. In this relation,   should be larger 

than all the real parts of the poles of ( )F p . 

By investigating the function ( ) /te N T  , it 

is noticed that the smaller the value of   the 

smaller the error is.  

To show the validity and accuracy of the 

numerical approach selected in this study, 

some examples are considered here. To do 

so, a hollow cylinder of inner radius 

)(1.1 mr   and outer radius )(2.2 mr  , 

made of isotropic materials with  
11 21.15 10 ( / )N m    and 

10 27.7 10 ( / )N m    and the following 

properties are considered: )(7880
3m

kg
 ,

502 ( )
j

c
kg K

= , 50.2 ( )
j

K
ms K

= , 

6 1
11.7 10 ( )

t
K

   . Moreover, the reference 

temperature is considered as 300 ( )T K=o . 

By the properties given here, the coupling 

term (see Nowacki, 1986) is obtained as 
2 2(3 2 )

0.00961
( 2 )

t
T

c

  

  





, which is a large 

value in practice (Eslami and Vahedi, 1992). 

As the first example, the cylinder is 

considered to be undergone an impact 

traction at inner radius defined as 
ˆ10

1
0.003(1 )tF e  . The axis-symmetric 

traction applied in this example is 

approached to its maximum value 

approximately at time ˆ 0.6t  . This function 

was considered by Li, et al. (1983). 

     Figure 2 shows the variation of the radial 

stress, 
rr

 , tangential stress,   and the axial 
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stress, zz
  at 1

r r   versus non-dimensional 

time up to ˆ 10t  . In addition, the function 

1
ˆ( , )F t  is plotted in Figure 2 to check the 

boundary condition at 
1

r r . As illustrated in 

Figure 2, the stress boundary condition is 

satisfied in the best way. As seen, the 

tangential and axial stresses approach to a 

maximum value at a dimensionless time of 

5. Similarly, Figures 3 and 4 illustrate the 

stresses at the middle of the thickness of the 

cylinder and at the outside of the cylinder, 

respectively. As seen, there exists a very 

good agreement for the stress boundary 

condition at 
2

r r . Since the non-

dimensional time is scaled with the travel 

time of the longitudinal elastic wave through 

a distance equal to the inner radius, and the 

non-dimensional distance is scaled with the 

length equal to the inner radius, it would 

take one unit of time for the longitudinal 

wave to travel a unit distance in non-

dimensional scales (Li, et al., 1983). This 

phenomena is observed in both Figures 3 

and 4. Moreover, as expected, some wavy 

behavior is seen for different functions at the 

middle of the cylinder, which is because of 

the reflection of the stress wave from inside 

and outside walls of the cylinder. An 

illustration for temperature variations at 

different places of the cylinder, ˆ 1r  , ˆ 1.5r   

and ˆ 2r   is prepared in Figure 5. As 

expected, because of high time gradient of 

the stress boundary condition, there exist 

some changes of temperature. Moreover, the 

highest change of temperature is related to 

the middle of the cylinder, where the heat 

transfer is the least.   

In the second example, consider the same 

cylinder as used in the example one, 

however, it is under the effect of asymmetric 

traction boundary conditions as 
ˆ10

1 1
ˆ( , , ) 0.003(1 )t

rr
r t F e       , 

1 3
ˆ ˆ( , , ) 0.006sin2

r
r t F t       and 

2 6
ˆ ˆ( , , ) 0.0015sin2

r
r t F t     . In this 

example, the inside pressure shock is similar 

to the first example, and the magnitude of 

shear stress applied on the inner face is four 

times bigger than the one applied on the 

outer face. This condition is necessary for 

the cylinder in order to prevent any rigid 

body rotation. Figure 6 shows the radial 

stress, hoop stress, axial stress and the shear 

stress at 
1

r r  versus the non-dimensional 

time. As seen, the boundary conditions are 

satisfied in the best fit. Again, a big 

amplification is seen at a time far from the 

start time, which needs a special attention. 

Figure 7 shows the displacements at the 

inner side of the cylinder. A wavy shape is 

observed in tangential displacement, which 

is due to 
r . Figure 8 illustrates different 

stresses in addition to the functions 
1

F  and 

6
F .   

In the third and the last example, the 

same cylinder under both the traction and the 

thermal effect is used. The stress boundary 

condition 
ˆ2 2

1 1
ˆ ˆ( , , ) 0.015 cost

rr
r t F te       

and thermal boundary condition as 

1

1 1 1 1

ˆ( , , )
ˆ ˆ( , , ) 0.0001 ( )sin

T r t
T r t J t

r


  




   

 are considered in this example. The function 

1
ˆ( )J t  in the thermal boundary condition is 

the Bessel function of the first kind and the 

first order. Figure 9 shows the different 

stresses and the boundary conditions versus 

t̂  at ˆ 1.5r   and 0 , and Figure 10 

illustrates the same functions at ˆ 1r   and 

/ 2  . As seen, in Figure 10, the stresses 

  and zz  are equal to each other. The 

travel time of different stresses and the 

maximum values for these functions are 

clearly observed in Figure 9. Figure 11 

illustrates the variation of temperature at 

/ 2  , and at ˆ 1r   and ˆ 2r  . The change 

of temperature from inside of the cylinder to 

outside of it is clear. 
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Fig. 2. Time variation of radial, axial and hoop stress accompanied by the stress boundary condition at ˆ 1r   

(Example 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Time variation of radial, axial and hoop stress accompanied by the stress boundary condition at ˆ 1.5r   

(Example 1). 

 

 

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0 1 2 3 4 5 6 7 8 9 10

σrr

σөө

σzz

F1

t̂

ˆ 1r 
1

ˆˆ( , , )

ˆˆ( , , )

ˆˆ( , , )

ˆ( )

rr

zz

r t

r t

r t

F t



 

 

 

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0 1 2 3 4 5 6 7 8 9 10

σrr

σөө

σzz

F1

t̂

ˆ 1.5r 1

ˆˆ( , , )

ˆˆ( , , )

ˆˆ( , , )

ˆ( )

rr

zz

r t

r t

r t

F t



 

 

 



Eskandari-Ghadi, M. et al. 

118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Fig. 4. Time variation of radial, axial and hoop stress accompanied by the stress boundary condition at ˆ 2r   

(Example 1). 

 

 

 

 

 

 

 

 

Fig. 5. Time variation of temperature at different place of the cylinder (Example 1). 
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Fig. 6. Time variation of radial, axial and hoop stress accompanied by the stress boundary conditions at ˆ 1r    

(Example 2). 

 

 

 

 

 

 

 

 

Fig. 7. Time variation of radial and tangential displacements at ˆ 1r   (Example 2). 
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Fig. 8. Time variation of radial, axial and hoop stress accompanied by the stress boundary condition at ˆ 2r    

(Example 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Fig. 9. Time variation of radial, axial and hoop stress accompanied by the stress boundary condition at ˆ 1.5r   and 

0   (Example 3). 
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Fig. 10. Time variation of radial, axial and hoop stress accompanied by the stress boundary condition at ˆ 1r   and 

/ 2   (Example 3). 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 11. Time variation of change of temperature at / 2   (Example 3). 
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CONCLUSIONS 

 

A linear thermoelastic solid in the shape of a 

hollow long cylinder has been considered to 

be under the effect of an arbitrary boundary 

stress and arbitrary boundary thermal 

condition. The two-dimensional coupled 

thermoelastodynamic partial differential 

equations have been uncoupled using 

Nowacki potential functions, and the 

governing partial differential equations of 

the potential functions have been solved 

using the Laplace integral transform and 

Bessel-Fourier series. With the use of stress- 

displacement and temperature-potential 

function relationships in the Laplace-Fourier 

space, the stresses, displacements and 

temperature have been analytically 

determined. By using the Dubrin technique, 

the numerical inversion of Laplace transform 

has been carried out to obtain the stresses, 

displacements and temperature in terms of 

time. With a very precise attention paid to 

difficulties existed in the numerical 

inversion, the desired functions have been 

numerically evaluated, and associated results 

show that the boundary conditions have been 

satisfied very accurately. In general, the 

results properly revealed the effects of stress 

boundary conditions on the thermal behavior 

and vise-versa. 

 

NOMENCLATURE 

 

1r = Inner radius 

2r = Outer radius 

c = Heat capacity 

1h = Heat transfer coefficient of inner 

surrounding 

2h = Heat transfer coefficient of outer 

surrounding 

  = Lame’s constant 

  = Lame’s constant 

T  = Change of temperature 

 = Density 

x  = Diffusivity 

Q  = Heat source 

X


= Body force 

t = Coefficient of thermal expansion 

K = Thermal conductivity 

k  = Bulk modulus 

2c = Transverse wave velocity 

1c  = Longitudinal wave velocity 

T  = Ambient temperature 

ru  = Radial displacement 

u  = Tangential displacement 

rr = Radial stress 

 = Tangential stress 

zz  = Axial stress 

 r = Shearing stress 

p  = Laplace parameter 

r̂  = Nondimensional radius 

t̂  = Nondimensional time 

ˆ
r

u = Nondimensional radial displacement 

û
= Nondimensional tangential 

displacement 

  = Coupling term 
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