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ABSTRACT: Wall-jet flow is an important flow field in hydraulic engineering, and its 

applications include flow from the bottom outlet of dams and sluice gates. In this paper, the 

plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged 

Navier-Stokes equations using the standard k  turbulence closure model. This study 

aims to explore the ability of a time splitting method on a non-staggered grid in curvilinear 

coordinates for simulation of two-dimensional (2D) plane turbulent wall jets with finite 

tailwater depth. In the developed model, the kinematic free-surface boundary condition is 

solved simultaneously with the momentum and continuity equations, so that the water 

surface elevation can be obtained along with the velocity and pressure fields as part of the 

solution. 2D simulations are carried out for plane turbulent wall jets free surface in shallow 

tailwater. The comparison undertaken between numerical results and experimental 

measurements show that the numerical model can capture the velocity field and the drop in 

the water surface elevation at the gate with reasonable accuracy. 

 

Keywords: Numerical Simulation, Free Surface, Shallow Tailwater, Turbulent Flow, 

Water Jets. 

 

 

INTRODUCTION 

 

A plane wall-jet is obtained by injecting 

fluid parallel to a wall in such a way that the 

velocity of the fluid, over some distance 

from the wall, supersedes that of the ambient 

flow (Launder and Rodi, 1981). The 

structure of a turbulent wall-jet can be 

described as being composed of two 

canonical shear layers of different type. The 

inner shear layer, reaching from the wall out 

to the point of maximum streamwise 

velocity, resembles a boundary layer, while 

the outer layer, from the maximum velocity 

out to the ambient fluid, resembles a free 

shear layer. A consequence of the double 

shear layer structure is that properties such 

as momentum transfer and mixing will 

exhibit distinctively different characteristics 

and scaling properties in the two shear 

layers. 
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For a plane turbulent wall (or bed) jet 

discharged into relatively deep tailwater, if 

the shear stress on the bed is neglected, it 

has been generally assumed, as in the case of 

a plane free jet, that the momentum flux will 

be preserved (see for example, Rajaratnam, 

1976). Turbulent plane wall jets in shallow 

tailwater have important applications in 

hydraulic engineering such as submerged 

sluice gates, other types of outlets, and 

submerged hydraulic jumps that flow field 

can be treated as wall jets (Wu & 

Rajaratnam, 1995). The plane wall jet model 

has been used to analyse a number of flows 

in hydraulic structures, where the tailwater 

depth might not even be very large (Ead and 

Rajaratnam, 2002).  

Several laboratory experiments have been 

performed to study turbulent plane wall jets 

(Albertson et al., 1950; Goldschmidt & 

Eskinazi, 1966; Heskestad, 1965; 

Kotsovinos, 1975; Miller & Comings, 1957; 

Eriksson et al., 1998). Swean et al. (1989) 

studied the variation of momentum and 

volume fluxes as well as the growth of plane 

turbulent surface jets with limited depth of 

tailwater. Their results showed a momentum 

decay and a breakdown (or variation from 

that of jets in infinite ambient) in the 

velocity and length scales due to the jet 

confinement. Ead and Rajaratnam (1998, 

2001) have shown that the decay of the 

momentum flux is significant even for 

relatively large tailwater over a distance of 

300–900 slot widths. Ead and Rajaratnam 

(2002) studied plane turbulent wall jets with 

finite tailwater depth. The main objective of 

that study (Ead and Rajaratnam, 2002) was 

to show that, when the depth of tailwater is 

finite, the momentum flux of the forward 

flow in the wall jet decays appreciably with 

the distance from the nozzle. This decay is 

due to the entrainment of the return flow, 

which has negative momentum that requires 

a depression of the water surface near the 

gate housing the slot. For turbulent wall jets 

in shallow tailwater, it has been shown 

theoretically and experimentally that the 

momentum flux in the forward flow region 

of the wall jet is not preserved and the 

depression in the water surface elevation at 

the gate is created to produce the required 

pressure gradient to drive the return flow 

above the wall jet, for the jet entrainment 

(Ead and Rajaratnam, 2002).   

Field and laboratory experiments can 

provide valuable information on flow 

characteristics by measurements and flow 

visualization, but the cost to conduct these 

experiments is expensive. With the rapid 

development of numerical methods and 

advancements in computer technology, CFD 

has been widely used to study plane wall 

jets. Kechiche et al. (2004) used closure 

models called “low Reynolds number k  

models”, which are self-adapting ones using 

different damping functions, in order to 

explore the computed behaviour of a 

turbulent plane two-dimensional wall jets. 

Shojaeefard et al. (2007) compared low 

Reynolds number k  and f2  turbulence 

closure models for simulating a turbulent 

plane two-dimensional wall jets. 

Khosronejad and Rennie (2010) simulated 

unconfined and confined 3D wall-jet flow 

with low-turbulence Reynolds number k  

and standard k  turbulence closure 

models.  

Most of the current plane wall jet 

simulations in shallow tailwater in the 

literature are based on the assumption that 

the upper boundary (free surface) is 

symmetry plane. In this paper, the numerical 

algorithm presented in Javan et al. (2007) is 

employed to simulate the free surface of 

plane turbulent wall jets. It is expected that 

this Lagrangian moving grid method may 

reduce the run time of the model compared 

to the VOF method. In addition, a time 

splitting method on a non-staggered grid in 

curvilinear coordinates for simulation of 
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two-dimensional (2D) plane turbulent wall 

jets with finite tailwater depth is developed. 

In this model, the kinematic free-surface 

boundary condition is solved simultaneously 

with the momentum and continuity 

equations, so that the water surface elevation 

can be obtained along with the velocity and 

pressure fields as part of the solution. The 

non-staggered-grid method of Rhie and 

Chow couples the volume flux on the face of 

the cell to the Cartesian velocity components 

at the cell centre. In this way, both 

momentum and the continuity equations are 

enforced in the same control volume.  

 

GOVERNING EQUATIONS  

 

The flow field is determined by the 

following incompressible fluid Reynolds-

averaged continuity and momentum 

equations. The equations are written here in 

a general form:  
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where )2,1( iui  are the velocity 

components;   is the pressure divided by 

fluid density;  = fluid density. The turbulent 

stresses ij are calculated with the standard 

k  turbulence model (Rodi, 1993), which 

employs the eddy viscosity relation:  
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where the turbulent kinetic energy, k , and its 

dissipation rate,  , determining the eddy 

viscosity, t , are obtained from the 

following equations:  
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Governing equations are transformed into 

curvilinear coordinates in the strong-

conservation-law form: 
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where the flux is: 
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where 1J is the inverse of Jacobian or 

volume of the cell; mU is the volume flux 

(contravariant velocity by 1J ) normal to the 

surface of constant m ; and mnGG is called 

the “mesh skewness tensor”. These 

quantities are expressed as: 
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NUMERICAL METHOD  

 

The non-staggered-grid layout is employed. 

The pressure and the Cartesian velocity 

components are defined at the centre and the 

volume fluxes are defined at the mid-point 

of their corresponding faces of the control 

volume in the computational space (Figure 

1). An explicit time-advancement scheme is 

used for pressure term, convection and 

diffusion terms. The discretized equations 

are: 
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where m represents discrete finite 

difference operators in the computational 

space; superscripts represent the time step; 

C  represents the convective terms; iR  is the 

discrete operator for the pressure gradient 

terms; and D  is discrete operators 

representing viscous terms. They are: 
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Except for the convective terms, all the 

spatial derivatives are approximated with 

second-order central differences. The iC  

convective terms are discretized using 

Second-order Upwind (SOU) which 

calculates the face value from the nodal 

values using a quadratic upwind 

interpolation, kC and C are discretized using 

Power-law Scheme (POW). The application 

of the fractional step method (Kim & Moin, 

1985) to Eq. (13) leads to the following 

predictor-corrector solution procedure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A control volume of the non-staggered grid and mapping in the two dimensions. 
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1. Predictor  
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2. Corrector 
 

  






ii

n
i R

J

t
uu

1

*1  (20) 

 

The variable *

iu  is called the “intermediate 

velocity” which is not constrained by 

continuity. The variable  is related to 
1n by: 
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The variable   is obtained by solving 

the pressure correction Poisson equation 

which is derived directly by the following 

procedure. First, the equation is derived for 

the volume flux 1n

mU . If the corrector step of 

the fractional step method (Eq. (20)) is 

applied to compute the Cartesian velocity 

components defined on a face of the control 

volume, it achieves:  
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The above equation is different from Eq. 

(20), in that, instead of being written in the 

strong-conservation-law form, the pressure 

correct gradient is written in the chain-rule-

conservation-law form. Combining (Eq. 

(22)) with Eq. (9), the following equation is 

obtained for the estimation of 1n

mU : 
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where 1n

mU and mU are defined on the cell 

faces. mU  is obtained by the special 

interpolation presented by Rhie and Chow 

(1983) as:   
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where  n

n    is firstly computed at the 

cell centre and *

mU  and  n

n    are 

computed onto the cell faces by interpolating 
*

iu and  n

n   , respectively. By 

substituting Eq. (23) into Eq. (12), the 

pressure correct Poisson equation is obtained 

as: 
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The above derivation results in a pressure 

correct Poisson equation whose coefficients 

only consist of the mess skewness 

tensor mnGG . This elliptic equation is solved 

using a block tri-diagonal algebraic system 

of the equations.  

 

BOUNDARY CONDITION  

 

The numerical solution of the elliptic-in-

space, discretized equations requires the 

specification of the boundary conditions on 

each boundary of the calculation domain. 

The boundaries of the computational domain 

are inlet, outlet, free-surface and solid wall. 

The wall function approach is used to 

specify boundary conditions at the solid wall 

(channel bottom) in order to avoid the 

resolution of viscous sub-layer (Wu et al., 

2000). The first grid point of the wall (center 

of the control volume adjacent to the wall) is 

placed inside the logarithmic layer. At the 

inlet, known quantities are specified for the 

inflow velocity, the turbulent kinetic energy 

and the dissipation rate. At the outlet the 
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normal gradients of all dependent variables 

are set equal to zero. Since one boundary of 

the domain is located at the free surface, the 

moving-grid (Lagrangian) method was used 

for simulating the free surface (Namin et al., 

2001; Javan et al., 2007). At this free 

boundary, the kinematic and dynamic 

conditions are imposed. 

 

COMPUTATIONAL GRID AND 

MODEL SETUP  

 

In this study, two experiments investigated 

by Ead and Rajaratnam (2002) are simulated 

to evaluate the numerical model. The model 

grid used (a vertical sigma-coordinate and 

horizontal curvilinear none-orthogonal 

system) makes it possible to resolve the 

issue of the plane turbulent wall jets free 

surface in shallow tailwater. In these 

simulations, the grid system is upgraded 

after estimating the free surface elevation in 

each time step. A simple approach is 

followed where a certain number of grids 

(usually grids between bed and inlet jet 

thickness) above the bed is fixed uniformly. 

The grid numbers at inlet jet thickness are 

not affected by free surface level change. 

The rest of the grids are moved non-

uniformly to a vertical distance according to 

free surface level change calculated from the 

free surface boundary conditions.  

For the numerical simulation of the first 

series of experiments (series A) conducted 

by Ead and Rajaratnam (2002), a 7.5 m long 

computational domain is employed in order 

to avoid reflections from the outlet. In the 

upstream and downstream regions of the 

channel ( mx 30   and mx 5.73  ), the 

domain contains 301 uniform and 200 non-

uniform grids in the x direction, 

respectively. In the y-direction, the 

calculations contain 5 uniform and 46 non-

uniform grids in the inlet jet thickness and 

above it, respectively. A time step of 0.001 

second is adopted. Another series of 

experiments (series B) are conducted mainly 

to measure the drop in the water surface 

elevation at the gate. In the upstream and 

downstream regions of the channel 

( mx 10  and mx 0.21  ), the domain 

contains 101 uniform and 40 non-uniform 

grids in the x direction, respectively. In the 

y-direction, the domain contains   5 uniform 

and 26 non-uniform grids in the inlet jet 

thickness and above it, respectively. A time 

step of 0.0005 second is adopted. 

 

RESULTS AND DISCUSSION  

 

Consider a plane turbulent wall jet of 

thickness 
0b  with a flow rate per unit width 

of 0Q  entering a rectangular channel, 

tangentially on its bed as shown in Figure 2. 

Let 0U be the velocity of the jet at the inlet 

slot (or nozzle). The outlet water level is 

adjusted so that the tailwater depth, ty , is 

large enough to make the water level 

immediately downstream of the gate 

(housing the slot) horizontal (see Figure 2).  

 

 
 

 

 

 

 

 

 

 

 

Fig. 2. Definition sketch of computational domain. 
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In this study, the model is first used to 

simulate the flow field and free surface 

introduced by the first experiment of series 

A conducted by Ead and Rajaratnam (2002). 

Table 1 shows the primary details of the first 

experiment of series A (Experiment 1).  

Water-surface elevations and velocity 

fields obtained using the numerical model 

are compared with the experimental 

measurements of the first experiment of 

series A conducted by Ead and Rajaratnam 

(2002) in Figures 3 and 4.  Figure 4 shows 

the velocity profiles in the forward flows at 

several sections with x varying from 12 to 

140 cm; y is the distance above the bed. As 

shown in Figures 3 and 4, the agreement 

between measured data and numerical 

results is reasonably good. The mean relative 

error between the experimental and 

numerical results of water-surface elevations 

is about 0.85% as shown in Figure 3. Figure 

5 presents the relative errors of the 

maximum velocities in different sections. At 

the upstream sections, as seen in Figure 5, 

the relative error of numerical model 

predictions are less than 5%, but further 

downstream in section x=140 cm, this 

increases up to about 19%. As noticed in 

Figure 3, the water surface in the vicinity of 

the gate is approximately horizontal. The 

depression in the water surface elevation at 

the gate is also shown in Figure 3.  

The primary details for one experiment of 

the series B (Experiment 2) are shown in 

Table 1. The measured depression in the 

water surface elevation at the gate, from that 

of the tailwater is 4 cm at Experiment 2. 

Figure 6 shows simulated free surface 

profiles and streamline pattern for 

Experiment 2. 

The surface eddy, the depression in the 

water surface elevation at the gate and the 

rise in the region with x varying from 0.115 

to 1.12 m can be seen in Figure 6. The 

depression simulated in the water: 

Surface elevation at the gate, from that of 

the tailwater is 4.8 cm (see Figure 6), which 

is in good agreement with the measurements 

undertaken by Ead and Rajaratnam (2002). It 

appears that the depression in the water 

surface elevation at the gate is created to 

produce the required pressure gradient to 

drive the return flow above the wall jet, for 

the jet entrainment (Ead and Rajaratnam, 

2002). 

 

CONCLUSIONS 

 

Details of a numerical model to simulate 

two-dimensional (2D) plane turbulent wall 

jets with finite tailwater depth using the full 

vertical momentum equations are presented. 

The numerical model is developed on a non-

staggered grid in curvilinear coordinates. 

Using this model, water elevation, and 

pressure and velocity fields can be simulated 

simultaneously. 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3. Comparison of simulated surface elevations with the experimental measurements of Ead and Rajaratnam 

(2002) (Experiment 1). 
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Fig. 4. Comparison of simulated velocity field with the experimental measurements of Ead and Rajaratnam (2002) 

(Experiment 1). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. The relative errors of the maximum velocities in different sections. 

 

Table 1.  Primary detail of two experiments of series A and B conducted by Ead and Rajaratnam (2002). 

Experiment  mmb0   mmW   smU0  0F   mmy t  R  

1 10 446 2.5 8.0 500 25000 

2 10 446 2.5 8.0 150 25000 

In this experiment, 0b slot width; W flume width; 0U  jet velocity at the inlet slot; 0F supercritical Froude 

number at slot; ty tailwater depth; R Reynolds number. 
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Fig. 6. Simulated free surface profiles and streamline pattern (Experiment 2). 

 

Since the vertical momentum equation is 

treated in the same way as the horizontal 

momentum equation, the model can be used 

to predict free surface flows. Because both 

the flow pattern and the water elevation are 

considerable significance in 2D plane 

turbulent wall jets with finite tailwater depth, 

two numerical simulations are performed to 

verify the simulated flow pattern and water 

elevation. The comparison of the numerical 

results with the experimental measurements 

show that the numerical model can capture 

the flow pattern, typical velocity distribution 

and the drop in the water surface elevation at 

the gate with reasonable accuracy for 2D 

plane turbulent wall jets with finite tailwater 

depth. The numerical model presented here 

is practical and easy to apply, because the 

solution of flow fields at a time step is 

obtained without iteration, and only the 

values of y , x  and t  affect the accuracy 

of the free-surface and flow pattern 

simulated. Although the model presented in 

this paper is for two-dimensional flows in 

the vertical plane, its application can be 

extended to model three-dimensional flows.  
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