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ABSTRACT: Naturally occurred soil deposits inherit heterogeneity and anisotropy in their 

strength properties. The main purpose of this paper is to model the soil stratum with 

anisotropy consideration and spatially varying undrained shear strength by using random 

field theory coupled with finite difference numerical analysis to evaluate their effect on the 

bearing capacity of the shallow foundations. In the present study, undrained shear strength 

of soil is considered as a stochastic variable and is assumed to be log-normally distributed 

and spatially correlated throughout the domain. Two kinds of anisotropy of cohesion are 

incorporated in the analyses. As the first kind, mechanical anisotropy of cohesion was taken 

into account by generalizing the conventional isotropic Mohr-Coulomb failure criterion to 

the anisotropic one, and the second kind is the heterogeneity anisotropy associated with 

difference in the correlation structure of the cohesion data in the horizontal and vertical 

directions considered by a special anisotropic correlation function. The results showed the 

importance of different components of anisotropy and the stochastic variation of shear 

strength parameters. Mechanical anisotropy and the spatial variability of the cohesion 

showed that they have significant effects on the bearing capacity of the shallow foundations 

and their negligence will lead to an under-conservatism. 

 

Keywords: Anisotropy, Heterogeneity, Random Field, Shallow Foundations, Undrained 

Shear Strength. 

 

 

INTRODUCTION 

 

The ultimate bearing capacity of the strip 

footing on the homogeneous and isotropic 

soils has been extensively studied in several 

studies. The process of formation and 

deposition of natural deposits leads to spatial 

variability and anisotropy in the soil 

properties which are neglected in the 

conventional methods. Considerable works 

have been done with regard to the influence 

of anisotropy and non-homogeneity on the 

bearing capacity of clays (Raymond 1967; 

Reddy and Srinvasan, 1967, 1971; Davis and 

Christian 1971; Davis and Booker, 1973; 

Livneh and Greenstein, 1973; Salencon 

1974a, 1974b). Most of these studies found 

that the anisotropy and non-homogeneity 

have a considerable influence on the bearing 

capacity of clays. Raymond (1967) studied 
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the bearing capacity of footings and 

embankments on the heterogeneous clays 

through the slip circle method. He presented 

a dimensionless plot of failure criteria for 

footings. If a footing is analyzed based on 

his assumption and the result is compared 

with the failure criteria, the footing is 

theoretically considered safe or unsafe. 

Davis and Christian (1971) used a new 

description of anisotropic cohesive strength 

to provide a simple solution for the bearing 

capacity of a strip footing. Davis and Booker 

(1973) showed that by means of the theory 

of plasticity, solutions are obtained for 

solving the problem of bearing capacity of 

the clay (φ = 0) which is inhomogeneous in 

the vertical direction only. It is shown that 

the rate of increase of cohesion with depth 

plays the same role as density plays in the 

bearing capacity of homogeneous cohesive-

frictional soils. 
On the other hand, however, very few 

attempts have been made to study the effect 

of anisotropy and non-homogeneity on the 

bearing capacity of c-φ soils. Reddy and 

Srinivasan (1970) studied the effect of 

anisotropy and non-homogeneity on the 

bearing capacity of c-φ soils including φ = 0 

condition of soils. In their study, they used 

the method of characteristics to obtain the 

bearing capacity of shallow foundations on 

the heterogeneous and anisotropic soils. 

Salencon (1974) and Salencon et al. (1976) 

presented an analysis for the bearing 

capacity of c-φ-γ soil taking a linear 

variation of cohesion with depth. Meyerhof 

(1978) obtained the bearing capacity for 

soils exhibiting anisotropy in friction by the 

conventional Terzaghi’s type approach using 

two extreme values of φ for the outer zones 

and an equivalent φ for the radial shear zone. 

Limit analysis and in particular the upper 

bound analysis has long been used as a 

convenient tool for solving problems that 

involve anisotropy and non-homogeneity of 

soils. Chen (1975) considered the 

applications of limit analysis to geotechnical 

problems. He utilized the limit analysis 

theory for the bearing capacity of footings 

on a single and two layered soil, considering 

both the anisotropy and heterogeneity. He 

compared the ratios of Nc values, those 

obtained by his own and Salencon (1974), 

for heterogeneous and homogeneous 

deposits. The ratios obtained by him are 

found slightly higher than those of Salencon 

(1974). Adopting a Prandtl failure 

mechanism, Reddy and Rao (1982) used the 

limit analysis (upper bound) to obtain the 

bearing capacity of strip footing on c-φ soils, 

exhibiting anisotropy and non-homogeneity 

in cohesion. 

The purpose of this paper is to investigate 

the effect of inherent variability of the shear 

strength and two distinct types of anisotropy 

on the bearing capacity of the shallow 

foundations. Mechanical anisotropy of 

cohesion attributed to the directional 

variability of cohesion and the directionality 

of correlation structure was investigated to 

see their effect on the bearing capacity of the 

shallow foundations. 

For these reasons, the undrained shear 

strength is assumed as a log-normally 

distributed and spatially correlated variable. 

Mechanical anisotropy, denoted by CH/CV is 

taken into account by generalizing the 

conventional Mohr-Coulomb yield criterion. 

The analyses were conducted with Fast 

Lagrangian Analysis Code FLAC 5.0 which 

produces random finite difference model 

(RFDM) for anisotropic bearing capacity 

problem. 

 

INHERENT VARIABILITY 

 

The spatial variation in property C with the 

depth of z can be decomposed into a trend 

function t and the fluctuation component w 

(Phoon et al., 1999):   

 
w(z)t(z)C(z)   (1) 
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where C(z) is in situ cohesion, t(z) is 

deterministic trend function, and w(z) is the 

off-trend function or the fluctuation 

component which fluctuates around the 

deterministic trend function. Deterministic 

trend can be estimated from the reasonable 

amount of in situ data, whereas the 

fluctuation can be characterized as a random 

variable having a zero mean and non-zero 

variance. Figure 1 schematically illustrates 

different components of the inherent 

variability. 

 

Deterministic Variation of Cohesion 

The deterministic part of the soil 

properties can be assumed to have either a 

linear variation with the depth or a quadratic 

variation (Kenarsari, et al., 2012). Linear 

variation is usually reasonable for normally 

consolidated deposits while over-

consolidated alluvial deposits exhibit 

quadratic trend. However, in this study 

linear trend was chosen for its simplicity. 

Thus, the cohesion at depth z from the 

surface is given by Salencon et al. (1976): 

 

zCC VV 
0

 (2) 

 

where CV0 is the cohesion in the vertical 

direction at z = 0, and λ is the strength 

density, which means the increasing rate of 

the shear strength with depth. 
 

Stochastic Variation of Cohesion 

In the present study, for the stochastic 

variation of the soil cohesion, log-normal 

distribution is proposed because of two 

reasons; first, there is no possibility of the 

existence of negative values, and the second 

reason is its simple relationship with the 

normal distribution (Harr, 1987). The 

cohesion is assumed to be characterized by 

correlated log-normally distribution using 

the aid of most recognized representative 

statistical parameters which are the mean 

value, the standard deviation, and the 

correlation length. In practice the 

dimensionless coefficient of variation (COV) 

is used instead of standard deviation which 

can be defined as the standard deviation 

divided by the mean. Typical values for the 

COV of the undrained shear strength have 

been suggested by several investigators 

(Lee, et al., 1983; Duncan, 2000). The 

Suggested values are based on the in situ or 

laboratory tests and the recommended range 

is 0.1-0.5 for the COV of the undrained shear 

strength. The third important attribute of a 

random field is its correlation structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Variation of soil cohesion with depth. 
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It is obvious that if two samples are close 

to each other, they will be usually more 

correlated compared to the case when they 

are widely separated. Choleski 

decomposition technique was adopted to 

produce the covariance matrix and it was 

then used to generate the correlated data. 

The Choleski technique as discussed in Nash 

(1979) is based on decomposing a 

symmetric, positive, and definite matrix into 

a lower triangular matrix. Since the cohesion 

field is log-normally distributed, taking its 

logarithm yields a normally distributed 

random field. The values of cohesion are 

realized from: 

 

cLc ln.ln    (3) 

 

where μlnc is the mean of ln c, ε is a Gaussian 

vector field (having zero mean and unit 

variance) and L is the lower triangular 

matrix defined by: 

 
TLLA   (4) 

 

where A is covariance matrix which bears 

the heterogeneity anisotropy of soil stratum 

to be discussed shortly. The anisotropic 

covariance matrix is given by (Vanmarcke, 

1983): 

 

))()(2exp(),( 222
ln

VH
c

yx
yxA








  (5) 

 

where σ
2

lnc is the variance of ln c, θH and θV 

are autocorrelation length or the scale of 

fluctuation in horizontal and vertical 

direction, respectively, Δx and Δy are 

horizontal and vertical lag distances 

respectively. 

The correlation length is the parameter 

which describes the degree of correlation of 

a soil property, and is defined as the distance 

beyond which the random values will be no 

more correlated at all. It should be noted that 

in the case of a large correlation length, the 

random field tends to be smooth, and 

conversely, when it is small, the random 

field tends to be rough (Griffith and Fenton, 

2001). 

Figure 2 illustrates a flowchart of the 

Monte Carlo simulation scheme by random 

finite difference modeling through repeated 

analyses. 

 

ANISOTROPY 

 

Anisotropy is the property of being 

directionally dependent as opposed to 

isotropy which implies identical properties 

in all directions. It can be defined as a 

difference, when measured along different 

axes, in materials’ physical or mechanical 

properties.  

This study covers two major sources of 

anisotropy, namely heterogeneity and 

mechanical anisotropy. Heterogeneity 

anisotropy reflects the difference in 

correlation length in the horizontal and 

vertical directions. It is indeed the 

directionality of the correlation structures. 

Mechanical anisotropy on the other hand, is 

the non-uniqueness of the horizontal and 

vertical deformation or the strength 

parameters. Detailed description and 

literature review on this issue are provided in 

the subsequent sections. 

 

Heterogeneity Anisotropy 

A distinction is usually made between a 

scale of fluctuation in the vertical and 

horizontal directions which is called 

heterogeneity anisotropy. Available studies 

strongly show that a much higher horizontal 

degree of correlation exists in comparison to 

the vertical direction, due to the process of 

deposition. The values of θV are generally 

between 0.5 and 2 m, whereas the 

corresponding values for θH are generally of 

the order of 10-30 m (Cherubini, 2000). The 

value of θH/θV, called Heterogeneity 
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Anisotropy Factor (A.FH), has been reported 

for clays to be of the order of 9 (Vanmarcke, 

1997), 10 (Soulie, et al., 1990), and 13 

(Phoon and Kulhawy, 1999). 

 

Mechanical Anisotropy 

During the deposition and subsequent 

consolidation, the particles of uncemented 

sedimentary soils develop an interparticle 

equilibrium that leads to particular ranges of 

possible soil fabrics. The conditions applied 

during these processes, control the particles’ 

orientations and contact configurations 

which rule the soil response during the 

subsequent changes in the stresses or strains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Flowchart for Monte Carlo simulation adopted in current study.  
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Because the sediments fall under the 

gravity, their particle contacts are 

directionally dependent or anisotropic, and 

their response depends on the direction of 

the applied changes of the stress or strain. 

Casagrande and Carrillo (1944) first 

recognized the need to decompose the 

anisotropy components of sediments into 

“Inherent” and “Induced” groups. The soils 

are most likely to possess a combination of 

inherent and induced anisotropy which is 

referred to as “Initial anisotropy” in the 

literature, and is the one that the 

geotechnical engineer has to deal with. 

The above mentioned type of anisotropy, 

hereinafter referred to as “mechanical 

anisotropy” is related to the mechanical 

behavior of the natural alluvial deposits. 

Mechanical behavior is represented by either 

deformation or the strength parameters. 

According to Mohr-Coulomb’s failure 

criterion, the soil strength is described by 

two parameters: cohesion c and friction 

angle φ. As far as the mechanical anisotropy 

is concerned, various researchers e.g. 

Duncan and Seed (1966) and Mayne (1985) 

concluded that φ exhibits only a modest 

anisotropy and is quite independent from the 

load direction. On the other hand, undrained 

shear strength and cohesion are found to be 

highly dependent on the stress paths and the 

type of the test used for measuring the shear 

strength parameters. However, anisotropic 

behavior has been measured in the 

consolidated and drained shear test and it 

should be noted that the slightly higher 

friction angle occurs when the major 

principal stress coincides with the direction 

of sand deposition, rather than when the 

major principal stress acts perpendicular to 

the direction of formation.  

Since the early 1940’s, attempts have 

been made to quantify the degree of 

anisotropy of the soil cohesion. Casagrande 

and Carillo (1944) proposed that the soil 

cohesion in any direction in the vertical-

horizontal plane can be expressed in terms of 

the cohesion in the principal directions: 
 

iCCCC HVHi
2sin)( 

 
(6) 

 

where CV and CH are the shear strengths 

obtained from compression in the vertical 

and horizontal direction respectively, Ci is 

the shear strength in the i direction at which i 

represents the inclination of the major 

principal direction with respect to the 

horizontal direction.  

The ratio CH/CV is found to be constant 

for a given soil (Lo, 1965) and is denoted by 

A.FM (Mechanical Anisotropy Factor). One 

of the purposes of this paper is to provide a 

numerical method which can be used to 

calculate the bearing capacity of the shallow 

foundations on soils the cohesion of which 

varies with direction. To achieve this 

objective, conventional Mohr-Coulomb 

yield criterion was generalized to include the 

effect of strength anisotropy which is 

exhibited by the variation of the cohesion 

with direction. 

Soils sediments are often deposited 

vertically and then subjected to equal 

horizontal stresses, therefore they are often 

assumed to have a symmetrical vertical axis, 

with the horizontal axis representing the axis 

of transverse isotropy. Therefore, a common 

way to represent their anisotropic elastic 

response is to assume cross anisotropy. The 

elastic constants for a cross-anisotropic 

material are thus commonly taken as EV, EH, 

νVH, νHV, νHH, GVH, and GHH. 
However, due to symmetry requirement it 

can be shown that: 
 

H

HV

V

VH

EE


  (7) 

 

and  
 

)1(2 HH

H
HH

E
G


  (8) 
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in which VE  is Young’s modulus in the 

depositional direction, HE  is Young’s 

modulus in the plane of deposition, VHG  is 

shear modulus in the depositional direction, 

HHG  is shear modulus in the plane of 

deposition, νVH is Poisson’s ratio for 

straining in the plane of deposition due to 

stress acting in the direction of deposition, 

νHV is Poisson’s ratio for straining in the 

direction of deposition due to stress acting in 

the plane of deposition and νHH is Poisson’s 

ratio for straining in the plane of deposition 

due to stress acting in the same plane. 

The total number of the independent 

unknowns is then reduced from twenty one 

to only five (from full-anisotropic to cross-

anisotropic material). 

Soils normally possess inherent 

anisotropy and therefore even isotropically 

consolidated samples often have anisotropic 

stiffness characteristics. Table 1 shows the 

cross-anisotropic elastic stiffness ratios 

GHH/GVH and EH/EV for several materials, 

including the glass ballotini. It can be 

observed that the stiffness anisotropy exists 

under the isotropic stresses (K=σ3/σ1=1). 

Most materials tend to show higher normal 

stiffness in the vertical than in the horizontal 

direction when K<<1, but the opposite is 

true when K>>1. 

Gibson (1974) derived the following 

bounding values for the stiffness ratio 

(EH/EV) based on the argument that strain 

energy function cannot be negative in an 

elastic material due to the thermodynamic 

requirements: 

 

40 
V

H

E

E
 (9) 

 

Gibson (1974) used three different values 

for the ratio of shear modulus to vertical 

Young’s modulus (GVH/EV), namely,
6

1
, 

3

1
, 

and 
2

1
. 

 

MODIFIED MOHR-COULOMB 

MODEL 

 

The failure envelope for this model 

corresponds to a Modified Mohr-Coulomb 

criterion (shear yield function) with tension 

cutoff (tensile yield function). The shear 

flow rule is non-associated and the tensile 

flow rule is associated. 

 
Table 1. Stiffness anisotropy of different materials. 

Researchers 
K= 

σ3/σ1 

 

GHH/GVH 

 

 

EH/EV 

 

Material type* 

 

Jamiolkowski et al. (1995) 0.55 1.21 and 1.88 - Panigaglia and Pisa Clay (N) 

Belloti et al. (1996) 

0.5 

1.0 

1.5 

2.0 

0.96 

1.20 

1.26 

1.45 

0.82 

1.21 

1.55 

1.9 

Ticino Sand (R) 

Jovicic and Coop (1998) 1.0 1.9 and 1.6 - Kaolin (R) and London Clay (N) 

Pennington et al. (1997) 

0.45 

1.0 

1.5 

2.0 

1.22 and -  

1.45 and 1.8 

1.55 and 2.1 

1.65 and 2.3 

- 

- 

- 

- 

R and N Gault clay 

Kuwano (1999) 

0.45 

1.0 

2.0 

0.85,1.1 and 0.75 

1.1,1.3 and 1.05 

1.38,1.65 and 1.4 

0.5,0.6 and 0.48 

0.85,0.98 and 0.84 

1.23,1.42 and 1.3 

Ham River Sand, Dunkerque 

Sand  and Glass ballotini 

      *R/N=Reconstituted/Natural
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In the finite difference implementation of 

this model, principal stresses σ1, σ2, and σ3 

are used; the out-of-plane stress (σzz) is 

recognized as one of these stress 

components meeting the plane strain 

condition. The principal stresses and 

principal directions are evaluated from the 

stress tensor components and ordered so that 

(recall that compressive stresses are 

negative): 

 

321   (10) 

 

The corresponding principal strain 

increments Δe1, Δe2, and Δe3 are decomposed 

as follows: 

 
p
i

e
ii eee  3,2,1i  (11) 

 

where the superscripts e and p refer to elastic 

and plastic parts, respectively; and the 

plastic components are non-zero only during 

the plastic flow. The incremental expression 

of Hooke’s law in terms of the principal 

stress and strain has the form: 

 

3324121 eee   

3526151 eee   
3224131 eee   

(12) 

 

where 

HHHHHHVHHVVHHV 


221

1
1

  

,)1(12 HHVVH E  

,)(13 HHVVHHH E  
,)1(14 HHHVH E  

,)1(15 VHHHV E  

and VHHHH16 E)1(  . 

(15) 

 

with the ordering convention of Eq. (10), the 

failure criterion may be represented in the 

plane (σ1,σ3) as illustrated in Figure 3. 

The failure envelope is defined from 

point A to point B by the Modified Mohr-

Coulomb yield function: 

 

  NCNf s 231  (13) 

 

where 

 






sin1

sin1
N  (14) 

 

and from B to C by a tension yield function 

of the form:  

 

3 ttf  (15) 

 

where φ is friction angle, σ
t
 the tensile 

strength and Cθ the cohesion in inclined 

plane that is obtained by: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Modified Mohr-Coulomb yield criterion.  
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)
2

45(sin)( 2 


 HVH CCCC  (16) 

 

where 

 

)
2

(tan5.0 1

xy

xy




   (17) 

 

NUMERICAL MODELING OF 

ANISOTROPIC BEARING CAPACITY 

PROBLEM 

 

In this study, the effect of the cohesion 

anisotropy (mechanical and heterogeneity), 

stochastic and deterministic non-

homogeneity on the bearing capacity of 

rough footing underlain by natural alluvial 

deposit is investigated by employing the 

finite difference method using FLAC
2D

. The 

finite difference method is perhaps the oldest 

numerical technique used for solving the sets 

of differential equation, given initial values 

and/or boundary values. The prediction of 

collapse loads under the steady plastic flow 

condition can be difficult for a numerical 

model to simulate accurately (Sloan and 

Randolph, 1982). The bearing capacity is 

dependent on the steady plastic flow beneath 

the footing. The FISH programming facility 

embedded in FLAC
2D

 was utilized to 

consider the effect of heterogeneity and 

anisotropy of cohesion on the bearing 

capacity of the shallow foundations. 

Modified Mohr-Coulomb constitutive model 

as explained in detail was adopted to seek 

for the failure. 

The footing is incrementally displaced 

vertically into the soil mass by applying a 

downward velocity field to the area 

representing the footing. The value of 

velocity increment is 2.5×10
-5

 m/step, which 

is the value of the total displacement 

required for the failure divided by the 

number of the essential steps. The bearing 

capacity will be calculated using a FISH 

function, an internal programming option of 

FLAC
2D

 which computes the vertical load at 

each step. The calculated vertical load at the 

final step is the bearing capacity of the 

footing. 

The problem used for the analyses is a 0.5 

m wide strip footing (in plane strain 

condition) bearing on a shallow stratum 

supported by a rigid and perfectly rough 

base (Figure 4). The rough strip footing was 

simulated by fixing the x-velocity to zero for 

the gridpoints representing the footing base. 

The horizontal extent of the stratum is set at 

3m and the depth of stratum is 1m. The 

vertical boundary is assumed to be perfectly 

smooth and rigid. The uniform mesh as 

shown in Figure 4 is used. The finite 

difference mesh consists of 341 nodes and 

300 rectangular elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Finite difference model used in Random Finite Difference Method (RFDM) analyses.  
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Deterministic Bearing Capacity 

Adopting a FISH program development 

by authors in drained condition, values of 

the normalized drained bearing capacity 

pressure, q΄ = q/CV0, have been obtained. 

The input parameters varied according to 

Table 2 where B and γ are the width of 

foundation and the unit weight of soil, 

respectively.  

Furthermore, to simplify the analysis, the 

soil is assumed weightless. Under this 

assumption, the well-known bearing 

capacity relationship is simplified to q = 

CV0Nc. Therefore, the trend of variation of 

the bearing capacity factor Nc, is studied and 

the results are plotted.  

 
Table 2. Parameters in deterministic bearing capacity 

analysis of shallow foundation. 

Parameter Values Considered 

φ˚ 

G=γB/CH0 

A.FM=CH/CV 

ν=λ B/CH0 

0, 5, 10, 15, 20, 25 

0, 2 

0.5, 1, 1.5, 2 

0, 0.25 , 0.5, 0.75, 1, 1.25 

 

Stochastic Bearing Capacity 

The calculation of the stochastic bearing 

capacity of the shallow footing overlaying as 

a spatially variable natural alluvial deposit is 

performed in an undrained condition by 

another FISH program that as illustrated 

before, is a combination of the finite 

difference method and the random field 

theory. The stiffness parameters of soil such 

as poisson’s ratio (νHV, νVH and νHH) is 

assumed constant throughout the domain 

while the undrained Young’s modulus, 

undrained shear strength in the horizontal 

and vertical direction, and the shear modulus 

are considered heterogeneous. Undrained 

Young's modulus is assumed to be fully 

correlated to the undrained shear strength by 

assuming Euv/Cuv ratio of 800 in both 

horizontal and vertical plane. 

The effect of COVCuv, θV, A.FH, and A.FM 

on the stochastic bearing capacity is 

investigated and these parameters are 

presented in Table 3. 

 
Table 3. Parameters in stochastic bearing capacity 

analyses of shallow foundation. 

Parameter Values Considered 

COVCuv
 

θV (m) 

A.FH= θH/θV 

A.FM=CuH/CuV 

0.1, 0.25, 0.5, 0.75 

0.50 

1,2,5,10 

0.5, 1, 1.5, 2 

 

Zhalehjoo et al. (2012) showed that for 

small values of the foundation width, the 

strength density has no significant effect on 

the bearing capacity of the shallow strip 

footings. Therefore, the value of the strength 

density is taken constant at 1 kPa/m. 

For each set of considered COVCuv, θV, 

A.FH, and A.FM values, Monte Carlo 

simulation has been executed which 

involved 500 realizations of the shear 

strength random field and the subsequent 

numerical analysis of the bearing capacity. 

Mean ultimate bearing capacity (µqult) and 

the coefficient of variation of the result 

(COVqult) were then evaluated for different 

sets of stochastic parameters. 

 

RESULTS AND DISCUSSION 

 

In order to validate the results of the 

numerical FDM analysis, the bearing 

capacity in full homogeneous and isotropic 

conditions was calculated and compared 

with those acquired from different classic 

methods and bearing capacity calculation 

formulations. Table 4 provides the 

comparative data regarding the verification 

of the FDM method capability in the bearing 

capacity calculation adopted in this study. 

The results of Nc-values obtained from the 

current study are fairly acceptable when 

compared to those of well-known classic 

limit equilibrium or limit analysis methods. 

Values of q΄ have been obtained for φ = 

10 and 20 degrees in Figures 5a and 5b. 

These figures revealed that the variation of 
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q΄ with ν is almost linear for the range of 

parameters considered. To validate the result 

obtained from these analyses, a comparison 

was made between the current numerical 

results and those reported by Reddy and Rao 

(1982) that showed a good agreement. Their 

assumptions about anisotropy and non-

homogeneity of cohesion are similar to those 

considered in this paper. 

Figure 6 reveals the effect of anisotropy 

presented by A.FM, non-homogeneity 

presented by ν (ν = 0 and ν = 0.5 simulate 

homogeneous and non-homogeneous 

condition respectively), and the soil friction 

angle on the bearing capacity factor, by Nc. 

It is evident that with an increase in each of 

these factors, Nc becomes greater. 

 
Table 4. Comparison between NC–values for G=0.0 and ν=0.0. 

Researchers Applied Method 

Nc-Values 

φ =10˚ φ =20˚ 

Terzaghi
*
 Limit Equilibrium 9.30 17.00 

Meyerhof
* 

Stress Characteristics 8.00 14.50 

Reddy and Srinvasan (1970) Method of Characteristics 9.30 17.00 

Salencon (1974 b) Limit analysis (upper bound and lower bound) 8.35 14.84 

Chen (1975) Limit analysis (upper bound) 8.34 14.80 

Reddy and Rao (1982) Limit analysis (upper bound) 8.34 14.83 

Current study Finite Difference Method (FDM) 8.52 14.94 
 *
From Reddy and Srinvasan (1970) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 5. Variation of q  with ν for different A.FM values at; a) φ=10˚and b) φ=20˚.  
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Fig. 6. Variation of NC with angle of friction for homogeneous and non-homogeneous conditions. 

 

The results obtained by the stochastic 

modeling for each set of parameters are 

depicted in Figures 7 and 8. In Figure 7, 

assumed values of the correlation length in 

the vertical and horizontal directions are 

different for each chart. It is evident that 

A.FH has no significant effect on the mean 

ultimate bearing capacity (μqult
). Also the 

effects of COVCuv and A.FM are 

demonstrated in each chart. It is clear that 

with increasing A.FM, the ultimate bearing 

capacity of the shallow foundation also 

increases. This finding is in clear conformity 

to those of the deterministic analyses as 

provided in Figures 5 and 6. However, it 

varies inversely with the increase of COVCuv. 

This implies that including more variation in 

the cohesion values results in more 

possibility of the weak zones formation in 

the underlying stratum and a reduction in the 

mean bearing capacity of the overlying 

foundation is then expected. 

Although it is stated that A.FH does not 

have a significant effect on the mean 

ultimate bearing capacity of the shallow 

foundations laying on the spatially variable 

natural alluvial deposits, it is evident in 

Figure 8 that it has an increasing effect on 

the bearing capacity. This behavior is 

expected when referring to Fenton and 

Griffiths (2007). While maintaining the 

normalized vertical correlation length (θV/B) 

constant at 1, this incremental behavior was 

pointed out to be related to the weakest path 

issue. When the correlation length is very 

high, the soil properties become spatially 

constant, albeit still random from realization 

to realization. In this case, because the soil 

properties are spatially constant, the weakest 

path returns to the log-spiral. On the other 

hand, for the case of intermediate correlation 

lengths, it allows enough spatial variability 

for a failure surface which deviates 

somewhat from the log spiral and it is not 

too long, rendering less bearing capacity. 
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Fig. 7. Effect of A.FM and COVCuv on mean ultimate bearing capacity of shallow foundations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig. 8. Effect of heterogeneity anisotropy on ultimate bearing capacity.
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CONCLUSIONS 

 

This paper presents the effects of two types 

of anisotropy of cohesion on the ultimate 

bearing capacity of a shallow footing 

embedded on the heterogeneous alluvial 

deposits. The model is based on the 

numerical simulations using the lagrangian 

explicit finite difference code FLAC
2D

. 

In the first type of anisotropy, the 

conventional isotropic Mohr-Coulomb 

failure criterion was generalized to an 

anisotropic one, and the following results 

were obtained:  

In the mechanical anisotropy 

consideration, the effect of A.FM was 

investigated on the bearing capacity of the 

shallow foundation for different strength 

parameters (ν and φ). It was shown that the 

mechanical anisotropy (A.FM) has an 

increasing effect on the bearing capacity 

while maintaining the other parameters 

constant. Strength density formulized in a 

dimensionless form (ν) and the internal 

friction angle showed a similar effect on the 

bearing capacity as expected from the 

literature review. 

As far as the heterogeneity anisotropy is 

concerned, the cohesion field was assumed 

to be a random variable which is log-

normally distributed with different 

correlation distances in the vertical and 

horizontal directions. The effect of 

heterogeneity anisotropy (A.FH) on the 

bearing capacity of the shallow foundation 

resting on a spatially variable deposit was 

investigated for different sets of stochastic 

parameters. In other words, heterogeneity 

anisotropy is a stochastic parameter studied 

jointly with other affecting inherent 

phenomena. The coefficient of variation of 

the undrained cohesion was shown to induce 

uncertainty in the bearing capacity results 

while decreasing the mean ultimate bearing 

capacity. Heterogeneity anisotropy (A.FH) 

was found to increase the bearing capacity of 

the shallow foundation, however the extent 

of improvement is not too much. This means 

that neglecting the spatial variability of the 

soil properties leads to an overestimation in 

the bearing capacity prediction.  

In summary, for the range of parameters 

considered, the results clearly show that the 

anisotropy and non-homogeneity of soils 

have a considerable influence on the bearing 

capacity of the shallow foundations. Among 

all, the mechanical anisotropy and the 

coefficient of variation of the strength 

parameters are more highlighted to influence 

the bearing capacity calculation. 
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