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Given the importance of transcriptome analysis in various biological studies and considering the 
vast amount of whole transcriptome sequencing data, it seems necessary to develop an 
algorithm to assemble transcriptome data. In this study we propose an algorithm for 
transcriptome assembly in the absence of a reference genome. First, the contiguous sequences 
are generated using de Bruijn graph with different k-mer lengths. Then, the eclectic mixtures of 
sequences are gathered in order to form the final sequences. Lastly, the contiguous sequences 
are clustered and the isoform groups are provided. This proposed algorithm is capable of 
generating long contiguous sequences and accurately clustering them into isoform groups.To 
evaluate our algorithm, we applied it to a simulated RNA-seq dataset of rat transcriptome and a 
real RNA-seq experiment of the loricaria gr. cataphracta transcriptome. The correctness of the 
assembled contigs was more than 95%, and our algorithm was able to reconstruct over 70% of 
the transcripts at more than 80% of the transcripts’ lengths. This study demonstrates that 
applying a sophisticated merging method improves transcriptome assembly. The source code is 
available upon request by contacting the corresponding author by email. 
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Introduction 

Sequencing expressed mRNA (RNA-seq) 
using next generation sequencing 
technologies provides a huge amount of 
transcriptome data which requires an efficient 
and accurate method for assembly. 
Applications of transcriptomic information 
include obtaining gene expression level, gene 
expression profiling after experimental 
treatments, cancer gene expression, and gene 
discovery. There are different approaches to 
assembling RNA-seq data. Some 
transcriptome assemblers have been 
developed to assemble transcriptome short 
reads based on a reference genome, including 
TopHat (1) and Cufflinks (2). Reference-
based assemblers map short reads onto a 
reference genome in order to find full-length 
transcript sequences. However, reference 
genomes of most species are not available, 
and sometimes the individual that is under 
study is different from the reference genome, 
so mapping the short reads to the reference is 
not reliable. Therefore, it seems that having a 
method to assemble short reads in the absence 
of a reference genome is essential. De novo 
RNA-seq read assemblers such as Trinity (3), 
transABySS (4), and Oases (5) construct 
transcript assemblies (transfrags) without 
using any reference genome. 

Some de novo assemblers including Atlas 
(6) and ARACHNE (7) are based on the 
overlap-layout-consensus (OLC) approach 
which constructs an overlap graph of reads. 
In an overlap graph, each read is considered a 
node, and nodes will be connected to each 
other if they have adequate overlaps. 
Although OLC algorithms are appropriate for 
assembling long reads, they cannot be applied 
to a set of short reads. A large quantity of 
short reads with short overlaps culminates in 
a huge graph which is time and memory 
inefficient and greatly ambiguous. In order to 

overcome these limitations and disadvantages 
of OLC based algorithms, de Bruijn-based 
assemblers have been developed. Using the 
de Bruijn graph is the best way to handle 
redundancy in short reads, and its 
construction is based on words with the size 
of k nucleotides called k-mer. Recent 
algorithms of genome assembly are mostly 
based on de Bruijn graphs (8-10). 

The fundamental stages of both genome 
and transcriptome assembly to create 
contiguous sequences (contigs) are the same, 
so it is possible to use a de Bruijn-based 
genome assembler to generate contigs from 
transcriptome short reads. However, 
transcriptome assembly is different in some 
aspects. First, all the parts of a genome have 
uniform coverage depth, but this is not true 
for transcriptome short reads. In other words, 
the expression levels of genes might be 
different; some of the genes are expressed 
very low and some of them might be 
expressed very high. Second, the ultimate 
goal of genome assembly is to construct a 
whole genome as one contiguous sequence, 
but transcriptome inherently contains a 
number of separate sequences belonging to 
different genes that should not be connected 
to each other. Third, alternative splicing 
makes assembling RNA-seq reads more 
challenging. Therefore, in order to make 
genome assemblers appropriate for 
transcriptome assembly, some post-processes 
are required. Velvet (10) is a fast and memory 
efficient de Bruijn-based assembler. It is the 
most conventional genome assembler which 
is exploited by several transcriptome 
assemblers including Rnnotator and Multiple-
K (11-13). 

One parameter which most effects the 
performance of de Bruijn-based assemblers is 
k-mer length or hash length. Determining the 
optimal k-mer value for a particular data set 
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is difficult. Moreover, based on the variability 
of gene expressions, it is strongly recommended 
that, for transcriptome assembly, the de 
Bruijn assembler be run with different k-mer 
values; then the results should be combined. 
Assembly Assembler 
(https://github.com/dzerbino/velvet/tree/mast
er/contrib/AssemblyAssembler1.3) is a 
software designed to combine the contigs 
obtained from several executions of Velvet. 
AssemblyAssembler applies the Velvet 
assembler on input short reads across a user-
specified range of k-mer values. Then, it finds 
the best k-mer length which generates the 
longest maximum contigs and conducts 
additional assemblies with k-mer lengths 
close to the best k-mer. Eventually, the 
AssemblyAssembler gathers all the contigs of 
these runs and utilizes them as the input of a 
final assembly process. The final contigs are 
considered transcripts. 

Producing contigs using a de Bruijn-based 
genome assembler, however, is not enough 
for transcriptome assembly, because isoform 
transcripts have overlaps. They do not form a 
plain sequence, and there are branches in 
their presentation. Thus, this notion should be 
represented using the graph structure. Some 
de Bruijn based de novo transcriptome 
assemblers such as Oases (5) and Multiple-K 
(12) construct a graph which demonstrates 
the relationship between the contigs and 
clusters the assembled contigs. These 
methods use different strategies to construct 
graphs. Oases employs the number of single 
and paired-end reads to create the graph and 
cluster contigs, while Multiple-K uses the 
proteome of a related species as a reference to 
assemble contigs belonging to the same gene. 

In this work, we used Velvet as a tool to 
assemble short reads and generate contigs. 
First, we executed Velvet several times with 
different k-mer values and selected the best 

sets of contigs from among the results. Then, 
the selected contigs were combined to 
construct the final longer contigs. Afterward, 
scores between final contigs were computed, 
and a graph was generated based on the 
contigs and their scores. Finally, the 
generated graph was clustered into its 
connected components which were isoform 
transcript groups. Moreover, we assessed our 
algorithm using criteria such as correctness, 
completeness, contiguity, and group fusion. 

Materials and Methods 

Merging Contigs 

The performance of a de Bruijn-based 
assembler depends on the hash length or k-
mer length. It is challenging to find the 
optimal k-mer value for a de Bruijn-based 
assembler. In addition, based on the variety of 
expression levels of the transcriptome data, a 
genome assembler like Velvet is not able to 
reconstruct full-length transcripts with 
different expression levels just by using one 
single k-mer length. This is mainly because 
of the fact that a higher k-mer length is able 
to construct highly expressed transcripts. In 
order to reconstruct low-expressed 
transcripts, it is recommended to use lower k-
mer lengths (12). The most conventional 
solution for dealing with heterogeneous 
expression levels of transcripts is to apply 
various k-mer lengths to produce initial 
contigs and then merge them into a final 
contig set. There are different ways to merge 
assembled contigs, and the performance of 
the final contigs heavily depends on the 
merging strategy. We examined different 
contig-merging methods and compared their 
results. This study introduces a highly 
accurate method for merging obtained contigs 
from different k-mer lengths.  

In the first step of our algorithm, Velvet is 
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run with a range of user-specified k-mer 
lengths. Then the result of each Velvet run is 
verified and a subset of k-mer lengths which 
will produce satisfactory results is selected. In 
the second step, the union of the selected sets 
of contigs, which are constructed using opted 
k-mer lengths, is considered as the input for 
another series of Velvet runs with a range of 
user-specified hash lengths. Then the 
algorithm determines which k-mer lengths 
produce better assemblies than the others. 
Next, it merges the assembled contigs which 
are produced using the selected k-mer lengths 
and creates the final assemblies. Figure 1 
illustrates our strategy to generate and merge 
contigs. 

Figure 1. Merging phase diagram 

 

Although assembling transcriptome short 
reads using just one k-mer value does not 
produce the desired contigs, the use of a wide 
variety of k-mer lengths might lead to the 
generation of misassemblies and cause the 
assembler’s performance to deteriorate. 
Therefore, it is necessary to design a 
sophisticated procedure to verify the 
performance of Velvet with each k-mer 
length and choose the best ones among them. 
Velvet results including contigs with longer 
N50 and longer maximum lengths are more 
appropriate for the input of the final 
assembler. Our algorithm verifies the 
performance of each Velvet execution and 
selects the desired results of the executions. 
In the current study, we used the average 
value of N50 and the maximum contig length 
of all the executions as thresholds to 
determine which executions had an 
acceptable amount of N50 and maximum 
contig length. 

We also kept track of unused reads in each 
Velvet execution and tried to assemble them 
independently. In the final step, assembled 
unused reads were taken into account and 
used as part of the input for the final Velvet 
execution. 

Clustering Contigs 

Throughout gene expression, alternative 
splicing causes the generation of multiple 
transcripts, called isoforms, from a single 
gene. These isoforms usually have common 
exons. Each mRNA contains particular exons 
of the gene, and some others might be 
excluded from it. The existence of common 
exons in isoform contigs causes de Bruijn-
based assemblers to operate incorrectly, and 
these isoforms are possibly merged, because 
the de Bruijn graph tries to merge sequences 
that overlap. In other words, transcripts with 
common exons might also have common 
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assembled contigs. Thus, we call isoforms 
with common exons an isoform group. All 
transcripts of an isoform group are expected 
to constitute a cluster. 

In order to illustrate the structure of each 
isoform group, we used a directed graph. An 
isoform group contains several transcripts, 
and each transcript consists of one or more 
contigs, so every isoform group is a 
collection of its transcript contigs. We 
represented an isoform group using graph 
data structure. In this graph, the contigs are 
considered nodes. The edges of the graph 
determine the relationship between and the 
order of the contigs.  

In the sequencing process, reads can be 
obtained either from only one end of a 
fragment, which is called single-end 
sequencing, or from both ends of a fragment, 
which is called paired-end sequencing. For 
paired-end sequencing, the approximate 
fragment size or insert length is used to 
estimate the distance between both ends. Two 
contigs, the distance between which is less 
than the insert length, probably share a 
fragment. In other words, the read from one 
end of the fragment contributes to the 
construction of the first contig, and the read 
from the other end of the fragment 
contributes to the construction of the second 
contig. Based on our experiments, the best 
criterion for relating two contigs and 
specifying their order is the number of paired-
end reads that admits the strength and 
direction of the connection between them. In 
order to find the isoform groups, we built a 
directed weighted graph based on the paired-
end scores; the calculation process is 
presented in the following section. Afterward, 
the low-weighted edges were discarded, and 
the remaining graph was divided into its 
connected components. Finally, the generated 
sub-graphs were considered as the clusters. 

Each cluster demonstrated an isoform group 
which consisted of the contigs of its 
transcripts and the relationships between 
them. The graph related to each isoform 
group is a DAG (Directed Acyclic Graph), 
and each path in this graph is a possible 
transcript. 

Calculating Scores 

The score between two contigs is the number 
of paired-end reads that admits their 
connection. If a connection is confirmed by 
an adequate number of paired-end reads, the 
contigs belong to the same gene. To calculate 
the scores, short reads are aligned to the final 
contigs. The score between two contigs 
increases by one unit if a specific read is 
aligned to the first contig and its pair is 
aligned to the second contig. To align short 
reads to contigs, BLAT software (14) was 
used. If more than 80% of a short read length 
is aligned to a contig, the read will be 
regarded as part of the contig. There are many 
similar but distinct genes within a family of 
genes, so some distinct genes might have 
several short reads in common, and contigs 
belonging to these genes will be fused 
together. However, in the assembly process, 
the only available information is sequencing 
information, so gene fusion is inevitable 
where there are similar genes. 

Experimental Data 

We used two different sets of data in order to 
evaluate our algorithm’s efficiency. The first 
data set included simulated short reads 
generated from the rat transcriptome 
downloaded from http://www.ebi.ac.uk/asd. 
The second one was a data set containing the 
experimental short reads of loricaria gr. 
cataphracta transcriptome available under 
accession number SRA010189 via EMBL-
EBI databases. This real RNA-seq data set 
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comprised 71-bp short reads of loricaria gr. 
cataphracta sequenced using Illumina 
sequencing technology. 

We used a rat transcriptome data set to 
measure the correctness, completeness, 
contiguity, and group fusion of contigs 
generated by our algorithm. In order to 
simulate a RNA-seq data set similar to real 
ones, a random number between 10 and 50 
was considered as the expression level of each 
transcript. The frequency of each transcript in 
our expressed transcript data was equal to its 
randomly generated expression level. 

We used the expressed transcripts data set 
as the input of a short read simulator. 
Dwgsim (https://github.com/nh13/DWGSIM) 
was used to simulate paired-end short reads. 
Short read length was considered 45bp, and 
the insertion length between paired-ends was 
set to 200bp. 

Results 

k-mer length impact 

To verify the impact of k-mer value on 
assembly performance, we simulated two sets 
of data. First, we selected 100 transcripts of 
rat and considered the expression level of 
each transcript as a random number between 
5 and 10. Second, we assigned random 
numbers between 40 and 50 as expression 
levels of 100 selected transcripts. We called 
the first set of data ‘low-expressed 
transcripts’ and the second set of data ‘high-
expressed transcripts.’ Then, we simulated 
short reads of these two transcript data sets. 
Lastly, we applied Velvet Assembler to each 
set separately and compared their 
performances. As Figures 2, 3, and 4 show, 
the smaller k-mer lengths performed better 
for low coverage transcripts, but for highly 
expressed genes, the results of the longer k-
mer lengths were more satisfactory.  

 
Figure 2. Impact of k-mer length on median coverage 

depth of contigs 

 

 
Figure 3. Impact of k-mer length on median N50 of contigs 

 

 
Figure 4. Impact of k-mer length on maximum contig 

length 

The coverage depth is the average number 
of short reads containing a given nucleotide 
in the reconstructed sequence. Misassemblies 
and erroneous contigs have low coverage 
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depth, so the existence of a large amount of 
misassemblies in final contigs causes a 
reduction in median coverage depth. As 
shown in Figure 2, the median coverage 
depth would be very low when lower k-mer 
lengths are used for high-expressed genes. 
The median coverage depth usually grows 
when k-mer values are increased for highly-
expressed genes, and it decreases for low-
expressed genes. N50 and maximum length 
of contigs are significant measures used to 
evaluate the result contigs. In Figure 3 and 4, 
it is observable that for transcripts with low 
expression levels, lower k-mer lengths 
perform better and generate longer contigs, 
but for highly-expressed transcripts, larger k-
mer values produce longer contigs. 

Constructing a de Bruijn graph with a 
small hash length results in contigs which 
cover most parts of the transcripts, but it also 
creates misassemblies and generates many 
extra contigs which are not aligned to the 
original transcripts. Hence, small k-mer 
lengths make de Bruijn graphs more 
ambiguous. However, larger k-mer lengths 
generate more accurate de Bruijn graphs, 
although they might not be able to produce 
some assemblies. The de Bruijn assembler 
which uses small k-mer values generates 
more complete contigs, but large k-mer 
lengths provide more accurate contigs. 
Therefore, choosing the k-mer length is a 
trade-off between completeness and 
correctness. 

Metrics 

We consider several metrics to evaluate the 
explained algorithm and to compare it with 
the other algorithms. The metrics used for 
assessment are correctness, completeness, 
contiguity, and group fusion. 

Correctness is the percentage of contigs 
that are correctly constructed. To identify 

correct contigs, the original exons were 
aligned to the contigs. In an ideal situation, 
all contigs should be covered completely by 
exons, but in the experimental situation, most 
contigs are only partially covered. If more 
than 80% of a contig length is covered, it will 
be considered a correct contig. 

An ideal assembler generates contigs that 
cover all of the transcripts. Completeness 
denotes the percentage of nucleotides of the 
original transcripts that are covered by the 
generated contigs. We also measured the 
percentage of isoform groups in which more 
than 80% of their nucleotides are covered by 
the resulting contigs.  

It is anticipated that all the exons 
belonging to one isoform group will be 
covered by one cluster. This measure is called 
contiguity. In fact, contiguity specifies the 
percentage of isoform groups which are 
covered by one cluster at more than 80% of 
the group length. 

Different isoform groups should be 
regarded as different clusters. Since some 
isoform groups have common portions of 
sequence, they might be fused together. 
Group fusion determines the percentage of 
clusters covering two different groups. 

Evaluating Scores 

According to the procedure of constructing a 
directed graph from assembled contigs which 
was discussed in the methods section, an edge 
that connects two contigs of two different 
genes is a wrong edge and should be 
discarded. Our experiments showed that less 
than 2% of edges in the graph were inserted 
incorrectly and needed to be eliminated. This 
demonstrates the fact that the applied scoring 
system based on the number of paired-end 
reads is reliable for connecting and ordering 
contigs. 
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Table 1. Comparison results of various merging methods 

Method Contiguity Correctness Completeness Group fusion 
Single K 61.08 98.44 83.98 3.47 

All runs 62.89 83.54 93.58 5.21 

Assembly assembler 69.56 88.68 93.85 4.1 

Our method 70.52 95.74 93.06 3.91 
 

Comparison of Merging Methods on 
Simulated data 

The final outcomes of evaluating different 
strategies are summarized in Table 1. This table 
shows that the strategy of running Velvet with 
different k-mer lengths and merging the results 
is definitely superior to generating contigs using 
just one single k-mer length. Running Velvet 
with a single k-mer length does not culminate 
in a desirable performance. In order to judge the 
merits of merging contigs of different Velvet 
executions, we also conducted our experiments 
on running Velvet with just one k-mer length. 

In order to compare our merging method with 
Assembly Assembler, we applied Assembly 
Assembler to short reads, and then we clustered 
its final contigs using our clustering method. The 
performance of AssemblyAssembler’s merging 
method is shown in Table 1. We also present the 
performance of the assembler when the selection 
method was not applied to Velvet results, and all 
of the generated sets of contigs in the first series 
of Velvet executions were used as input for the 
second series of Velvet executions. 

Each contig usually contains one or more 
exons, so it was expected that contigs would 
be covered by the exons. To evaluate the 
correctness of the contigs, we aligned exons 
to the assembled contigs. Therefore, each 
exon covered a specific part of a contig. If 
more than 80% of the contig length is 
covered by exons, it is considered to be a 
correctly constructed contig. For the rat 
transcript data set, more than 95% of the 
contigs were covered by exons at over 80% 
of the contig length. 

In order to assess the completeness of 
generated contigs, we aligned exons to the 
contigs, and we anticipated the alignment of 
all of the exons to the contigs. Covering all of 
the exons with the contigs is not possible in 
real situations. If more than 80% of the exon 
length is aligned to a contig, the exon will be 
considered completely covered. The contigs 
generated using our method were over 93% 
completely reconstructed, which is 
considerably more than the results obtained 
by running Velvet with just one single k-mer 
length. Generally, Velvet with just one k-mer 
length produces fewer contigs which are 
more accurate and less complete. 

The contiguity of the contigs is estimated 
by the percentage of the isoform groups 
which are covered by one cluster. In order to 
discover isoform groups, we aligned exons to 
the transcripts. All exons belonging to one 
transcript were considered as initial isoform 
groups. Then we tried to find the groups with 
common exons, merge them, and unify all of 
their exons. It was expected that the exons of 
one isoform group would be aligned to the 
contigs of one cluster. The clusters obtained 
using our method covered about 70% of the 
desired isoform groups which is indicative of 
good contiguity. 

We also computed the percentage of 
clusters containing group fusion. In our 
method, 3.9% of groups had group fusion 
which means that they aligned to one cluster. 

Comparison with Multiple-K on real data 

Our algorithm was compared to the existing 
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RNA-seq de novo transcriptome assembler, 
Multiple-K (12). The loricaria gr. cataphracta 
transcriptome short reads data set was used for 
this comparison. The assembled contigs 
obtained with our method and the Multiple-K 
resulting contigs were compared using N50 
which is the weighted median of contig 
lengths. The higher value of this statistic 
indicates the longer lengths of the assembled 
contigs. Generally, producing longer contigs 
leads to the generation of more contiguous 
reconstructed transcripts. Table 2 shows that 
the assembled contigs obtained with our 
method are longer than the contigs assembled 
using Multiple-K. Our method also succeeded 
in generating contigs with longer maximum 
contig length in comparison with the results 
of Multiple-K. Our method and the Multiple-
K algorithm both assembled the same number 
of input transcripts. 

 

Table 2. Comparing of our method with Multiple-K 
method 

Assembly 
No. of 
contigs 

N50 
Max 

length 

Total 
length 
(Mb) 

Best Single 
k (k=31) 

141,649 201 3738 26.34 

Multiple-K 149,233 234 5330 33.33 
Our method 152,290 289 6558 33.52 

Discussion 

Our proposed algorithm is able to reconstruct 
transcripts with a diverse range of expression 
levels, although it does not have the power to 
assemble transcripts with low expression levels. 
Since reference-based RNA-seq assembly 
performs well in assembling low-expressed 
genes, combining reference-based and de novo 
approaches achieves better results. 

One of the most important parameters 
affecting a de Bruijn-based assembler’s 
performance is the k-mer length. This 
parameter is crucial to assembling 
transcriptome short reads because of the 
inherent variability of gene expression levels. 

Hence, there is no optimal k-mer value for 
assembling transcriptome short reads. 
Therefore, running a de Bruijn assembler 
using different hash lengths and merging the 
results generates more contiguous sequences. 
The performance of the final contigs is highly 
dependent on the merging strategy. In this 
work, we examined different methods in 
order to improve the results, and eventually 
we generated a more contiguous assembly. 
Obviously, there may be other merging 
strategies which can improve performance. 

We determined that if the connection 
between the contigs is admitted by the 
adequate number of paired-end short reads, 
they belong to the same gene, and the score 
obtained based on the paired-end reads is an 
appropriate measure for finding isoform 
groups. However, the discovery of other 
characteristics that reveal relationships 
between contigs can be helpful in improving 
the contiguity of the final results. 

Group fusion in the assembly process 
leads to the construction of transcripts, the 
sequences of which are merged together. This 
problem can be solved by employing some 
post-processing tasks. One possible solution 
for this problem is to use coverage depth 
information to separate the fused groups. The 
coverage depth of all parts of a transcript is 
uniform, so all the contigs that are clustered 
into a specific isoform group should have 
similar coverage depth. Since the exons 
common among transcripts increase the 
coverage depth of the contigs related to those 
exons, it is necessary to develop a method for 
distinguishing the common exons. 
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