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ABSTRACT: This paper is concerned with investigation of vertical impedance function of 

a surface rigid circular foundation resting on a semi-infinite transversely isotropic alluvium. 

To this end, the equations of motion in cylindrical coordinate system, which because of 

axissymmetry are two coupled equations, are converted into one partial differential 

equation using a method of potential function. The governing partial differential equation 

for the potential function is solved via implementing Hankel integral transforms in radial 

direction. The vertical and radial components of displacement vector are determined with 

the use of transformed displacement-potential function relationships. The mixed boundary 

conditions at the surface are satisfied by specifying the traction between the rigid 

foundation and the underneath alluvium in a special function space introduced in this paper, 

where the vertical displacements are forced to satisfy the rigid boundary condition. 

Through exercising these restraints, the normal traction and then the vertical impedance 

function are obtained. The results are then compared with the existing results in the 

literature for the simpler case of isotropic half-space, which shows an excellent agreement. 

Eventually, the impedance functions are presented in terms of dimensionless frequency for 

different materials. The method presented here may be used to obtain the impedance 

function in any other direction as well as in buried footing in layered media. 

 

Keywords: Circular Foundation, Function Space, Transversely Isotropic, Vertical 

Impedance Function. 

 

 

INTRODUCTION 

 

The interaction of rigid foundation and 

three-dimensional solid is an interesting 

subject in both applied mathematics and 

civil engineering. Investigation of traction-

induced wave propagation, which is the base 

for studying soil-structure interaction, was 

started by the pioneering paper of Lamb 

(1904), where the wave propagation in a 

semi-infinite homogeneous elastic isotropic 

in both three- and two-dimensions subjected 

to a time harmonic surface point load was 

investigated in detail. Studying the static 



Eskandari-Ghadi, M. et al. 

14 

 

interaction of the foundation and the 

underneath soil is a prerequisite for 

understanding dynamic interaction. By using 

the technique of integral transforms, the 

mixed boundary value problem involved in 

the investigation of soil-structure interaction 

is transformed into some dual integral 

equations, which are very complicated and 

their solutions require precise attention (see 

Tichmarch, 1948; Sneddon, 1966). Avoiding 

the dual integral equations, Arnold et al. 

(1955), obtained an approximate solution by 

tentatively assuming that the dynamic 

contact stress distribution is about identical 

to the static distribution pattern. This 

assumption has been taken by a number of 

researchers, including Bycroft (1956). 

Awoboji and Grootenhuis (1965) found the 

vertical and torsional displacements in an 

isotropic half-space due to a surface circular 

rigid body as well as a surface rigid strip 

foundation under vertical and rocking 

motions.  

On the other hand, the need of studying 

soil-structure-interaction, when the soil is 

anisotropic, is normal rather than exceptions. 

Eskandari-Ghadi et al. (2010a, b and 2011) 

have presented analytical investigations for 

the vertical and rocking vibrations of a rigid 

circular disc either rested on the surface of a 

transversely isotropic half-space or buried in 

a transversely isotropic full-space. They 

have changed the involved dual integral 

equations to the Fredholm integral equations 

of second kind and have solved the 

Fredholm integral equations in a numerical 

manner.   

In this paper, a semi-infinite elastic 

transversely isotropic medium is considered 

in frequency domain, where a cylindrical 

coordinate system { :( , , )}o r z  whose z-axis 

is depth-wise is used. This medium is 

affected by a time harmonic vertical 

vibration due to a surface rigid circular 

foundation. Without solving the dual integral 

equations and only by writing the traction in 

between the rigid foundation and the 

underneath half-space in the form of a linear 

combinations of some independent functions 

with known Hankel integral transforms, the 

vertical impedance functions are obtained 

for this foundation. Since the boundary value 

problem is solved via implementing the 

Hankel integral transforms in radial 

direction, writing the unknown pressure in a 

function space with known Hankel integral 

transforms enables us to find the inverse 

integral transforms analytically. The final 

results are then compared with those of Luco 

and Mita (1987), which have been 

analytically determined and numerically 

evaluated with great precision. It is shown 

that by choosing only a few functions from 

the mentioned space, the results approach 

the analytic results quickly.  

 

STATEMENT OF THE PROBLEM         

 

A semi-infinite space containing 

transversely isotropic material is considered 

as the domain of the boundary value 

problem discussed in this paper. The axis of 

material symmetry of the domain is 

considered to be depth wise as shown in 

Figure 1. A cylindrical coordinate system 

:( , , )o r z  is attached to the half-space as 

depicted in Figure 1. This medium is 

affected by a time harmonic motion of 

frequency   due to a surface rigid circular 

foundation of radius a. Since the foundation 

is rigid, every point of which has the same 

displacement with the amplitude  .   

By ignoring body forces, the equations of 

motion in the axisymmetric case can be 

written in terms of displacement vector in a 

cylindrical coordinate system as: 
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Fig. 1. Rigid foundation resting on the free surface of a semi-infinite transversely isotropic medium subjected to a 

harmonic vertical force. 
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 (1) 

 

where 
ij

A and   are the elasticity 

coefficients and mass density, and u and w 

are displacement components in r- and z-

directions, respectively. Eqs. (1) are 

completely coupled, which with the use of 

the scalar potential function presented by 

Eskandari-Ghadi (2005), will be uncoupled. 

The displacements could be explained in 

terms of the potential function  ( , , )F r z t  as 

follows: 
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where  
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 (3) 

 

By substituting the Eq. (2) into Eq. (1), 

the first equation is satisfied ideally and the 

second one is converted into: 
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and 2

1
s  and 2

2
s  are the roots of the following 

equation: 
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In the case of time-harmonic excitation 

with frequency , the Eq. (4) may be 

transformed into an ordinary differential 

equation in terms of depth, provided Hankel 

integral transforms in radial direction are 

used. By solving the ordinary differential 

equation with the use of regularity condition 

results in the potential function F, which 

may be used to find the displacements via 

displacement-potential relationships. Thus, 

through implementing the inverse Hankel 

theorem, the displacements u and w are 

determined as:  
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where ( )J r   is the Bessel function of the 

first kind and of th order (Eskandari-Ghadi 

et al., 2008): 
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(8) 

 

In addition, 
~

0 ( )zP   
is the zero order 

Hankel transform of ( )
z

P r . The general 

form of Eq. (7) for general surface load has 

been obtained by Rahimian et al. (2007). 
~

0 ( )zP   
should be specified in order to have 

the displacement components from Eq. (7), 

however, the distribution of the pressure, 

( ), 0
z

P r r a  , under the rigid foundation is 

unknown. In this paper, the pressure in 

between the rigid foundation and the half-
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space is linearly expressed in terms of a 

series of functions, whose Hankel integral 

transforms are known. Accordingly, the 

integrand functions in the Eq. (7) are known 

which allows the integrals to be evaluated. 

Because of rigidity of the surface 

foundation, the in between pressure is 

singular at its edge (see e.g. Eskandari-

Ghadi et al., 2010a, b and 2011). The 

singularity is gradually smoothed by moving 

to the center of the foundation. Thus, the 

function space for expressing the in between 

pressure should reflect these properties. The 

following function space is used in this 

treatment: 
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where ( )H a r  is the Heaviside step 

function and 0a   is the radius of the rigid 

circular foundation (see Figure 2).  

Some of the functions of the space M are 

illustrated in Figure 3. As it can be observed, 

for 0
n

  , the function is singular at r a , 

which is the border of the foundation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. N considered point at interface using to satisfy the displacement boundary condition under the disc. 
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Fig. 3. Some of functions of the function space M. 
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This function is considered because of the 

rigidity-induced singularity of vertical 

stresses at the edge of the foundation 

especially in the static case. Also, 1.0
n

   
introduces a constant function, which 

describes a smooth behavior. In the Eq. (7), 

the zero order Hankel integral transform of 

z
P  is needed, which means that the zero 

order Hankel integral transforms of all the 

members of M  are needed. They are 

available as: 
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The vertical component of displacement 

under the foundation, which implies the rigid 

displacement of the foundation, is written as:  

 

( , 0, ) 0i tw r z t e r a      (11) 

 

As mentioned earlier, for satisfying this 

equation, the normal pressure under the disc 

is written as a linear combination of some of 

the functions given in the function space M 

as: 
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where ( )
n

   is generally a complex number 

and N the number of functions used to 

express the pressure.  The zero order Hankel 

transform of the Eq. (12) is:  
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By substituting 
0
( )

z
P   from Eq. (13) into the 

Eq. (7), the vertical component of 

displacement can be written in the following 

form, which is a direct result of the linearity 

of the integral operators: 
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 (15) 

 

Writing  ( , ; )w r z    from Eq. (14) at z = 

0, and substituting the result into Eq. (11), 

where the time harmonic term is suppressed, 

the equation 
1

( ) ( , 0; )
N

n n

n

w r z  


    for 

0 r a   is obtained. Dividing the radius of 

foundation, a ,  into N-1 parts, results in N 

different points (rings), where the 

displacement boundary conditions  would be 

satisfied as:  
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which gives N algebraic equations for N 

unknown parameter , 1,2,...,
n

n N  .  

Substituting 
n

  as the solution of Eq. (16) 

into Eq. (12) results in the pressure in 

between the foundation and the underneath 
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half-space, giving the total force applied on 

the surface of the half-space as: 
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Eventually, the vertical impedance 

function is obtained as a function of 

frequency as: 
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NUMERICAL RESULTS         

 

As indicated in Eq. (15), the displacement 

components are expressed in terms of one-

dimensional semi-infinite integrals and the 

complex coefficients, 
n

 , is obtained from 

the Eq. (16). Due to the presence of branch 

points, pole, exponential and Bessel 

functions in a complex form in the 

integrands, the integrals cannot be given in 

closed-form even in the simpler case of 

isotropic material. There would be, in 

general, two branch points at 
i

  (i=1, 2), as 

stated before, lying on the formal path of 

integration. For the case of an isotropic 

solid, the branch points reduce to: 
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Here,   and   stand for the Lame constants 

of the classical theory of elasticity, while Cd 

and Cs are the dilatational and equivoluminal 

wave speeds, respectively. 

Some difficulties are encountered in 

numerical evaluations of the integrals which 

may be found in Eskandari-Ghadi et al. 

(2011). Here, the procedure accepted in 

Eskandari-Ghadi et al. (2011) is used for 

numerical evaluations. Each integral is 

decomposed into different intervals with 

limits equal to branch points and in each 

interval the relevant branch cut is used for 

1
  and 

2
 , as shown in Figure 4. 
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Fig. 4. Pole, branch points and branch cuts. 
 

Besides, the function ( )I  in Eq. (8) 

yields poles whose positions are given by 

 

2 1 1 2( ) 0I        (21) 

 

Stoneley has shown that Eq. (21) has only 

two roots p  along the real axis (Stoneley, 

1949; Rajapakse and Wang, 1993).  As for 

an isotropic solid, p  corresponds to the root 

of the Rayleigh wave function (e.g., see Pak, 
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1987). In the case of Poisson material, it can 

be shown that: 

 

1
3 3

2
p


 


   (22) 

 

The root p  of Eq. (21) corresponding to 

the materials considered in the current study 

is given in Table 1. To deal with the 

singularity at the pole, since the pole at p is 

an interior singular point, the integral is 

decomposed into 3 integrals: one integral 

with the upper limit 
p

 
 
one with a lower 

limit 
p

   and one over a small semi-circle 

of radius   above the pole,   which is a 

small number. The integrals from zero to 

p
   and from 

p
   to infinity are 

evaluated using Simpson’s rule, and the 

integral over the small semi-circle of radius 

  is evaluated using the residual method 

(e.g. Churchill and Brown, 1990).  Since the 

pole is of the first order, the integrand may 

be written in the form of ( ) ( )q I  , where 

( )q   is analytic at p  
and ( )I   has been 

given in Eqs. (8). Thus, the integral over the 

limiting small semi-circle is equal to 

Re ( )pi s  , where 
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 .  For the 

case of a branch point, the integral is broken 

up into the first 2 parts and evaluated with 

increasingly small    until the selected error 

criterion is satisfied for convergence. 

Several numerical examples are provided to 

compare the present solution with the 

existing numerical solutions for the isotropic 

half-space, and to evaluate the accuracy and 

the efficiency of the current solutions. They 

are followed by a series of parametric study 

to explore the influence of the degree of the 

material anisotropy, the frequency of 

excitation and the type of loading on the 

response.  It bears noting that all numerical 

results presented here are dimensionless, 

with a non-dimensional frequency defined as 

440 A/a   . By evaluating the integrals 

in Eq. (15), the complex coefficients, 
n

 , are 

obtained from Eq. (16), and the vertical 

displacement and the vertical impedance 

function are evaluated from Eqs. (14) and 

(18), respectively.  To this end, an isotropic 

material and three kinds of transversely 

isotropic materials are considered. The 

mechanical properties of the materials are 

listed in Table 1. The Poisson’s ratio,  , of 

the isotropic material is equal to 0.25. For 

numerical evaluation, the real and imaginary 

parts of impedance function are normalized 

as ( ) ( )
zz zz 66

Re K Re K / a A  and 

( ) ( )
zz zz 0 66

Im K Im K / a A ,  respectively. 

 

Table 1.  Properties of tested specimens. 

Material 11
A  

12
A  

13
A  

33
A  

44
A  

66
A  p 44

A

 
 

1(Isotropic) 6.0 2.0 2.0 6.0 2.0 2.0 1.08766 

2 5.5 1.5 1.8 15.9 2.0 2.0 1.03519 

3 14.0 6.0 5.0 7.5 2.0 4.0 1.03800 

4 26.0 14.0 10.0 10.0 2.0 6.0 1.02293 

*  
ij

A  in this table is in 4 210 N / mm .  
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In order to provide a proper perspective 

on the accuracy of the present method, the 

impedance function of the disc for vertical 

motion is first obtained for isotropic medium 

given in Table 1. The solution has been 

numerically evaluated for different  

functions given in Eq. (9) and it has been 

seen that the numerical results converges  to 

those of Luco and Mita (1987) rapidly. The 

vertical impedance functions evaluated in 

this paper for different N (N=5, 7, 10 and 15) 

are compared with the existing results of 

Luco and Mita (1987) in Figure 5. As it can 

be observed, although there is no significant 

difference between the results from different 

N, the results of this study are highly 

consistent with those of Luco and Mita 

(1987) for dimensionless frequency smaller 

than 3.0
0

  , when N equals 7. However, 

the real part of impedance function is 

slightly different from the results of Luco 

and Mita (1987) when the dimensionless 

frequency is larger than 3.0. It must be 

mentioned that for large buildings with large 

foundations, the dimensionless frequency 

rarely exceeds 3.0.  

Figures 6 and 7 show the spatial variation 

of the vertical component of dimensionless 

displacement  w /   for the four materials 

with respect to the radial distance r / a  for 

different values of dimensionless frequency 

0.1
0

   and 3.0 , respectively, when N 

equals 7. Figures 8 and 9 demonstrates the 

spatial variation of the vertical component of 

dimensionless displacement w /   for the 

materials given in Table 1 with respect to the 

vertical distance z / a  for different values of 

dimensionless frequency, 
0

 . Figure 10 

shows a comparison between the vertical 

impedance function evaluated in this study 

and Eskandari-Ghadi et al. (2010b), where a 

good agreement can be observed between 

the two results. Figure 11 shows the 

variation of the non-dimensional vertical 

impedance function in terms of 

dimensionless frequency. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Comparison of the results of this study with different number of functions of function space with that of Luco 

and Mita (1987). 

0

1

2

3

4

5

6

7

0 1 2 3 4 5
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Re(Present Study N=5) Im(Present Study N=5)

Re(Present Study N=7) Im(Present Study N=7)

Re(Present Study N=10) Im(Present Study N=10)

Re(Present Study N=15) Im(Present Study N=15)

0


0
(

)
z
z

K


66Re( ) Re( ) /zz zzK K aA

0 66Im( ) Im( ) /zz zzK K a A 
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As it is seen, the vertical displacement in 

different media given in Table 1 is almost 

the same if the frequency is small, while for 

large frequencies it is different in different 

materials. Figure 12 presents the variation of 

contact pressure between the rigid circular 

plate and the half-space for dimensionless 

frequency of 1.0, where a singular behavior 

can be seen at the vicinity of the edge of the 

rigid plate.    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6. Vertical component of displacement versus dimensionless radial distance for
0

0.1  . 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Vertical component of displacement versus dimensionless radial distance for

0
1.0  . 
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Fig. 8. Vertical component of displacement versus dimensionless radial distance for
0

3.0  . 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 9. Vertical component of displacement versus dimensionless vertical distance for
0

0.1  . 
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Fig. 10. Vertical component of displacement versus dimensionless vertical distance for
0

1.0  . 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11. Vertical component of displacement versus dimensionless vertical distance for

0
3.0  . 
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Fig. 12. Real and imaginary parts of vertical impedance function versus
0

 . 

 

CONCLUSIONS 

 

In this paper, with the use of a method of 

function space, the vertical impedance 

function of a rigid circular foundation 

resting on a semi-infinite transversely 

isotropic medium and also the vertical 

component of displacement of the mentioned 

medium have been obtained in frequency 

domain and presented for different values of 

frequency. It can be observed that although 

the displacements of different materials 

given in Table 1 do not differ greatly in low 

frequencies, there are great differences in 

high frequencies. In addition, the larger the 

frequency, the further the wave go.  The real 

parts of the vertical impedance functions on 

different transversely isotropic media are all 

about constant over a wide range of 

frequency, whereas their imaginary parts 

increase almost linearly with frequency. The 

fact indicates that any impedance function 

would be well approximated by a simple 

Voigt model with a linear spring and a 

dashpot arranged in parallel. 

 

NOTATION 

 

The following symbols are used in this 

paper: 

ijA = elasticity constants of half-space 

( 0)z 
 

a = radius of rigid circular foundation 

d s
C C, = dilatational and equivoluminal wave 

speeds 

= vertical displacement of rigid foundation 

( )H a r = Heaviside step function 

J = Bessel function of the first kind and vth 

order 

( )
zz

K  = vertical impedance function 

M = function space 

( , )
z

P r  = pressure in between the rigid 

foundation and the half-space 

r = radial coordinate 

t = time variable 

 = angular coordinate 

u = displacement component in r-direction 

 = Poisson’s ratio 
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w = displacement component in z-direction 

z = vertical coordinate 

 = Lame's constant 

1
 ,

2
  = radicals appearing in general 

solutions 

  
= Lame's constant 

 = Hankel's parameter 

1 2 p
  
λ λ

, , = branch points and simple pole 

on positive real axis 

 = material density 

 = angular frequency 

0 = nondimensional frequency 
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