Weak*-closed invariant subspaces and ideals of semigroup algebras on foundation semigroups

B. Mohammadzadeh^{*}

Department of Mathematics, Faculty of Sciences, Babol University of Technology, Babol, Mazandaran, Islamic Republic of Iran

Received: 27 October 2013/ Revised: 27 January 2014/ Accepted: 24 February

Abstract

Let S be a locally compact foundation semigroup with identity and $M_a(S)$ be its semigroup algebra. Let X be a weak^{*}-closed left translation invariant subspace of $M_a(S)^*$. In this paper, we prove that X is invariantly complemented in $M_a(S)^*$ if and only if the left ideal X_{\perp} of $M_a(S)$ has a bounded approximate identity. We also prove that a foundation semigroup with identity S is left amenable if and only if every complemented weak^{*}-closed left translation invariant subspace of $L^{\infty}(S, M_a(S))$ is invariantly complemented in $L^{\infty}(S, M_a(S))$.

Keywords: Complemented subspace; Foundation semigroup; Semigroup algebras.

Introduction

Throughout this paper, S denotes a locally compact Hausdorff topological semi- group. By M(S) we denote the space of all bounded complex regular Borel measures on S. This space with the convolution multiplication * and the total variation norm defines a Banach algebra. The space of all measures $\mu \in M(S)$ for which the maps $x \to \delta_x *$ $|\mu|$ and $x \to |\mu| * \delta_x$ from S into M(S) are weakly continuous is denoted by $M_a(S)$, where δ_x is the Dirac measure at x. The semigroup S is called foundation semigroup if it coincides with the closure of the set U{supp(μ) : $\mu \in M_a(S)$ }.

We note that $M_a(S)$ is a closed two-sided Lideal of M(S); see [1]. Let us point out that the second dual $M_a(S)^{**}$ of $M_a(S)$ is a Banach algebra with the first Arens

product ⑦ defined by

$$(F \odot H)(f) = F(Hf),$$

$$(Hf)(\mu) = H(f\mu), and (f\mu)(\nu)$$

$$= f(\mu * \nu)$$

for all $F, H \in M_a(S)^{**}, f \in M_a(S)^{*}, and \mu, \nu \in$

 $M_{a}(S)$.

Denote by $L^{\infty}(S, M_a(S))$ the set of all complex-valued bounded functions g on S that are μ -measurable for all $\mu \in M_a(S)$. We identify functions in $L^{\infty}(S, M_a(S))$ that agree μ -almost everywhere for all, $\mu \in M(S)$.

For every, $g \in L^{\infty}(S, M_a(S))$, define $||g||_{\infty} = \sup\{||g||_{\infty,|\mu|} : \mu \in M_a(S)||\}$, where $||.||_{\infty,|\mu|}$ denotes the essential supremum norm with respect to $|\mu|$. Observe that $L^{\infty}(S, M_a(S))$ with the complex conjugation as involution, the pointwise operations and the norm $||.||_{\infty}$ is a commutative C*-algebra.

^{*} Corresponding author: Tel: +981113234203; Fax: +981113234203; Email: b.mohammadzadeh@nit.ac.ir 2000 Mathematics Subject Classification: 43A60, 22A20.

The duality $\tau(g)(\mu) := \mu(g) = \int_S g d\mu$ defines a linear mapping τ from $L^{\infty}(S, M_a(S))$ into $M_a(S)^*$. It is well-known that if S is a foundation semigroup with identity, then τ is an isometric isomorphism of $L^{\infty}(S, M_a(S))$ onto $M_a(S)^*$; see Proposition 3.6 of [8]. Given any $\mu \in M_a(S)$ and $g \in L^{\infty}(S, M_a(S))$, define the complex-valued functions $\mu \circ g$ on S by $(\mu \circ g)(x) = \mu(g_x)$ for all $x \in S, (g_x)(y) = g(yx)$ for all $y \in S$.

Bekka in [2] has proved that a weak *-closed left translation invariant subspace X of $L^{\infty}(G)$ is invariantly complemented if and only if $X_{\perp} =$ $\{f \in L^1(G) : \langle f, \phi \rangle = 0, \phi \in X\}$ has a bounded approximate identity when G is a locally compact group. Also, weak*-closed translation invariant subspace in the semigroup algebra of a locally compact topological foundation semigroup to be completely complemented studied by A. Ghaffari in [4]. See, also [5]. In this work, our main purpose is to generalize Bekka's results for a foundation semigroup with identity.

Results

Let X be a weak^{*} -closed left translation invariant subspace of $L^{\infty}(S, M_a(S))$. Then X is said to be invariantly complemented in $L^{\infty}(S, M_a(S))$ if has a closed left translation invariant Х complemented in $L^{\infty}(S, M_{\alpha}(S))$ or equivalently, if X is the range of a bounded projection on $L^{\infty}(S, M_{a}(S))$ commuting with left translations. Indeed, if X has a closed left translation invariant complement in $L^{\infty}(S, M_a(S))$, then there exists a closed left translation invariant subspace Y of $L^{\infty}(S, M_a(S))$ such that $L^{\infty}(S, M_a(S)) \cong X \oplus Y$. Define a mapping P on $L^{\infty}(S, M_a(S))$ such that $P(f_1 + f_2) = f_1$ where $f = f_1 + f_2 \in L^{\infty}(S, M_a(S))$. It is routine to show that P satisfies the conditions of a bounded projection commuting with left translations.

On the other hand if P is a bounded projection commuting with left translations on $L^{\infty}(S, M_a(S))$ with its range X, then the kernel of P is a left translation invariant subspace of complemented to X.

Also, X is called a topologically invariantly complemented in $L^{\infty}(S, M_a(S))$

if X is the range of a bounded projection on

$$L^{\infty}(S, M_{a}(S))$$
 such that
 $P(\mu \circ f) = \mu \circ P(f)$
for all $\mu \in M_{a}(S)$ and $f \in L^{\infty}(S, M_{a}(S))$.

Let LUC(S) be the space of all left uniformly continuous functions on S; recall that a function $g \in C_b(S)$ is called left uniformly continuous if the mapping $x \to {}_xg$ from S into $C_b(S)$ is $\|.\|_{\infty}$ continuous, where $C_b(S)$ denotes the space of all bounded continuous complex-valued functions on S. It is not hard to see that $\mu \circ g \in LUC(S)$ with $\|\mu \circ g\|_{\infty} \leq \|g\|_{\infty} \|\mu\|$ for all $\mu \in M_a(S)$ and $f \in L^{\infty}(S, M_a(S))$. Recall that LUC(S)* is a Banach algebra with the Arens product defined by

$$\langle n.m, f \rangle = \langle n, m. f \rangle$$
 $(n, m \in LUC(S)^*, f \in LUC(S)),$
where $(m. f)(x) = \langle m, {}_{x}f \rangle$ for all $\in S$.

The notion of (topological) invariantly complemented subspace of LUC(S) is de fined in a similar way. We commence with the following proposition.

Proposition 2.1 Let S be a foundation semigroup with identity e. If I is a closed left ideal in $M_a(S)$, then its annihilator

$$I^{\perp} = \left\{ f \in L^{\infty}(S, M_a(S)) : \langle f, \mu \rangle = 0 \quad \mu \in I \right\}$$

is a weak*- closed left translation invariant subspace of $L^{\infty}(S, M_a(S))$. Conversely, if X is a weak*- closed left translation invariant subspace of $L^{\infty}(S, M_a(S))$, then its annihilator X_{\perp} is a closed left ideal in $M_a(S)$.

Proof. Recall that $\langle \mu \circ f, \nu \rangle = \langle f, \mu * \nu \rangle$ for all $\mu, \nu \in M_a(S)$ and $f \in L^{\infty}(S, M_a(S))$. If I is a left ideal in $M_a(S)$ then obviously I^{\perp} is a weak^{*}-closed subspace of $L^{\infty}(S, M_a(S))$ and if (μ_{α}) is a bounded approximate identity of $M_a(S)$ (see [6]), then we have

for each $x \in S$ which implies that I^{\perp} is left translation invariant.

Conversely, let X be a weak^{*} -closed left translation invariant subspace of $L^{\infty}(S, M_a(S))$. Let $\nu \in X_{\perp}$ and $\mu \in M_a(S)$. Then it is easy to see that

 $\langle \mu * \nu, f \rangle = 0$. It follows that X_{\perp} is a left ideal of $M_a(S)$. Clearly X is closed. Hence X_{\perp} is a closed left ideal of $M_a(S)$, as required.

Theorem 2.2 Let S be a foundation semigroup with identity e, X be a weak*-closed left translation invariant subspace of $L^{\infty}(S, M_a(S))$ and let X_{\perp} be the annihilator of X in $M_a(S)$. Then the following assertions are equivalent:

(i) X is topologically invariantly complemented in $L^{\infty}(S, M_a(S))$.

(ii) X is invariantly complemented in $L^{\infty}(S, M_{\alpha}(S))$.

(iii) $X \cap LUC(S)$ is invariantly complemented in LUC(S).

(iv) $X \cap LUC(S)$ is topologically invariantly complemented in LUC(S).

(v) The closed left ideal X_{\perp} has a bounded right approximate identity.

Proof. $(i) \Rightarrow (ii)$. Let P be a projection from $L^{\infty}(S, M_a(S))$ into X defined

with $P(\mu \circ f) = \mu \circ P(f)$ for all $\mu \in M_a(S)$ and $f \in L^{\infty}(S, M_a(S))$. Let also (μ_{α}) be a bounded approximate identity of $M_a(S)$. By the equation $(\mu \circ f)(\nu) = f(\nu * \mu)$ we have

$$\langle \mu, P(xf) \rangle = \lim_{\alpha} \langle \mu_{\alpha} * \mu, P(xf) \rangle$$

$$= \lim_{\alpha} \langle \mu, \mu_{\alpha} \circ P(xf) \rangle$$

$$= \lim_{\alpha} \langle \mu, P(\mu_{\alpha} \circ xf) \rangle$$

$$= \lim_{\alpha} \langle \mu, P((\delta_{x} * \mu_{\alpha}) \circ f) \rangle$$

$$= \lim_{\alpha} \langle \mu, (\delta_{x} * \mu_{\alpha}) \circ P(f) \rangle$$

$$= \lim_{\alpha} \langle \mu, \mu_{\alpha} \circ xP(f) \rangle$$

$$= \langle \mu, xP(f) \rangle = 0$$

which implies that $P(_x f) = _x P(f)$ and so, X is invariantly complemented in $L^{\infty}(S, M_a(S))$.

To show $(ii) \Rightarrow (iii)$; let $P: L^{\infty}(S, M_a(S)) \rightarrow X$ be a bounded projection commuting left translation. If $f \in LUC(S)$, then

$$\begin{aligned} \left\| {_{x}P(f) - {_{y}P(f)}} \right\|_{\infty} &= \left\| P({_{x}f}) - P({_{y}f}) \right\|_{\infty} \\ &= \left\| P({_{x}f - {_{y}f}}) \right\|_{\infty} \\ &\leq \left\| P \right\| \left\| {_{x}f - {_{y}f}} \right\|_{\infty}. \end{aligned}$$

Hence $P(f) \in LUC(S)$; that is $P(f) \in X \cap LUC(S)$. On the other hand, if we have $f \in X \cap LUC(S)$, then $f \in X$ and so, Pf = f. By the definition of invariantly complemented of

 $X \cap LUC(S)$, it is an invariantly complemented subspace of LUC(S), as required.

For the proof of implication $(iii) \Rightarrow (iv)$ it is enough to show that the mapping P which is taken in the implication $(ii) \Rightarrow (iii)$ satisfies the equality $P(\mu \circ f) = \mu \circ P(f)$

for all $\mu \in M_a(S)$ and $f \in L^{\infty}(S, M_a(S))$. To this end, let $f \in LUC(S)$. Since $\mu \circ f$ is an element of LUC(S), we have $P(\mu \circ f) = \mu \circ P(f)$.

To prove $(iv) \Rightarrow (v)$, let P be a bounded projection from LUC(S) onto

$$\begin{split} &X \cap LUC(S) \quad \text{with} \quad P(\mu \circ f) = \mu \circ P(f) \quad \text{for all} \\ &\mu \in M_a(S) \text{ and } f \in LUC(S). \\ &\text{Define} \end{split}$$

$$P': L^{\infty}(S, M_{a}(S)) \to L^{\infty}(S, M_{a}(S))$$

through
$$\langle P'f, \mu \rangle = \overline{P(\mu \circ f)(e)} \qquad \left(\mu \in M_{a}(S), f \in L^{\infty}(S, M_{a}(S))\right).$$

To see that the range of p' is X, first observe that when $f \in LUC(S)$ we have

$$P(\mu \circ f)(e) = (\mu \circ Pf)(e) = \langle Pf, \mu \rangle;$$

that is, $P'_{|LUC(S)} = P$. Now, let (μ_{α}) be a bounded approximate identity of M_a(S).

Then

$$\langle \mu, Pf \rangle = \lim_{\alpha} \langle \mu * \mu_{\alpha}, Pf \rangle$$
$$= \overline{\lim_{\alpha} ((\mu * \mu_{\alpha}) \circ f)(e)}$$
$$= \overline{\lim_{\alpha} P(\mu \circ (\mu_{\alpha} \circ f))(e)}$$

$$= \lim_{\alpha} \langle \mu, P(\mu_{\alpha} \circ f) \rangle = 0$$

which implies that $P'f \in (X_{\perp})^{\perp} = X$. Thus the range of P' is a subset of X.

If $f \in X$ and $\nu \in X_{\perp}$, then $\langle \nu, \mu f \rangle = \langle \mu * \nu, f \rangle = 0 \quad (\mu \in M_a(S)).$ Consequently $\mu \circ f \in (X^{\perp})^{\perp} = X$. Hence $\mu \circ f \in X \cap LUC(S)$ and

$$\langle \mu, P'f \rangle = \overline{P(\mu \circ f)(e)} = \overline{(\mu \circ f)(e)} = \langle \mu, f \rangle;$$

that is P'f = f for all $f \in X$ and so, the range

of P' is X. Therefore P' is a bounded projection onto X extending P.

Now let (μ_{α}) be a bounded approximate identity of $M_a(S)$ bounded by one. Set

 $I = X_{\perp}$ and C = 1 + ||P||. Let $E' \in L^{\infty}(S, M_{\alpha}(S))$ be a weak^{*} -closure point of (μ_{α}) . Define a linear functional E on $L^{\infty}(S, M_{\alpha}(S))$ by

$$\langle f, E \rangle = \langle f - P'f, E' \rangle \ \Big(f \in L^{\infty} \big(S, M_a(S) \big) \Big),$$
 then

$$||E|| \le (1 + ||P||)||E'|| \le C$$

 $\begin{array}{ll} \text{and} & \langle f, E \rangle = 0 \quad \text{for all} \quad f \in I^{\perp}. \quad \text{Thus} \quad E \in \\ B_C(I^{**}) = \{F \in I^{**} \colon \|F\| \leq C\} \quad \text{where} \ I^{**} \end{array}$

denotes the continuous bidual of I. By Alaoglu's Theorem $B_c(I)$ is weak^{*}-dense in

 $B_{c}(I^{**})$, and so, there exists a net (ν_{β}) in $B_{c}(I)$ such that $\nu_{\beta} \to E$ with respect to $\sigma(I^{**}, I^{*})$ topology. Since X is complemented in $L^{\infty}(S, M_{a}(S))$, it is easy to see that $\nu_{\beta} \to E$ with respect to weak * topologyas well. We need only to show that (ν_{β}) is a weak right approximate identity for I (see [3]).

To this end, let $\mu \in I$ and $f \in L^{\infty}(S, M_a(S))$. Then we have

$$\begin{split} \lim_{\beta} \langle \mu * \nu_{\beta} - \mu, f \rangle &= \lim_{\beta} \langle \mu * \nu_{\beta} \rangle - \langle \mu, f \rangle \\ &= \lim_{\beta} \langle \nu_{\beta}, \mu \circ f \rangle - \langle \mu, f \rangle \\ &= \langle \mu \circ f - P'(\mu \circ f), E' \rangle - \langle \mu, f \rangle \\ &= \langle \mu \circ f, E' \rangle - \langle \mu, f \rangle - \langle P'(\mu \circ f), E' \rangle \\ &= \lim_{\alpha} \langle \mu_{\alpha}, \mu \circ f \rangle - \langle \mu, f \rangle \\ &- \lim_{\alpha} \langle \mu_{\alpha}, P'(\mu \circ f) \rangle \\ &= \lim_{\alpha} \langle \mu * \mu_{\alpha}, f \rangle - \langle \mu, f \rangle \\ &- \lim_{\alpha} \overline{((\mu_{\alpha} * \mu) \circ f)(e)} \\ &= -\lim_{\alpha} \overline{((\mu_{\alpha} * \mu) \circ f)(e)} \end{split}$$

$$= -\langle \mu, P'f \rangle = 0 \text{ (since } P'f \in X)$$

which implies that (ν_{β}) is a bounded weak right approximate identity. This completes the proof of the implication $(i\nu) \Rightarrow (\nu)$.

Finally to show $(v) \Rightarrow (i)$, let (v_{β}) be a bounded right approximate identity for X_{\perp} and $E \in L^{\infty}(S, M_a(S))$ be the weak^{*}-limit point of the net (v_{β}) . Define

$$\begin{split} P: L^{\infty}\bigl(S, M_a(S)\bigr) &\to L^{\infty}\bigl(S, M_a(S)\bigr) \\ \text{by} \\ \langle \mu, Pf \rangle &= \langle \mu, f \rangle - \langle \mu \circ f, E \rangle \quad (\mu \in M_a(S), f) \end{split}$$

 $f \in L^{\infty}(S, M_a(S))).$

Clearly P is a bounded projection with range X. For all $\mu, \nu \in M_a(S)$ and $f \in L^{\infty}(S, M_a(S))$, since

We have then X is topologically invariantly complemented in $L^{\infty}(S, M_a(S))$ as required. This completes the proof of the theorem.

Before the next theorem, recall that a foundation semigroup S is called left amenable if there exists a left invariant mean on $L^{\infty}(S, M_a(S))$ (or equivalently, on LUC(S)).

Theorem 2.3 Let S be a foundation semigroup with identity. Then the following assertions are equivalent:

(i) S is left amenable.

(ii) Every complemented weak*-closed left translation invariant subspace of $L^{\infty}(S, M_{a}(S))$ is invariantly complemented in $L^{\infty}(S, M_{a}(S))$.

(iii) Every complemented weak*-closed left translation invariant subspace of $L^{\infty}(S, M_a(S))$ is topologically invariantly complemented in $L^{\infty}(S, M_a(S))$.

(iv) A closed left ideal I of $M_a(S)$ has a bounded right approximate identity if and only if its annihilator I^{\perp} is complemented in $L^{\infty}(S, M_a(S))$.

Proof. Theorem 2.2 shows that (ii), (iii) and (iv) are equivalent. To see (ii) \Rightarrow (i), let $I_0(M_a(S)) \coloneqq \{\mu \in M_a(S) : \mu(S) = 0\}$. Observe that $I_0(M_a(S))^{\perp} = \mathbb{C}$. 1_S and so the left ideal $I_0(M_a(S))$ has a right bounded approximate identity. From [7] we conclude that S is left amenable, as required.

(i) \Longrightarrow (ii). Let X be a weak*-closed left translation invariant subspace of $L^{\infty}(S, M_a(S))$ and let $P: L^{\infty}(S, M_a(S)) \to X$ be a bounded projection on to X. Let M be a left invariant mean on $L^{\infty}(S, M_a(S))$. For $f \in LUC(S)$ and $\mu \in M_a(S)$ the mapping

$$x \rightarrow \langle {}_{x}P({}_{x}f), \mu \rangle$$

is a continuous and bounded function on S. Define an operator $Q: LUC(S) \rightarrow L^{\infty}(S, M_a(S))$ by

 $\langle Q(f), \mu \rangle = M(x \longrightarrow \langle {}_{x}P({}_{x}f), \mu \rangle).$

It is readily verified that $||Q|| \le ||P||$, Q commutes with left translations, Q(f) = f for all $f \in X \cap$ LUC(S) and $Q(LUC(S)) \subseteq X \cap LUC(S)$. Thus $X \cap LUC(S)$ is invariantly complemented in LUC(S). Theorem 2.2 shows that X is invariantly complemented in $L^{\infty}(S, M_a(S))$. The proof is complete.

References

- Baker A.C. and Baker J.W. Algebra of measures on locally compact semigroups III. J. London Math. Soc., 4: 685-695 (1972).
- 2. Bekka E. B. Complemented subspace of $L^{\infty}(G)$, ideals of $L^{1}(G)$ and amenability. Monatsh. Math. **109**: 195-203(1990).
- 3. Bonsall F. and Duncan J. Complete Normed Algebras.

Springer-Verlag, New York (1973).

- Ghaffari A. Projection on weak*-closed subspace of dual Banach Algebra. Acta Math. Sinica, English series, 28: 477-486(2012).
- Ghaffari A. Projection on to invariant subspace of some Banach Algebra. Acta Math. Sinica, English series, 24: 1089-1096 (2008).
- Lashkarizadeh Bami M. On the multipliers of (Ma(S),L∞(S,Ma(S))) of a foundation semigroup S. Math.Nachr., 181: 73-80 (1996).
- Lau A.T. Analysis on a class of Banavh algebras with application to harmonic analysis on locally compact groups and semigroups. *Fund. Math.* **118**: 161-175(1983).
- 8. Sleijpen G .L. *The* dual of the space of measures with continuous translations. *Semigroup Forum* **22**: 139-150 (1981).