Construction of an *iss* deleted mutant strain from a native avian pathogenic *Escherichia coli* O78: K80 and in vitro serum resistance evaluation of mutant

Salari, S. 1, Zahraei Salehi, T. 1*, Nayeri Fasaei, B. 1, Karimi, V. 2

Key words:

iss, lambda red recombineering, Native APEC-O78 strain χ 1378, serum resistance

Correspondence

Zahraei Salehi, T. Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

Tel: +98(21) 61117052 Fax: +98(21) 66431105 Email: tsalehi@ut.ac.ir

Received: 3 October 2013 Accepted: 20 January 2014

Abstract:

BACKGROUND: Colibacillosis, caused by different serotypes of avian pathogenic Escherichia coli (APEC), is one of the important diseases in poultry industry. The isolate O78 is the most prevalent serotype of APEC in Iran. One of the APEC virulence factors, increased serum survival (iss) gene, is related to serum resistance. The usual form of colibacillosis in avian is extraintestinal, and serum resistance is applied one way by APEC to reach internal organs; hence, it appears that the control of colibacillosis in poultry regarding the deletion of iss and the construction of a serum sensitive APEC strain is beneficial. Additionally, the knowledge about APEC serum resistance could be extended using mutant strains. OBJECTIVES: The present study was an attempt to generate an iss mutant strain from native APEC-O78 strain χ1378 and to study the level of serum resistance of native APEC-O78 strain χ 1378 in comparison with its mutant (APEC-O78 strain $\chi 1378\Delta iss$). METHODS: The lambda red recombinase system was utilized to delete iss gene in native APEC-O78 strain χ 1378. This strain was first transformed with the plasmid pkD46 to introduce the lambda red recombinase system and then the PCR product with sequence homology to the iss gene and a kanamycin resistance marker was transformed into the APEC-O78 strain χ 1378. Serum sensitivity of mutant and wild type strain was investigated by microtiter test. **RESULTS**: The generation of mutant was successful and the iss was replaced with kanamycin resistance cassette. Also, it was observed that the mutant was sensitive to serum. However, serum sensitivity of iss deleted mutant was not statistically different from its parents. **CONCLUSIONS:** Application of lambda red recombination could be a simple and useful technique for production of a precisely defined gene deletion. Also, there may be some genes that compensate the activity of iss gene.

Introduction

Colibacillosis is still considered the most important bacterial disease affecting the poultry industry (Barnes et al., 2008; Derakhshandeh et al., 2009; Kariyawasam et al., 2006; Kariyawasam and Nolan,

2009). This disease occurs by many serotypes of Avian Pathogenic *Escherichia coli* (APEC), such as O1, O2, and O78 (La Ragoine et al., 2000; Mellata et al., 2003; Nayeri Fasaei et al., 2009; Stordeur et al., 2004; Vandekerchove et al., 2004; Zahraei Salehi et al., 2004); however, it is usually the result of serotype

¹Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

²Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

O78 in Iran (Zahraei Salehi et al., 2004). Clinical form of colibacillosis in avian, in contrast with mammalian colibasillosis, is extraintestinal, while intestinal form is more prevalent in mammals (Barnes and Gross, 2005; Gross, 1994). The use of prevalent pathogenic serotypes, in each country, is advisable to prepare vaccines and to control the vaccination strategies (Zahraei Salehi et al., 2004). Therefore, to this time, researches about the native APEC-O78 strain χ 1378, along with other methods of colibacillosis control such as the use of antibiotics, farm sanitation, and other management practices, could be helpful. Farm sanitation and management practices are arduous and expensive, and also the cost involved in the treatment, undesirable side effects, appearance of apparent transferable antibiotic resistance, and public concerns over the use of antibiotics limit the use of antibiotics (Derakhshandeh et al., 2009; Gomis et al., 2003; La Ragione et al., 2001; La Ragione et al., 2004). Therefore, control of the disease through vaccination, especially with live attenuated vaccines, is thought to be a logical and desirable approach (Zahraei Salehi et al., 2004). It is worthwhile to consider native and frequent strains for studies of control and vaccine approaches (Zahraei Salehi et al., 2004). Live E. coli vaccine has been found to induce a more marked level of immunity (Kwaga et al., 1994). It is known that a properly delivered live bacterial vaccine will be more effective since all of the relevant antigens will be present to stimulate both cellular immunity and humoral immunity at the appropriate site, while these antigens may be absent or altered in killed bacteria. Also, the preparations of subunit vaccines are not cost effective (Kwaga et al., 1994). Many different live attenuated vaccines have been used to control colibacillosis; however, there is no vaccine currently available that is economical, functional in farms, and also effective against different strains of APEC (Derakhshandeh et al., 2009; Nolan et al., 2003; Nolan et al., 1992; Vidotto et al., 1990). One approach to develop attenuation and vaccination can be achieved through inactivation of one or more virulence factors (Nayeri Fasaei et al., 2009). In addition, identification and characterization of virulence factors in APEC, as a spectacular research area, could be done by construction of different mutants (Sharan et al., 2009). The role of different virulence factors related

to serum resistance in mammalian E. coli and avian E. coli has been investigated; however, the knowledge about the serum resistance mechanism of APEC-O78 is ill-defined (Mellata et al., 2003). Increased serum survival (iss) gene, as a conserved virulence gene, has a role related to serum resistance and frequently occurs in avian E. coli, especially in avian pathogenic E. coli (Skyberg et al., 2008). Also, iss is located in different serotypes of APEC (Derakhshandeh et al., 2009). In addition, the ability of APEC to resist the host protective effects of serum plays a significant role in the development of APEC in body fluids and internal organs (Mellata et al., 2003). Since there is no report about the mechanism of serum resistance in native APEC-O78 strain χ1378, it seems worthwhile to delete iss and investigate the contribution of iss gene to serum resistance to have a better understanding of how to control colibacillosis.

Materials and Methodes

A. Construction of native APEC-O78 strain χ 1378 Δiss : The bacterial strains used in this study were routinely cultured on Luria-Bertani (LB) agar and broth, containing the appropriate antibiotics. The primers used in this study are listed in table 1. Deletion of iss gene was carried out in a virulent wild native strain of APEC-O78 \(\chi\)1378, isolated from a chicken with systemic colibacillosis in Iran, as described previously (Datsenko and Wanner, 2000; Derakhshandeh et al., 2009; Horne et al., 2000; Lynne et al., 2007b; Nayeri Fasaei et al., 2009; Skyberg et al., 2008). Briefly, after serotyping of native APEC-O78 strain γ1378 (MAST serotyping kit; MAST Group Ltd, Merseyside, UK), the presence of iss gene (760bp) was detected by PCR using iss upper (F) and iss lower (R) primers. Then, iss gene was sequenced in APEC-O78 strain χ 1378 (Derakhshandeh et al., 2009). The PCR was carried out on a total volume of 25 µL containing 1x PCR buffer, 1.6 mM MgCl2, 0.2 mM dNTPs, 0.5 μM of each primer, 1.25 U of Taq DNA polymerase and 10 μg of template DNA (PCR Set System, Sinaclon, Tehran, Iran). The amplification program was used at 94°C for 5 min, 30 cycles of 94°C for 30 sec, 55°C for 30 sec, 72°C for 30 sec, and 72°C for 7 min (Techne Thermocylcer, TC-512). Temperature sensitive plasmid pKD46, encoding the lambda Red recombinase (Nature Technology

Corporation, England), was transformed into electrocomponent native APEC-O78 strain χ 1378 by electroporation. Plasmids were purified using commercial kit (Plasmid Isolation Kit Minipreparation, MBST, Tehran, Iran). L-Arabinose was used for the induction of the Lambda Red genes expression at 10 mM final concentration (BBL, USA). Overnight bacterial cultures of native APEC-O78 strain χ1378 were diluted 1: 100 into 8 mL of fresh SOB medium (each liter containing 20 g tripton, 0.5 g yeast extract, and 1 mL of 0.25 M KCl) and incubated at 37°C, while shaking, until they reached an OD600nm of 0.6. Culture was then concentrated by centrifugation at 3200 \times g for 15 min at 4°C. From this step, everything was maintained on ice. After discarding the supernatant, cells were then re-suspended in 4, 2 and 1 mLofice-cold 10% glycerol (Merck, Germany) and centrifuged at 3200, 17900 and 17900 \times g for 15, 2 and 2 min, respectively, at 4°C. After these 3 washing steps, the cells were suspended in 80 µLicecold 10% glycerol and used immediately in 40 µL aliquots for electroporation step. Electroporation was carried out using Gene Pulser® II Electroporation System and cold Gene Pulser[®] 0.2 Cm gap Cuvettes (Bio-Rad[®] Laboratories Inc., Richmond, CA) at 2.5 kV with 25 μ F and 200 Ω by adding 50 ng of pKD46 to native APEC-O78 strain χ 1378 electrocompetent cells. Also, a control reaction, without adding plasmid, was electro-porated. Immediately after electroporation, cells were resuspended in 1 mL of cold LB and incubated for 1.5 h at 30°C. Five hundred microliters of the mixture were plated on LB containing 100 µg/mL ampicillin, and the plates were incubated at 30°C overnight. Ampicillin-resistant, temperature-sensitive colonies were selected for transformation by kanamycin cassette flanked by 5' and 3' sequences of the iss gene. Primers for - mut - iss and rev - mut - iss, and pKD4 as template, were used to amplify the kanamycin cassette flanked by homolog regions of 3' and 5' end of iss gene (1.6 kb). High fidelity PCR amplification was conducted using 15 reactions of AccuPowerTM HF PCR PreMix (BIONEER) containing 1 μL of pKD 4 template, 1 μL of each primer (10 μM) and 17 μL of distilled water. PCR conditions were as follows: 94°C for 3 min, followed by 30 cycles of 94°C for 30 sec, 58°C for 30 sec, and 72°C for 30 sec min and then an extension period of 72°C for 7 min (Techne Thermocycler, TC-

512). The PCR product was purified from the agarose gel by manufacture's protocol (Gene Jet Gel Extraction Kit, Fermantase), then confirmed by agarose gel. A single fresh colony of native APEC-O78 strain \(\chi 1378 \) containing pKD46 was placed into 5 mL of LB-ampicillin and shaken at 30 °C overnight. Subsequently, 500 µL of this culture was mixed with 50 mL SOB containing 100µg/mL ampicillin and Larabinose was added to a final concentration of 10 μm. The mixture was incubated at 30 °C with shake. At an OD_{600nm} of 0.6, the cells were made electrocompetent following this protocol. Cells were concentrated by centrifugation at 3200 ×g for 15 min, 4°C. Then, 4 washing steps, at 4°C, carried out by 10, 5, and 2.5 mL of cold 10% glycerol and centrifugation at 3200 ×g for 15 min for each step. Then pellet were mixed with 250 µL of cold 10% glycerol. 100 µL of electrocompetent cells (APEC-O78 strain µL378 containing pKD46) were mixed with 300 ng of purified PCR product and this mixture was electroporated as described above and then was spread on LB agar plates containing 50 µg/mL kanamycin. After kanamycin selection, the expected deletions in mutants were verified by PCR protocol targeting the new antibiotic resistance cassette junction fragment (1.8kb) through the use of the iss upper (F) and iss lower (R) primers on the kanamycin resistant colonies. The PCR reaction was performed in 25 µL reaction volume containing 2.5 µL of 10X PCR buffer, 1.6 mM of MgCl2, 0.2 mM of deoxynucleoside triphosphates, 0.5 mM of each of the upstream and downstream primers (10 pmol), 1.25 U of Taq DNA polymerase and 50 ng of DNA template (PCR Set System, Sinaclon, Tehran, Iran). PCR amplification involved 30 cycles of denaturation at 94°C for 30 sec, annealing at 55°C for 30 sec, and elongation at 72°C for 30 sec in a thermocycler (Techne Thermocylcer, TC-512). The reaction mixture was held at 94°C for 5 min before and 72°C for 7 min after the reaction.

B. In vitro serum resistance assay of native APEC-O78 strain χ 1378 and its mutant by microtiter method: Tow hours culture of APEC-O78 strain χ 1378, APEC-O78 strain χ 1378 Δ iss, and serum sensitive DH5 α (control), grown in 3 mL Peptone Glucose (PG) broth (Difco), were adjusted to 0.5 McFarland standard (0.5 mL of 0.048 M BaCl2 (1.17% w/v BaCl2.2H2O) to 99.5 mL of 0.18 M

H2SO4 (1% v/v)). Then, 10-fold serial dilutions of each culture have been prepared and 100 µL of 10-3 dilution (104 CFU), verified by viable count was dispensed into flat-bottomed 96-well microtiter plates and mixed with 100 µL of 50% chicken serum diluted in phosphate-buffered saline. The experiment was repeated using PG broth instead of serum. Also, as medium control, 100 µL of serum mixed with 100 µL PG broth also included. Plates were incubated at 37°C and the growth was monitored using a microplate reader set at 490 nm (Stat fax-2100, UK) every 30 min for 4 hr. The experiment was repeated three times. The results are the average of three experiments. A one-way ANOVA was used to test the null hypothesis of equal mean growth rates among the strains. A post hoc test, Fisher LSD, was used to identify differences between strains with P-value 0.05 (Lee et al., 1991; Lynne et al., 2007a; Wooley et al., 1991).

Results

The iss gene was deleted in native APEC-O78 strain \(\chi\) 1378 to generate a mutant (APEC-O78 strain $\chi 1378 \Delta iss$) as described by Datsenko and Wanner (Datsenko and Wanner, 2000). At first, by PCR, with specific primers for iss in native APEC-O78 strain χ1378, the 760 bp PCR product was detected (Figure 1) and sequenced. The sequence was submitted to GenBank by Derakhshandeh et al. (2009) with the assigned accession number FJ416147. Then, the pKD46 electroporated to electrocompetent native APEC-O78 strain γ1378, and this strain was ampicillin resistante and sensitive to temperature higher than 30°C. The process of native APEC-O78 strain $\gamma 1378 \Delta iss$ construction is shown in Figure 1. This figure shows 1.6 kb purified PCR product of the kanamycine cassette flanked with iss homology. Also, there are different sizes of band with the PCR protocol targeting the new antibiotic resistance cassette junction fragment in wild-type and mutant strain after the replacement of kananamycin cassette (Figure 1). The resistance of three strains to serum, native APEC-O78 strain χ1378 (wild), native APEC-O78 strain $\chi 1378\Delta iss$ (mutant), and DH5 α (serum sensitive) were investigated using microtiter test. The results show that the growth of wild type, mutant strain, and DH5α were not statistically different in PG broth (p<0.05; Figure 2). DH5 α grew significantly lower in chicken serum than it did in wild type and mutant strain (Figure 3; p<0.05). Also, in comparison with wild type, the growth of mutant in chicken serum decreased; however, it was not significant (Figure 3; p<0.05).

Discussion

Colibacillosis, an Escherichia coli infection, is a major problem for the poultry industry (Barnes et al., 2008; Derakhshandeh et al., 2009; Kariyawasam et al., 2006; Kariyawasam and Nolan, 2009). O1, O2, and O78 serotypes of APEC are the major etiological agent for colibacillosis in poultry (Vidotto et al., 1990); however, in Iran the majority of colibacillosis is related to O78 serotype (Zahraei Salehi et al., 2004). Prevention and control of colibacillosis by vaccination is one of the inquiries of researchers, and the use of native strain is advised in vaccine preparation (Zahraei Salehi et al., 2004). The present study investigated native APEC serotype O78. The pathogenesis of avian E. coli is different from mammalian E. coli, since in mammals intestinal form is more prevalent while the extraintestinal form occurs more in avian (Nolan et al., 2003). In addition, serum resistance is at least one of the mechanisms used by APEC to reach internal organs of chickens (Mellata et al., 2003). With regard to the act of iss gene, which increased serum resistance, it seems that deletion of iss from native APEC-O78 strain χ1378 could be profitable in controlling colibacillosis. On the other hand, there have been few investigations about the mechanism of serum resistance in APEC-O78 (Mellata et al., 2003). In the present study, the iss gene was deleted from native APEC-O78 strain χ 1378 by lambda red recombineering (Datsenko and Wanner, 2000). iss gene was replaced with kanamycin cassette by homologous recombination due to red recombinase enzymes, produced by pKD46; as a result, the mutant strain was kanamaycin resistant and also the PCR result shows 1.8 kb of the PCR product. This confirms the deletion of iss from native APEC-O78 strain χ1378. Lynne et al. (2007) deleted iss from APEC-O2 by pSKY5000 (Lynne et al., 2007b), while in the present study pKD46 was used. The lambda Red recombinase was expressed by pSKY5000 rather than pKD46. pSKY5000 is a

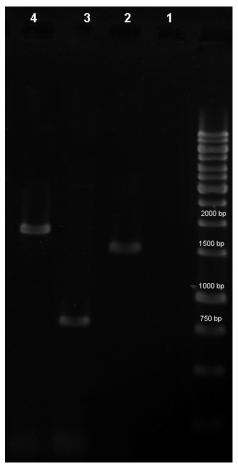


Figure 1. PCR results for mutant screening, Lane 1: 1 Kb marker; Lane 2 & 3: PCR results by for-mut-iss and rev-mut iss primers (no band in wild type, 1.6 kb in mutant); Lane 4 & 5: PCR results by iss upper and iss lower primers (760 bp in wild type, 1.8 kb in mutant).

chloramphenicol resistant derivative of pKD46. Our results show that the method of mutagenesis, used in the present study, may be more comfortable than the suicide vector. The findings of Heiat et al. (2012), Nayeri et al. (2009) and Zare et al. (2008), that deleted different genes from different strains, confirmed this subject (Heiat et al., 2012; Nayeri Fasaei et al., 2009; Zare et al., 2008). This process is not difficult or expensive. In methods that use suicide vectors, there are two recombination steps (Herring et al., 2003). In addition, designing and construction of these vectors are labor intensive and depend on employment of several enzymes, while in the method used in our study, applied by little time and effort, and successfully, the mutant was generated by one step recombination. Moreover, in Datsenko and Wanner method, temperature sensitive helper plasmids could be easily eliminated by high temperature in mutant

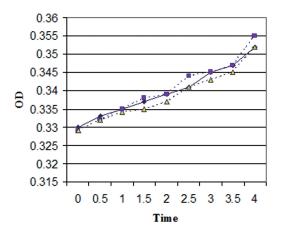


Figure 2. The growth rate of APEC-O78 strain χ 1378, APEC-O78 strain χ 1378 Δiss and DH5 α in PG broth at different times.

APEC-O78 strain χ 1378 -- Δ - DH5 α -- DH5 α -- APEC-O78 strain χ 1378 Δiss

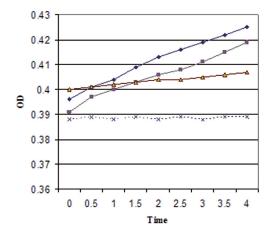


Figure 3. The growth rate of APEC-O78 strain χ 1378, APEC-O78 strain χ 1378 Δ iss and DH5 α (sensitive to serum) in chicken serum at different times. — APEC-O78 strain χ 1378 \star 1378 \star 1378 Δ iss ...×... Control

strain (Herring et al., 2003; Tischer et al., 2001). The mutant presented in this study could be examined in alternative or next researches, such as invivo evaluation of immunization, colonization, and invasion or used to construct multiple deletions. In the present study, the resistance of native APEC-O78 strain $\chi 1378\Delta iss$ to chicken serum, in comparison with wild type, was investigated by microtitr assay (Lynne et al., 2007a). Results demonstrated that there is no significant difference between mutant and wild type strain (p<0.05). Mellata et al. (2003) investigated the role of K1 capsule, P fimbriae, and O78 LPS in APEC in resistance to serum and demonstrated that the K1 capsule is probably required to prevent serum effect

Table 1. Primers used in this study.

Primers name	Sequences (5' to3')	Ref.
iss upper(F)	GTGGCGAAAACTAGTAAAACAGC	Derakhshandeh et al.,
iss lower(R)	CGCCTCGGGGTGGATAA	2009; Lynne et al., 2007a
for- mut- iss	TATTCATTTCCCATGATTCTGAGTACCTACCAAGTCTGAGTGTGTAGGCTGGAGCTGCTT	Lynne et al., 2007a
rev-mut- iss A	AAAAACAACTGTAGGGAGCCCAGAAGTATATTAATGAACACATATGAATATCCTCCTTAG	

in particular strains, such as O1 and O2, but is not needed to protect O78. In addition, they showed that P fimbriae has not a significant role in serum resistance in O2 strain but maybe has a role in other serotypes and need to be investigated. Their study also implicated that in O1 strains, in addition to LPS, there may be other factors related to serum resistance. In their study, the presence of iss and traT were demonstrated in all mutant and wild type strains. Also, the mutant strains of APEC O78:K80 and APEC O2:K1 contained iss and traT genes but had lost the K1, or the O serotype was not protected against the bactericidal effect of serum. However, these mutant strains were more resistant than the control strains. The control strains were wild type and iss and traT negative (Mellata et al., 2003). Nolan et al. (2003) reported that iss might have a more important role in birds than mammals to produce virulence and resistance to serum. These differences may be due to the rout of initial entry and forms of clinical disease in these hosts (Nolan et al., 2003). Lynne et al. (2007) studied the contribution of iss and bor gene to E. coli serum resistance. They showed that iss contributes more to serum resistance than bor (Lynne et al., 2007a). Chuba and Colleagues reported that the effect of iss on serum resistance was not gene dosage dependent (Chuba et al., 1986). Skyberg et al. (2008) investigated the role of iss, tsh, iutA, iroN, sitA and cvaB genes in virulence of APEC-O2. They deleted these genes and mutants were compared to the wild type (APEC-O2) for lethality to chick embryos and growth in human urine. No significant differences between the mutants and the wild type were detected, and they reasoned that insensitivity of the virulence assays or other factor could have obscured changes in the virulence of the mutants (Skyberg et al., 2008). These finding showed that the serum resistance of native APEC-O78 strain χ 1378 is multifactorial. Moreover, the effects of single gene deletion might be obscured by some compensatory mechanism. Hence, deletion of more genes related to serum resistance is advisable to achieve serum sensitive native strain. Additionally, when differences in virulence between the mutants and the wild type were not detected, follow-up studies to determine if the genes are differentially expressed in native APEC-O78 strain χ1378 in serum is necessary (Skyberg et al., 2008). The mutant showed little, but not significant, growth in serum compared to the wild-type parent, showing that there are probably other genes to compensate the act of iss. Chuba et al. (1986) noted that traT gene, located on Col-V plasmid, like iss but less, was involved in serum resistance (Chuba et al., 1986). The finding of lynne et al. (2007) demonstrated that iss appears to play a major role in the serum resistance associated with pAPEC-O2-ColV (Lynne et al., 2007a). Chuba et al. (1989) showed that iss had significant homology to bor gene of lysogen bacteriophage lambda (Chuba et al., 1989). In our later work, bor gene in native APEC- $O78 \operatorname{strain} \chi 1378 \text{ have been identified and sequenced}$ and 90% homology with iss has been observed (data have not published), therefore deletion of bor gene from native APEC-O78 strain $\chi 1378 \Delta iss$ could be advisable. Our work added to the current understanding of serum resistance of native APEC-O78 strain χ 1378. There are not so much data on virulent genes sequences of this bacterium, and the sequences of these genes are still unknown.

Aknowledgments

We are grateful to the Research Council of the University of Tehran and the Research Council of the Faculty of Veterinary Medicine of the University of Tehran for financial support of project no. 7504002/6/14. The authors are also grateful to the National Institute of Genetic Engineering and Biotechnology and also Mr. I. Ashrafi for their valuable collaboration.

References

- Barnes, H.J., Gross, W.B. (2005) Colibacillosis. In: Diseases of Poultry. Calnek, B.W. (ed.). (10th ed.) Iowa State University press, Ames, IA, USA. p. 131-141.
- Barnes, H.J., Nolan, L.K., Vaillancourt, J. (2008) Colibacillosis. In: Diseases of poultry. Saif, Y.M., Fadley, A.M., Clisson, J.R., McDougald, L.R., Nolan, L.K., Swayne, D.E. (eds.). (12th ed.) Iowa State University Press, Ames, IA, USA. p. 691-737.
- 3. Chuba, P.J., Palchaudhuri, S., Leon, M.A. (1986) Contribution of *traT* and *iss* genes to the serum resistance phenotype of plasmid ColV-K94. Fed Eur Microbiol Soc Microbiol Lett. 37: 135-140.
- 4. Chuba, P.J., Leon, M.A., Banerjee, A., Palchaudhuri, S. (1989) Cloning and DNA sequence of plasmid determinant *iss*, coding for increased serum survival and surface exclusion, which has homology with lambda DNA. Mol Gen Genet. 216: 287-292.
- Datsenko, K.A., Wanner B.L. (2000) One-step inactivation of chromosomal genes in *Escherichia* coli K-12 using PCR product. Proc Natl Acad Sci. 97: 6640-6645.
- Derakhshandeh, A., Zahraei Salehi, T., Tadjbakhsh, H., Karimi, V. (2009) Identification, cloning and sequencing of *Escherichia coli* strain chi1378 (O78: K80) *iss* gene isolated from poultry colibacillosis in Iran. Lett Appl Microbiol. 49: 403-407.
- Gomis, S., Babiuk, L., Godson, D.L., Allan, B., Thrush, T., Townsend, H., Willson, P., Waters, E., Hecker, R., Potter, A. (2003) Protection of chickens against *Escherichia coli* infections by DNA containing CpG motifs. Infect Immun. 71: 857-863.
- Gross, W.B. (1994) Diseases due to *Escherichia coli* in poultry. In: *Escherichia coli* in domestic animals and man. Gyles, C.L. (ed.). (1st ed.) CAB International, Wallingford, UK. p. 237-259.
- Heiat, M., Saadati, M., Hosseini, S.M., Zahraei Salehi, T., Nayeri Fasaei, B., Ahsani Arani, Y., Salehi, A.R., Doroudian, M., Hosseini, E. (2012) Construction and immunogenicity of a genetically mutant of a native Shigella dysenteriae type 1 isolated from an Iranian patient with diarrhea by recombineering. Afr J Microbiol Res. 6: 734-744.
- 10. Herring, C.D., Glasner, J.D., Blattner, F.R. (2003) Gene replacement without selection: regulated suppression of amber mutations in *Escherichia coli*. Gene. 311: 153-163.

- 11. Horne, S.M., Pfaff-McDonough, S.J., Giddings, C.W., Nolan, L.K. (2000) Cloning and sequencing of the *iss* gene from a virulent avian *Escherichia coli*. Avian Dis. 46: 179-84.
- 12. Kariyawasam, S., Johnson, T.J., Nolan L.K. (2006) The pap operon of Avian Pathogenic *Escherichia coli* strain O1:K1 is located on a novel pathogenicity island. Infect Immun. 74: 744-749.
- 13. Kariyawasam, S., Nolan, L.K. (2009) Pap mutant of avian pathogenic *Escherichia coli* O1, an O1:K1:H7 strain is attenuated in vivo. Avian Dis. 53: 255-260.
- 14. Kwaga, J.K., Allan, B.J., van der Hurk, J.V., Seida, H., Potter, A.A. (1994) A carAB mutant of avian pathogenic *Escherichia coli* serogroups O2 is attenuated and effective as live oral vaccine against colibacillosis in turkey. Infect Immune. 62: 3766-3772.
- 15. La Ragione, R.M., Casula, G., Cutting, S.M., Woodward, M.J. (2001) *Bacillus subtilis* spores competitively exclude *Escherichia coli* O78: K80 in poultry. Vet Microbiol. 79: 133-142.
- 16. La Ragione, R.M., Narbad, A., Gasson, M.J., Woodward, M.J. (2004) In vivo characterization of Lactobacillus johnsonii F19785 for use as a defined competitive exclusion agent against bacterial pathogen in poultry. Lett Appl Microbiol. 38: 197-205.
- 17. La Ragoine, R.M., Sayers, A.R., Woodward, M.J. (2000) The role of fimbriae and flagella in the colonization, invasion and persistence of *Escherichia coli* O78: K80 in the day-old-chick model. Epidemiol Infect. 124: 351-363.
- 18. Lee, M.D., Wooley, R.E., Brown, J., Spears, K.R., Nolan, L.K., Shotts, E.B.Jr. (1991) Comparison of a quantitative microtiter method, a quantitative automated method, and the plate-count method for determining microbial complement resistance. Avian Dis. 35: 892-896.
- 19. Lynne, A.M., Skyberg, J.A., Logue, C.M., Doetkott, C., Foley, S.L., Nolan, L.K. (2007a) Characterization of a series of transconjugant mutants of an avian pathogenic *Escherichia coli* isolate for resistance to serum complement. Avian Dis. 51: 771-776.
- 20. Lynne, A.M., Skyberg, J.A., Logue, C.M., Nolan, L.K. (2007b) Detection of *Iss* and *Bor* on the surface of *Escherichia coli*. J Appl Microbiol. 102: 660-666.
- 21. Mellata, M., Dho-Moulin, M., Dozois, C.M., Curtiss, R., Brown, P.K., Arne, P., Bree, A., Desautels, C.,

- Fairbrother, J.M. (2003) Role of Virulence Factors in Resistance of Avian Pathogenic *Escherichia coli* to Serum and in Pathogenicity. Infect Immun. 71: 536-540.
- 22. Nayeri Fasaei, B., Zahraei Salehi, T., Tadjbakhsh, H., Firuzi, R., Casadesus, J. (2009) Construction of genetically defined aroA mutant of a native *E. coli* O78:K80 isolated from avian colibacillosis, in Iran. Comp Clin Pathol.18: 69-75.
- 23. Nolan, L.K., Horne, S.M., Giddings, C.W., Foley, S.L., Johnson, T.J., Lynne, A.M., Skyberg, J. (2003) Resistance to serum complement, *iss*, and virulence of avian *Escherichia coli*. Vet Res Commun. 27: 101-110.
- 24. Nolan, L.K., Wooley, R.E., Cooper, R.K. (1992) Transposon mutagenesis used to study the role of complement resistance in the virulence of an avian *Escherichia coli*. Avian Dis. 36: 398-402.
- Sharan, S.K., Thomason, L.C., Kuznetsov, S.G., Court, D.L. (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc. 4: 206-223.
- 26. Skyberg, J.A., Johnson, T.J., Nolan, L.K. (2008) Mutational and transcriptional analyses of an avian pathogenic *Escherichia coli* ColV plasmid. BMC Microbiol. 29: 24.
- 27. Stordeur, P., Bree, A., Mainil, J., Moulin-Schouleur, M. (2004) Pathogenicity of pap negative avian *Escherichia coli* isolated from septicemia lesions. Microbes Infect. 6: 637-645.
- Tischer, B.K., von Einem, J., Kaufer, B., Osterrieded, N. (2001) Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in *Escherichia coli*. BioTechniques. 40: 191-197.
- 29. Vandekerchove, D., De Herdt, P., Laevens, H., Pasmans, F. (2004) Colibacillosis in caged layer hens: characteristics of the disease and the aetiological agent. Avian Pathol. 33: 117-125.
- 30. Vidotto, C.M., Muller, E.E., Freitas, C.J., Alfrieri, A.A., Guimaraes, G.I., Santos, S.D. (1990) Virulence factors of avian *Escherichia coli*. Avian Dis. 34: 531-538
- 31. Wooley, R.E., Brown, J., Spears, K.R., Nolan, L.K. (1991) Comparison of chicken plasma and guinea pig serum in a quantitative microtiter method of determining microbial complement resistance. Avian Dis. 35: 897-900.

- 32. Zahraei Salehi, T., Rajabi, Z., Modirsanei, M. (2004) Evaluation of the immunogenicity of endemic *Escherichia coli* serotypes isolated from poultry in Iran. J Vet Res. University of Tehran. 59: 189-195.
- 33. Zare, P., Tabatabaei, M., Yousefbeygi, Gh., Jabbari, A.R. (2008) Using red recombinase and PCR product for one-step in-frame inactivation of aroA gene in *Pasteurella multocida* A:1 and evaluation of pathogenicity and immunogenicity. J Anim Vet Adv. 7: 1155-1159.

مجله طب دامی ایران، ۱۳۹۳، دوره ۸، شماره ۱، ۸ – ۱

ایجاد جهش در سویه بومی $\chi 1378$ اشریشیا کلی بیماریزای طیور $\chi 1378$ با حذف ژنiss و ارزیابی مقاومت سرمی موتان در شرایط آزمایشگاهی

ا معید سالاری تقی زهرائی صالحی بهار نیری فسایی و حید کریمی ایک و حید کریمی ایک و کلی کریمی ایک و میکروبیولوژی، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران ایران

(دریافت مقاله: ۸ آبان ماه ۱۳۹۲، پذیرش نهایی: ۳۰ دی ماه ۱۳۹۲)

چکىدە

زمینه مطالعه: کلی باسیلوز یکی از بیماریهای مهم در صنعت طیور است. سروتیپ O78 (شریشیا کلی بیماریزای طیور (iss) (است. از جمله عوامل حدت (شریشیا کلی بیماریزای طیور، ژن افزایش دهنده بقای سرمی (iss) است که در مقاومت به سرم نقش دارد. مقاومت به سرم یکی از رهیافت های سیستمیک شدن (شریشیا کلی بیماریزای طیور می باشد. با توجه به این که غالب ترین شکل بالینی کلی باسیلوز طیور به صورت خارج روده ای می باشد واحتمالاً این فرم از بیماری به مقاومت سرمی با کتری ارتباط دارد، در نتیجه به نظر می رسد که احتمالاً با حذف ژن S8 رهیافتی در کنترل بیماری کلی باسیلوز ایجاد گردد. علاوه بر این، اطلاعات کمی در مورد مکانیسم مقاومت سرمی O78 وجود دارد. **هدف**: در مطالعه حاضر، سویه موتان با حذف ژن S8 از انسیه بومی (S8 اشریشیا کلی بیماریزای طیور O78 ایجاد گردید وسویه موتان از نظر مقاومت به سرم باسویه و حشی مورد ارزیابی قرار گرفت. روش کار: در اشریشیا کلی بیماریزای طیور O78 این مطالعه، سیستم elabba red recombinase این مطالعه، سیستم elabba red recombinase (S8) (S8) (S9) (S9)

واژه های کلیدی: ژن افزایش دهنده بقای سرمی، lambda red recombineering، اشریشیا کلی بیماریزای طیور O78، مقاومت سرمی

*)نویسنده مسؤول: تلفن: ۴۹۸(۲۱) ۱۹۸۹۲۱ نمابر: ۴۹۸(۲۱) ۶۶۴۳۱۱۰۵ نمابر: Email: tsalehi@ut.ac.ir +۹۸(۲۱) ۶۶۴۳۱۱۰۵