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Abstract  

One of the main concerns of the mining industry is to determine ultimate pit limits. Final pit is a 

collection of blocks, which can be removed with maximum profit while following restrictions on the 

slope of the mine’s walls. The size, location and final shape of an open-pit are very important in 

designing the location of waste dumps, stockpiles, processing plants, access roads and other surface 

facilities as well as in developing a production program. There are numerous methods for designing 

ultimate pit limits. Some of these methods, such as floating cone algorithm, are heuristic and do not 

guarantee to generate optimum pit limits. Other methods, like Lerchs–Grossmann algorithm, are 

rigorous and always generate the true optimum pit limits. In this paper, a new rigorous algorithm is 

introduced. The main logic in this method is that only positive blocks, which can pay costs of their 

overlying non-positive blocks, are able to appear in the final pit. Those costs may be paid either by 

positive block itself or jointly with other positive blocks, which have the same overlying negative 

blocks. This logic is formulated using a network model as a Linear Programming (LP) problem. This 

algorithm can be applied to two- and three-dimension block models. Since there are many commercial 

programs available for solving LP problems, pit limits in large block models can be determined easily 

by using this method. 

 
Keywords: Linear Programming (LP), Network Optimization, Open pit mining, ultimate pit limits.  
 

1. Introduction 

Determining the most profitable material 

which can be feasibly removed from an open 

pit mine is a main concern of the mining 

industry. Engineers approach this problem by 

first taking samples of the ore from bore holes 

and then applying geostatistical techniques to 

estimate the ore’s distribution both 

qualitatively and quantitatively. Drawing on 

this information, they construct a block model 

of distribution. This is done by partitioning the 

ore body into blocks and assigning each block 

a grade of ore and a value to the block, which 

reflects the value of the ore contained in the 

block less the costs associated with its removal 

[1]. 

An ultimate pit is a collection of blocks, 

which can be most profitably removed while 

obeying restrictions on the slope of the mine’s 

walls [1]. The size, location and final shape of 

an open-pit are important in planning the 

location of waste dumps, stockpiles, 

processing plants, access roads and other 

surface facilities and in developing a 

production program. The pit design also 

defines minable reserves and the associated 

amount of waste to be removed during the 

operation lifetime. The pit design, which is a 

function of numerous variables, may be re-

evaluated many times during the service of the 

mine as design, technical and economic 

parameters change or more information 

become available during operation. The use of 

computer methods is essential in redesigning 

the pit as quickly as possible and implementing 

complex algorithms on large block models [2]. 

A number of computerized algorithms 

have been developed to determine optimum 

open-pits. Almost all of these algorithms are 
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based on block models and the main objective 

of them is to find groups of blocks that 

removing them under specified economic 

conditions and technical constraints result in 

the maximum overall profit. The most 

common methods are graph theory Lerchs–

Grossmann method [3], network or maximal 

flow techniques [4, 5], various versions of the 

floating or moving cone [6], the Korobov 

algorithm [7], the corrected form of the 

Korobov algorithm [8], dynamic programming 

[9, 10], and parameterization techniques [11, 

12]. 

If NRi is expected net revenue to be gained 

from selling the contained metal within block i 
and MCi and PCi are the mining and 

processing cost of that block, respectively, then 

the economic value of block (Vi) will be: 

     
 max ,i i i i iV NR MC PC MC   

  

                 (1) 

Some definitions and explanations are 

provided here to clarify the proceeding 

sections in this study: 

 Block i with Vi > 0 is called a “positive 

value block”, otherwise a “negative value 

block” [13]. 

 If there is a block, say j, that is located on a 

level upper than level of another block, say 

i, preventing block i to be mined, j is said 

to be an “overlying block” of i and i is said 

to be an “underlying block” of j [13].  

 The blocks that are sent to the processing 

plant to extract the metal from the rock, are 

called “ore blocks” and otherwise “waste 

blocks” [13]. 

 Ultimate pit represents the boundary of a 

region in an ore-body that removing any 

block from it will be economically 

feasible. In other words, ultimate pit is 

defined as a collection of blocks, which 

can be removed obeying restrictions on the 

slope of the mine’s walls. Furthermore, not 

removing any of those blocks reduces pit 

value, and also removing each block other 

than this collection does not increase 

overall value of the pit. 

 A model, which includes location and 

expected economic value of blocks, is 

called economic block model. This model 

is used in determining ultimate pit limits. 

 Each block in the model has a 

correspondent cone that consists of the 

block itself and all overlying blocks, which 

have to be removed before mining that 

block. Side angles of cone are equal to the 

required slope angles for the deposit. 

 Cone value of a given block i, CVi, is 

defined as total economic value of the 

blocks in the cone of block i. 
 

There are several methods for designing 

ultimate pit limits. These methods could be 

divided into three categories: manual methods, 

computerized methods, and computer assisted 

manual methods [14]. 

Computerized methods could be divided 

into two groups. First, heuristic algorithms, 

such as floated cone method, from which final 

the pit generated is not necessarily optimal. 

Second, , rigorous algorithms, such as Lerchs–

Grossmann method, generated from which 

final pits are certainly optimal. The algorithm 

introduced here belongs to rigorous algorithms. 

Figure 1 shows a cross-sectional view of a 

hypothetical two dimensional economic block 

model containing eighteen blocks, which are 

square in shape. Expected economic value of 

each block is shown in center of blocks. 

Assuming a safe slope angle of 45 degree, 

before mining of any block in first second 

level, there are three overlying blocks in the 

first level, which must be removed. Similarly, 

before mining any block in the third level there 

are three overlying blocks in the second level 

and five overlying blocks in the first level that 

have to be removed.  

 

 
Figure 1. A typical section from a 2D orebody model. 

 

2. Algorithm for designing ultimate pit 

limits 

The algorithm for designing ultimate pit limits 

proposed in this paper is based on a network 

optimization problem. The main idea of this 

algorithm has origin in Fundamental Trees 

Algorithm (FTA) [14]; however, there are 

major differences between the algorithm 
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proposed here and the FTA. The original FTA 

was introduced for production scheduling and 

determining the optimal sequence of extracting 

blocks. In FTA, it is assumed that the ultimate 

pit limits is known. 

In the algorithm proposed here, positive 

blocks play a key role. The main logic in this 

method is that only positive blocks, which can 

pay costs of removing their overlying negative 

blocks, are capable of presenting in the final 

pit. Those costs may be paid either by positive 

block itself or jointly with other positive 

blocks that have the same overlying negative 

blocks. For mathematical formulation of this 

logic, a Linear Programming (LP) model was 

developed. 

Figure 2 provides a schematic 

representation of the steps involved in the 

algorithm.  
 

Figure 2. Steps of the algorithm. 

 

As shown, this algorithm is, indeed, an 

iterative network model. The steps are 

discussed below. 

 

2.1. Setting initial network (Steps 1 and 2) 

Firstly, the pit containing all the positive 

blocks is determined. Then a network is set on 

the blocks within that pit. In this network, 

blocks are represented by nodes and mining 

slope requirement is represented by the arcs. 

The arcs in the network represent the node 

precedence relationship within the pit. An arc 

is set from each positive value node to all the 

overlying negative value nodes in the cone of 

that block [13]. 

 

2.2. Assigning initial ranking coefficients to 

the positive value blocks (Steps 3 and 4) 

Firstly, the cone value, CVi, of all positive 

value nodes within the network is determined. 

Then, a ranking coefficient is assigned to each 

of those nodes, according to the levels where 

they are located and their cone value. This 

process starts from second level. On the top 

most level, after level 1, where one or more 

positive value nodes exist, the node with the 

highest cone value is assigned to 1, and the 

second highest cone value node is assigned to 

2, and so on. For instance, if there are 3 

positive value nodes on that level, the node 

with the smallest cone value is assigned to 3. 

Then, the ranking process moves down one 

level. If there are some positive value nodes on 

that level, the node with the highest cone value 

is assigned to 4. Otherwise, a lower level is 

searched for positive value nodes. The process 

is performed for all the positive value nodes 

within the network. If two or more positive 

value nodes on the same level have the same 

cone value (tie condition), the coefficients are 

assigned randomly; two nodes must not be 

assigned the same coefficient [13]. These 

ranking coefficients will be used in LP 

problem formulation. [14] 

 

2.3. The LP formulation to generate 

ultimate pit limits (Step 5) 

Firstly, a dummy node D is added to network 

and is connected to all positive value nodes. 

This node, which assumed to have indefinite 

Start from the economic model of orebody 

 

Generate a pit containing all positive blocks 

 

Develop initial network 

 

Find the cone value for all the positive blocks 

 

Assign coefficients to all the positive blocks 

 

Set up and solve the new LP formulation 

 

All dummy flows = 0? 

 

Inactive blocks with dummy flows 

 

No 

 

Yes 

 

Stop 

 

Step 1 

 

Step 2 

 

Step 3 

 

Step 4 

 

Step 5 

 

Step 7 

 

Step 8 

 

Step 6 
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positive value, prevents generating infeasible 

solutions. As mentioned later in the study, in 

each iteration, this dummy node causes some 

of positive value nodes to become inactive. 

Dummy node, like other positive value blocks, 

is assigned a ranking coefficient. This 

coefficient in the first iteration is the biggest 

coefficient within the network and in the next 

iterations is bigger than all active blocks’ 

coefficients. Amounts of flows in the arcs from 

positive value nods to negative value nodes are 

decision variables of the model.  

The objective function of the model is 

minimizing arc connections in the network 

weighted by the assigned ranking coefficients. 

The objective function is expressed as: 

 

, ,

,

Minimize C C

M

n m w n

i i j D D l
i j l

m w

k j
k j

f f

f







 


      (2) 

where Ci is the ranking coefficient for node i, 
for positive value nodes that are active in the 

network; n is number of all positive nodes in 

the network; m is number of positive nodes, 

which had become inactive in the previous 

iterations, so in the first iteration m is equal to 

zero; fi,j is the flow from node i to node j; j is 

the index for the negative value nodes 

connected to the positive value node i with an 

arc coming from i; CD is coefficient of dummy 

node D, which is bigger than the last Ci, i.e. Cn-

m; fD,l is the dummy flow from node D to 

positive node l; k is the index for positive 

inactive nodes; fk,j is the flow from node k to 

node j; M is a big number that is bigger than 

CD. 

If there are one or more positive value 

nodes on level 1, there is no need to include 

them in the formulation because there are no 

arcs formed from these nodes [13]. These 

nodes will be added to final pit derived from 

performing the algorithm. 

The objective function is constructed in a 

way that the arcs will be set from high cone 

value nodes to support the negative nodes 

above them. In a given level, it is considered 

that the highest cone value node, say node i, 
has the highest chance of supporting all the 

negative value overlying it [13]. This 

arrangement causes the number of joint 

supports (pay for a given negative value node 

by more than one positive value block) be 

minimized. 

Furthermore, adding dummy node D to 

network prevents generating infeasible 

solutions, and setting its priority after active 

positive nodes causes the flow in dummy arcs 

to become non-zero, only when active positive 

nodes are unable to support removing their 

overlying negative nodes. The existing non-

zero flow in an arc from node D to a given 

active positive node means that this node is 

unable to support negative nodes in its cone, 

and, thus, have to become inactive and set 

aside from the final pit. 

The last term in the objective function 

involves positive nodes that have become 

inactive in the previous iterations. Setting their 

priority after node D prevent them helping 

active positive nodes for supporting joint 

negative nodes. In the first iteration, this term 

equals zero. 

In ultimate pit limits problem, it is 

assumed that positive value nodes in the pit in 

order to be mined and processed and finally 

generate a profit, have to be capable to pay for 

removing their overlying negative nodes, by 

themselves or jointly with positive nodes 

having joint overlying negative nodes. Then, 

the flow capacity of positive nodes could not 

be less than what must be paid for upper levels 

negative nodes. A positive value node is 

limited in flow capacity to its value plus what 

receives from dummy node. Therefore, the 

constraint relating to a given positive node i, is 

expressed as: 

, ,

w

D i i j i
j

f f V                                      (3) 

where Vi is the value of node i.  
On the other hand, each negative node in 

the final pit for removing requires enough flow 

from positive nodes in the lower levels. 

Therefore, the constraint relating to a given 

negative node j is calculated as: 

, V
n

i j j
i

f                                        (4) 

where Vj is the negative value of node j and ε 

is a very small value. 

The small extra value ε is used to ensure 

that minimum economic value of a sub-pit is at 
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least equal to ε, which is strictly positive. ε is 

set to a very small number such as 0.001 that 

will not be ignored by the solver. Without 

using ε, if an overlying negative node is fully 

supported by an underlying positive value 

node, the total value of negative and positive 

nodes could be zero, without requiring a joint 

support. That generates zero value sub-pits, i.e. 

there may be a set of blocks in the final pit, 

which can be set aside without affecting pit 

value. This phenomenon violates the definition 

of ultimate pit limits mentioned in Section 1.  

Note that if ε is set too high, the LP model 

might miss some positive value sub-pits, so the 

final pit would not be the most profitable pit. If 

the values of blocks are rounded to integer 

numbers, the total of the added ε values for all 

the overlying connected nodes should be kept 

below 1. 

 

2.4. Controlling the algorithm (Steps 6-8) 

The LP problem formulated in the previous 

section can be solved using a commercially 

available solver. 

If the flow of any arc connecting dummy 

source to positive nodes, which were equal to 

zero in the previous iteration, changes , these 

positive nodes are inactivated, i.e. their 

coefficients are set equal to big M (bigger than 

coefficient of dummy node). Then, the next 

iteration starts and the model is solved with 

new coefficients. 

On the other hand, if the flow of arcs 

connecting dummy source to positive nodes, 

which were equal to zero in the previous 

iteration, remains unchanged, the optimal pit is 

determined and the algorithm is terminated. 

The ultimate pit limits consist of positive 

nodes (the amount of arcs connecting dummy 

source to which in the all cycles remains equal 

to zero) and their cones, as well as all positive 

blocks in the first level, if any. 
 

3. Application of the algorithm for a simple 

example 

Application of the proposed algorithm is 

discussed using an example that can be 

considered as a cross-sectional view of some 

blocks on three consecutive elevations, or 

levels, shown in Figure 1. 

Firstly, the pit containing all the positive 

blocks is determined. Figure 3 shows this pit. 

The node identification number is written on 

the left top corner of each block, and the 

expected economic value of block is written at 

the center of each block. Then, a network is 

generated as shown in Figure 4. Since nodes 7, 

8, 9, 11 and 12 have positive economic values, 

the arcs are set from these nodes to the nodes 

on the upper levels. For simplicity of the 

illustration, it is assumed that the blocks are 

the same in size and have to be mined with 45° 

slope angle in all directions. 

 

 
Figure 3. Pit containing all the positive blocks. 

 

A dummy source node, D, is added to the 

network. Node D is a positive node proposed 

to compensate for probable shortage in the 

positive nodes, in order to help them to support 

their overlying negative nodes. There are arcs 

between node D and all the positive nodes, as 

well as between positive nodes and the 

negative nodes in their cone. In Figure 4, only 

the arcs relating to node 12 are shown. These 

arcs show the precedence relationships of 

nodes based on the slope angle requirement. 

For example, in order to mine block 12, 

negative blocks 2, 3, 4, 5, 6 and 10 must be 

mined. 
 

 

 

 

 

 

 

 

 

 
 

Figure 4. Network representation of the 2D block 

model shown in Figure 1; source node D is added. 
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In order to determine ranking coefficients, 

the cone value of all positive value nodes must 

be calculated. For example, for node 7, 

CV7 = V7 + V1 + V2 + V3 =5 – 2 – 2 – 2 = –1.  

Similarly, CV8 = – 2, CV9 = – 5, CV11 = 1, 

CV12 = – 3. 
Coefficients, Ci, are assigned to positive 

value nodes according to CVi value and the 

levels where nodes are located. In the second 

level, since CV7 is greater than CV8 and CV9, 

then C7 is set to 1; and since CV8 > CV9, then 

C8 and C9 are set to 2 and 3, respectively. 

Similarly, in the third level, C11 is 4 and C12 is 

5. The coefficient of dummy node in the initial 

formulation is the biggest one; therefore, CD = 

6.  

Now, according to section 2-3 the initial 

model can be formulated. This formulation and 

its solution are provided in Figure 5 and Table 

1, respectively. 

As given in Table 1, nodes 9 and 12, which 

have non-zero dummy arcs, are not capable for 

presenting in the final pit and have to become 

inactive. To inactivate these nodes, their 

coefficients in the LP formulation have to set 

big M, i.e. bigger than CD. Therefore, new 

ranking coefficients of the positive nodes will 

be: C7 = 1, C8 = 2, C11 = 3, CD = 4, and both C9 

and C12 can be set to 5. 
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Figure 5. Initial problem formulation. 

 

 

Table 1. Solution of initial problem. 

Variable Value Variable Value Variable Value Variable Value Variable Value 

fD,12 0.002 f12,10 1.001 f11,5 1 f9,5 1.001 f8,4 0 

fD,11 0 f12,6 2.001 f11,4 0 f9,4 0 f8,3 1.003 

fD,9 0.001 f12,5 0 f11,3 0 f9,3 0 f8,2 2.001 

fD,8 0 f12,4 0 f11,2 0   f7,3 0.998 

fD,7 0 f12,3 0 f11,1 0   f7,2 2.001 

  f12,2 0     f7,1 2.001 
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Figure 6. Objective Function of second problem.  

 
Now, the second iteration can begin.  In 

the new problem formulation, objective 

function is changed according to the new 

ranking coefficients. But, constraints remain 

unchanged. New objective function and 

solution of new problem are provided in Figure 

6 and Table 2, respectively. 

As given in Table 2, amount of arc 

connecting dummy source to positive node 11, 

fD,11, is non-zero. So, this node cannot be 

presented in the final pit and has to become 

inactive. Therefore, its coefficients in the LP 

formulation must change to big M, i.e. bigger 

than CD, and new coefficients of the positive 

nodes will be: C7 = 1, C8 = 2, CD = 3 and C12, 

C9, and C11 can be set to 4. 

 
Table 2. Solution of second problem. 

Variable Value Variable Value Variable Value Variable Value Variable Value 

fD,12 0.002 f12,10 1.001 f11,5 1.001 f9,5 1 f8,4 2.001 

fD,11 0.001 f12,6 2.001 f11,4 0 f9,4 0 f8,3 0 

fD,9 0 f12,5 0 f11,3 0 f9,3 0 f8,2 1.003 

fD,8 0 f12,4 0 f11,2 0   f7,3 2.001 

fD,7 0 f12,3 0 f11,1 0   f7,2 0.998 

  f12,2 0     f7,1 2.001 

 

     
   
 

min 2 3 ,77,1 7,2 7,3 8,2 8,3 8,4 ,8 ,9 ,11 ,12
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Figure 7. Objective Function of third problem.  

 

Table 3. Solution of third problem. 

Variable Value Variable Value Variable Value Variable Value Variable Value 

fD,12 0.003 f12,10 1.001 f11,5 1 f9,5 1 f8,4 2.001 

fD,11 0 f12,6 2.001 f11,4 0 f9,4 0 f8,3 1.003 

fD,9 0 f12,5 0.001 f11,3 0 f9,3 0 f8,2 0 

fD,8 0 f12,4 0 f11,2 0   f7,3 0.998 

fD,7 0 f12,3 0 f11,1 0   f7,2 2.001 

  f12,2 0     f7,1 2.001 

 

 
Figure 8. Final pit. 
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Now, the third iteration can start. In the 

new problem formulation, the objective 

function will be changed according to new 

ranking coefficients. But, constraints will 

remain unchanged. New objective function and 

solution of new problem are provided in Figure 

7 and Table 3, respectively.  

Now, as given in Table 3, arcs between 

dummy source, D, and all active positive nodes 

from previous iteration, nodes 7 and 8, has 

remained zero. Therefore, the optimal pit is 

determined and the algorithm is terminated. 

Ultimate pit limits consist of the positive nodes 

7 and 8 and their cones. Figure 8 shows the 

final pit. 

 

4. Conclusions 

In this paper, a linear programming model is 

developed to determine ultimate pit limits in 

open pit mining. This model, due to inherent 

LP problems, relies on a rigorous logic. So, the 

final generated pit is assumed to be optimal. 

Furthermore, it does not include any integer 

variables, so that it can solve large problems 

without running into time constraints.  

By definition, ultimate pit limits is the 

smallest region within a mineralized area, 

which includes a set of blocks, the mining of 

which is technically feasible, and economically 

justified.  The total value of blocks within that 

region is higher than every other set of 

mineable blocks. 

Since profit is resulted from mining and 

processing positive value blocks, then positive 

blocks are the main reason and major base for 

any design, including final pit design, in the 

mining industry. Occurring non-positive value 

blocks within the pit is justified only if they 

overly positive blocks and prevent them from 

extracting, and underlying positive blocks are 

able to pay for removing them. This is the 

main logic behind the proposed algorithm and 

formulation. Indeed, this algorithm tests every 

positive value block within the ore-body if it 

can pay for removing negative blocks 

overlying it, by itself or jointly with other 

positive blocks having joint overlying negative 

blocks, or not. If a given positive block can do 

this job, it will remain in the final pit, 

otherwise must be left out. 
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