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Abstract

Considering the fact that rocks fail faster under tensile stress, rock tensile strength is of great
importance in applications such as blasting, rock fragmentation, slope stability, hydraulic fracturing,
caprock integrity, and geothermal energy extraction. There are two direct and indirect methods to
measure tensile strength. Since direct methods always encompass difficulties in test setup, indirect
methods, specifically the Brazilian test, have often been employed for tensile strength measurement.
Tensile failure is technically attributed to crack propagation in rock. Fracture mechanics has
significant potential for the determination of crack behaviour as well as propagation pattern. To apply
Brazilian tests, cracked disc geometry has been suggested by the International Society for Rock
Mechanics ISRM. Accordingly, a comprehensive study is necessary to evaluate stress field and stress
intensity factor (SIF) around the crack in the centre of the specimen. In this paper, superposition
principle is employed to solve the problem of cracked straight-through Brazilian disc (CSTBD), using
two methods of dislocation and complex stress function. Stress field and SIF in the vicinity of the
crack tip are then calculated. With the proposed method, the magnitude of critical load for crack
initiation in structures can be predicted. This method is valid for any crack of any arbitrary length and
angle. In addition, numerical modelling has been carried out for the Brazilian disc. Finally, the
analytical solution has been compared with numerical modelling results showing the same outcome
for both methods.

Keywords: cracked straight-through Brazilian disc (CSTBD), numerical modelling, stress field, stress
intensity factor (SIF), tensile strength.

1. Introduction

Tensile strength is of great importance in the  fracturing, cap rock integrity, and geothermal
scope of rock mechanics such as blasting, rock  energy extraction. There are two methods to
fragmentation, slope stability, hydraulic determine tensile strength, namely the direct
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and indirect methods. Indirect methods,
specifically the Brazilian test, have often been
employed in an effort to determine tensile
strength since direct methods always
encompass difficulties in test setup.

Crack initiation or microcrack propagation
results in rock failure. Rock failure is an
important issue in fracture mechanics. For
applying Brazilian tests, cracked Brazilian
disc geometry has been taken into account by
ISRM due to its benefitsompared to other
geometries. SIF and magnitude of induced
stress are necessary factors in crack
propagation.

Over the past two decades there has been a
great deal of interest and debate on the stress
intensity factor and the unique fracture
toughness test method suggested by the
International Society for Rock Mechanics
(ISRM) [1-11]. The two chevron-notched rock
fracture specimens, chevron bend (CB) and
short rod (SR), recommended by the ISRM
[12, 13] and aimed at determining rock Mode |
fracture toughness, have a number of practical
disadvantages, such as very low loads required
to initiate failure at the correct orientation,
complicated loading fixtures, and complex
sample preparation for CB and SR specimens
[1]. The aforementioned methods have also
been unsuitable for mixed mode fractures [3,
5]. The cracked chevron-notched Brazilian
disc (CCNBD) and the cracked straight-
through Brazilian disc (CSTBD) specimen
geometries overcome these problems and are
also suitable for mixed fracture mode testing
[14, 15]. The general case for the cracked
Brazilian disc problem is when the sample is
loaded diametrically with the crack inclined at
an angle of zero to the loading direction [Fig.
la]. Different combinations of Mode | and
Mode Il fracture intensities can be obtained
simply by changing this angle.

For the special case whe# =0 the
problem is reduced to the Mode | fracture
situation. This problem for CSTBD geometry
was studied by Rooke and Tweed [16] and
Atkinson [17]. Only Rooke and Tweed [16]
have considered the long crack case. The
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mixed mode CSTBD problem was

investigated by Awaji and Sato [14] and

Atkinson [17]. These authors only studied

short crack cases, so that the higher order
components describing the crack and the
boundary were neglected [6]. Based on
investigations, CSTBD has priority over

CCNBD. The main reason for proposing

CSTBD is that producing a stream crack is
easier than a V-shape crack. Additionally a
comparison of studies has shown that
toughness in CCNBD for a specific rock is

much lower than CSTBD [8].

2.Theoretical Solutions for the CSTBD

Fracture Problem under Mixed Mode

Conditions
Under plane strain conditions, the problem
shown in Fig. la can be solved by
superimposition of the solutions to the
following simpler problems:

* Problem 1: a solid Brazilian disc loaded
with a pair of diametrical forces P [Fig. 2a];

* Problem 2: problem 1 will create normal
and tangential stresse® and o along the
part of the diameted® < r < a, S = #712-6
where there is a crack. This crack is normal
and tangential stress-free on its surfaces, so
therefore oy and ot have to be reduced to
zero. The second problem will be an infinite
region with a central crack (length 2a)
subjected to surface normal and tangential
stressesay and-o; [Fig. 2b].

* Problem 3: Problem 2 will generate
forces -Py and Py along the circumference
line, which is the disc boundary line. Again
these stresses need to be cancelled to enforce
the stress-free conditions along the disc
boundary. Hence, the third problem is also a
solid Brazilian disc, identical to that in
problem 1, but subjected to boundary forees
Pyx and -Py instead [Fig. 2c]. This will again
set up the normal and tangential stresses along
that part of the diameter mentioned in problem
1. Therefore the solution procedure goes back
to solve the condition of problem 2. This
iteration goes on step by step until the stresses
created along the crack surface and the disc
boundary are negligible.
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o

(a) Loading Fixture (b) CSTBD (c) CCNBD

Fig. 1. CSTBD and CCNBD specimen geometries[14].

In this paper, the proposed solution for method states are discussed; then, the problem
solving the problem in the first and third is solved and reported in the second state.

(b) (c)

Fig. 2. Solution procedure for the mixed mode CSTBD geometry [6].

We can solve problem 1 from the solution the normal and tangential stresses set up along

of a solid disc subjected to an arbitrary any arbitrary diameter A-A are as follows
boundary concentrated force, given by (Fig. 3):

Timoshenko [18]. The derived solutions for

2p _ 2P .
oy = ——:Wisq’l sin (e+¢1)——:;¢2 sin” (8+¢ )+ 2P
(1a)

__2Pcospy sif [20+0 )] 2Pcogy sin?[2(6+6,)]
Or = Tll'l ’ 2 Tl]'2 ) 2
r, :\/az.sin2 6+(@.co¥-R § r, :\/az.sin2 6+@.cog+R §

_ . a.sind _ . a.sind (1b)
@ = arcsmr— @, = arcsmr—

1 2

Similarly we can derive a solution for problem 3faltows:
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Oy = 2B cod, R s, nzé'{ K .sin, L smz}
D D

| I /S
(2a)
P, coso, R sino | .
o, =|—=. L+~ —2L|.sin2),
T T,
where
=y (x-a)?’+y
X S
sing, = y ,COS), = (2b)
1 r-l
— X — y
J, =arctan—— 9, = arctan——
y+R x+ R
x and y are components of coordinates. with a central crack subjected to arbitrary

Problem 2 was solved using the dislocation normal and tangential surface stresses can be
method and a complex stress function method  calculated by the following expressions:
[19]. The stress field within an infinite field

o _J-;T | F(¢).(x—asing) [y’ - (x- asing f I- G@). y[3(x asing § + y1 4
2 [(x-asing)’+ y’I’

o =IZ | -F(9).(x—asing).[3y’ + (x- asing f I+ G@ ).y.[(x asingp f- f/]} 3)
il [(x-asing)” + y’]*
o ZI;’ | F(@).y[y —(x=asing)’]+ G@).(x= asing).[( x asing J - ?]}

ARl [(x-asing)’ + y]*
where F(@)and G(¢)are the introduced They can be calculated by the following
dislocation densities, simulating the Mode | INntégration equations:
and Mode Il fracture situations, respectively.

FO)|_ 1 e Vo' =x [ou0] @
G(g)| m’2x-asing|o;(X) |

When using the complex stress function the action of the shear stress on the crack
method to solve problem 2, the following surface (Fig. 4):
complex stress functions are used to represent

P-iQ s - a P-iQ $- &

Z)= +1|,(2)= -1 (5)
nz) 4771(2—5){ z?-a }1//( ) 4ri(z- 9|V Z2- &
which is taken from Erdogan’s solution [20] forces P and Q. Then the stress field at any

for a central crack subjected to a pair of point within the infinite region can be
surface normal and tangential concentrated calculated from the equations given below:

58



Ghavidelet al./ Int. J. Min. & Geo-Eng., Vol.48, No.1, Ji®l 4

0, +0,=2| p(Z)+¢(Z)|

_ _ (6)
0, =0,+20,=2| Z-2)¢ 2Z)-92)+¢ (2)]
Here Z is the complex action of the crack surface tangential force Q
coordinateZ = X +iY. It has been proved that but not the normal force P [20].
Erdogan’s stress function can only express the
Fig. 3. Solid Brazilian disc [21]. Fig. 4. Complex stressfunctions[21].
in (x=a) such that Z=a+¢, , ¢&=re'’

3. Stress Field and Stress Intensity Factor
Determination (Modell) (x=a) anfﬂi
According to Figure 3 and Figure 4, it is assumed a

P CA B Gk M Pl RERL AL @
AmZ -s)| N 22 - & Arri | E+a-s J& +2a8

Consideringé — O at crack tip, therefore power terms of the crgziwould be negligible;

iQ [ a+ts 1
-2l L E 1]

Substitutingé,=re'?

AZ )——{—P a*Seo Z Q a+ssm€ —QJ

<< 1, then:

V2ar a

J2a -S
‘/ sm + ar Scos€+—P
477 J2ar a-s 2 &

By differentiating (8) orf , it follows:

4(Z) = dqo d JP-iQl i ats, 1 :P—i -1 at s (10)
dz d{ 4mi | J2afVa-s a s ar 2/2a§3 a

Substitutingé,=re'?

(9)
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1 a+s I S AN .Y 3
-t o2 on2) (uteond]
((Z) is to be solved considering the same conditionl ise@(Z) at (x=a):
_ P-iQ 52 a2
4[’(Z)_4ni(z—s){ Z* - } Q[\/Zaf as & J (12)

Substitutingé,=re'?

P J|a+s 6? Q ats_ 6 Q
=— —— COS— sn—+—
¥(2)= 47T[«/2a -S 2 \/ a—l
(13)
S 2 S6in é’+ & Scosg——P
471 J2ar Va-—s \J2a a
Here, by substituting values offZ), field over the crack tip, (x=a) is then
@(Z) and ¢(Z) in equation(6), the stress calculated:
a+s 6? ats_. 0 Q
Oxt0,, =2|p(2)+@p(Z) |=—| —,|——CO sm— 14
L@+ Lz Y = J =
0, =0, +20,=2(Z~2)¢ (Z)—w(Z)w(Z)]
:1 P is(cosg smg S|n3—0j ar S( sinq cog cegj —Q
7| J2ar Va-s 2 J2a -s ) 2) & (15)
i P a—+ssm9(1+ cos€ cog—ej Q is cog( 4 sﬁq s+3|c6+j
77| </2ar N -S 2 2 2
Finally, stresses can be calculated as follows:
_1,.P a+rs 2 0 a+ssing_ Q
*2m| <J2ar Va-s 2 «/

1| P |a+s 6 .6 aF Q
+—— ——| cos— sin— sm— sm— cos ces— + - (16)
2| «J2ar Va—-s 2 2 \/ 2a a— a

1 ars Pcosg(1+ smg S|H3—9j Q si (& cos ceag

ag. =
“ 2m/2ar Va-s|

o, = L ars Pcos€(1— sing sinsﬁJ—Q sipe(i cog ce:g ~_Q (17)
omJ2ar Va-s| 2 2 2 2 2 2)| ma-s)

N

N
N
N
N
N
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+ ,
o, = [2*S Psm§(1+ cod congj+Q cog( 1 sk sﬁj (18)
2m/2ar Va-s 2 2 2 2 2 2
As mentioned beforeg and ¢ are useful intensity factor in Mode Il can be achieved.

for descr|b|ng the effect of shear stress; Once eStainShed stress intenSity factor at
therefore based on these equations, the stress (x=a) could be calculated as:

at+s
Kp = lim \/ mo, = \/_ (19)
4. Stress Field and Stress Intensity Factor in (x=-a) such thaf =-(a+¢), &=re’
Determination (Mode 1) (x=-a)
According to Figure 3 and Figure 4, it is assumed and—| <<1, then:

__P-iQ | (=& . |__ P i [as 1
“Z)_m(z—s){ zz—a2+1} ENEAES s+a+J (20)

Substitutingé,=re'?

as_ b Q
Az )——{ o ‘/a+ cos—+ o | ar s sm—+—J
i{P a—sH Qa—s@ PJ
+— ——sin

(21)

cos— +—
4T

J2ar Va+s 2 v 2ar at

By differentiating (21) oif , it follows:

dg_d P-iQ| i /a—s 1 __ P -1 /a—s
#(2)= dz df{ 47Ti {\/Zaf a+s+a+s}}_ 477Q{2\/2ag3 alrJ (22)

Substitutingé,=re'?

1 a-s

¥ NG - . P ¥
R RO R I

((Z) is to be solved considering the same conditionl ise¢(Z) at (x=-a):

_ P-iQ /sz & i
4[/(Z)_4ﬂi(z—s){ -d }_ 4ITQL/2a£ at s akl (24)

Substitutingé,=re'?
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1 P ja-s @ a—s.@__Q
Y(Z)= {—\/E Te cos—+\/_ Pl &J

P 87 34in? 5 Q a_Scosﬁ——P
4| \J2ar Va+s \/ r

(25)

at+

Here, by substituting values ofgZ),

over crack tip (x=-a) is then calculated:
@(Z) and/(Z) in equation (6), stress field

o,t0 _2[¢(Z)+¢(Z)]__{TZ Z;Scos€+\/_ a- SSIn€+ &QJ (26)

O =0, +20,, :2[(Z—Z)¢(Z)—¢(Z)+4TZ)]

_1 P a- S(COSQ Slng Sln—j T SlH— Cog CG%’ZJ Q
| J2ar Va+s 2 J2ar \ a+ s 2 2 (27)

at
_i P a-s . 6 g 30 Q as @ g 3
—sm 1+ cos— cos— cos 41 sh SsH
| J2ar Va+s \/ 2 2
Finally, stresses can be calculated as follows:

_1) -P ascs§+ a_ssm€+ Q
27T \/2a a+s \2a

/ / £ Q
277{\/% a+s(cos_ sin—- sm—j Toar \ ot i sm— cos ce&2j+ J-» (28)

XX

at

o —Pcosg(1+ smg sm3—9j+Q S|F€( 1 cog 093&9)—
* 2m/ 2ar a+s_ 2 2 2 2 2

N

g, = 1 a_S——Pcosg(l— sing sin3£)+Q Siﬁq( 1 ceg ceagj_+i

Y 2mf2ar Va+s| 2 22 2 2  2)| ma+s (29)
-1 a-s (7] 6 X g g ¥

g Psin—| 1+ cos- cos— |[+Q coS| 4 St St 30

" 2mf2ar Va+s [ 2( 2 2) Q 2( 2 2)} (30)

As mentioned beforeg and ¢ are useful

in describing the effect of shear stress;
therefore based on these equations, stress

intensity factor in Mode |l could be achieved.
Once established, the stress intensity factor at
(x=-a) could be calculated as:

P a—-s

2\/% a+s (D)

As mentioned, equation) cannot describe P forcéimile | and equation (32) is used
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Pya’-¢

HZ) = (32)
mZ -9 2 -
Consideration of proposeg by Irwin stress field in an infinite region coudd as follows:
O =RepZ)-y.Img (Z)
o, =RepZ)+y.Im¢g (Z) (33)

o,=-Yy.Reg (Z)

5. Stress Field and Stress Intensity Factor 3 and Figure 4, it is assumed in (x=a) such

Determination (Model) (x=a) thatZ = a+¢&, g_re ancf <<1, then:
a

In order to determine stress field and stress
intensity factor in Mode |, according to Figure

- _ g- 3
nz-9NZ- & m(@+(a $P+248(a HE'+2 H)

Consideringé — O at crack tip, the power terms of crack tip wousdnegligible;

az)= (34)

a+s

AZ) = - \/— (35)

—_— 2
Substituting‘r_re :

P a+s
TR/ 2ar -S

AZ)=

(cosﬁ =i smgj (36)
2 2

By differentiating (35) or¢, it follows:

_de_d P ats|_ -P ar ¢
Z)=—F=— / =
9(2) dz df[ﬂ\/Zaf a— s} 277\/2a53\/ a s (37)

— ig
Substituting‘r_re :

@g(2) = P ‘/a+ S(cos3—0—i sinﬁj (38)
27 2ar 2 2
Here, by substituting values af(Z) and tip (x=a) is then calculated:

@(Z) in equation (33), stress field over crack

a+sc o_ P iscog sugr s+3n—e
\/Za a-s 2 77\/ 2ar 2

P a+s 8( .8 38)
= ———C0S—| I~ sin— sifn—
JA/2ar Va—s 2 2 2

o, =RepZ)-y.Img (Z)=
(39)
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ats 6 P ars 68 8 30
o,=RepZ)+y.Img (Z)=—— co — COS‘ SiRk SH-
\/ﬂ IT\/_ 2 2
(40)
[a+s ( .6 36’)
= ——C0S—| I+ sin- sin—
n\/Zar a-s 2 2 2
P ats .8 6 30
o, =-Y.Re = —— SINn— COS- COS— 41
o =TYRGE) m/2arVa-s~ 2 2 2 0
Considering the presenteg, which is Mode |, SIF at (x=a) could be calculated as:
useful in obtaining the stress intensity factor in
36
=J2mo (B SiR- sm—} o~
2" 77\/2a a-s . 2
(42)
KA = P Ja+s
' JmaVa-s
6. Stress Field and Stress Intensity Factor in (x=-a) such thatZ =—(a+¢), &=re"’
Determination (Model) (X=-A) &
According to Figure 3 and Figure 4, itis assumed ~ and—| <<1, then:
_ PJ&-¢ _ d- ¢
ﬂZ) - 2 B 2 2 2 (43)
MZ-9NZ-d& m/(E+(ar §2+24( & PE*+2 &)
Consideringé — 0 at crack tip, therefore power terms of crack tquid be negligible;
a-s
Z)= —_— 44
W)= ars (44)
— Al
Substituting‘(_re ;
P /a— S g . .6
Z)= ——| COS——1 Sin- 45
“z) JR/2ar Va+ s( 2 2) (45)
By differentiating (44) or¢, it follows:
_dp_d P a-s a <
46
oz " dz df{m/ a+ s] 2;7,/ < (46)

— rnlf
Substituting‘(_re ;

_ -P [a-s(_ 30 . .3
¢(Z)_2m\/2ar a+s(COS? ISIn?j 7
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Here, by substituting values af{Z) and tip (x=-a) is then calculated:
@(2) in equation (33), stress field over crack

g, =Rep)-y.Img (Z)=

—— Co
/2ar Va+s 2 77\/

P a-s 6? P a g 60 3
—co& SHE smz—

(48)
_ P /a—s 9( 6 39)
= ——C0S—| 1~ sin— Ssin—
J2ar Va+s 2 2 2
a-s 9 as 6 68 3
—Re +vy.Img (Z)= c —_— co& S SH-
pEZ)*+y.Img (Z)= \/— m/— 3 o
_ /a—s ( 6 30)
= —— CO0S—| I+ Ssin— Sin—
77\/2ar a+s 2 2 2
Stress intensity factor at (x=-a) could be caladads:
=J2mo,, =~ 2m P ,/a_scosg(lk sinq sig’gj o
/2ar Va+s 2 2 2
(50)
KIB :L a;s
JmaVa+s

7. Model Description

Numerical simulation of the problem has been
carried out using the finite element method,
since there are no analytical solutions of similar
problems and no possibility to perform empirical
tests. Model geometry includes a Brazilian disc
containing two cracks with orientations of 0 and
90 degrees (Fig. 5). Considering ISRM standard,

the radius and thickness of the disc are
considered to be 54 and 27 millimetres,
respectively. SIF has thus been calculated for
three different angles of 0 and 90 degrees, the
results of which are shown in Table 2.

Stress concentration near the crack tip has
been numerically presented as shown in
Figure 6.

5, Max. In-Plane Principal {Abs)
(hvy: T5%)

-6 76?2 00

Fig. 5. Schematic FE modd with a crack orientation of O Fig. 6. Stress concentration near the crack tips.

degrees.
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8. Results and Discussions
In summary, the results obtained from the solution

for different angles shall be summarized as
Table 1:

Table 1. Theresults obtained from analytical solution.

Angles (degree) 0 920

KA P a+s 3\/§P a+ts

| JmaVa-s 4JmaNa—-s

1 a+s

KA L is - P+

! NmaVa-s 4\ 2mma a—s[ Q]
KE P |a-s 3J/2P [a-s

|

K® Q

2/m\a+s

Jmavats

Wma\a+s

a-s 1 a-

S
a2ma aTs[P+Q]

By substituting numeric equivalents for P,
Q, a, and s, presented in Table 1, along with
the results of numerical modelling,

dimensionless values for K1 and K2 were
obtained as provided in Table 2 (a/R=0.6).

Table 2. The comparison between theresults of analytical solution and numerical modelling.

Angles (degree) 0 90
Analytical Numerical Analytical Numerical
Method - - X -

solution modelling solution modelling

KA K e 1.014 0.913 0.987 1.014
Kt Ky 0.897 0.985 1.131 1.021
KE /K 1.021 0.986 0.893 0.954
Ko /Ko 0.987 1.013 0.934 1.148

According to the results showed in table 2,
it can be seen that results of analytical solution
and numerical modelling are in good
agreement.

9. Conclusions

The two chevron-notched rock fracture
specimens, chevron bend (CB) and short rod
(SR), recommended by the ISRM to determine
rock Mode | fracture toughness, have a
number of practical disadvantages such as low
loads required to initiate failure at the correct
orientation, complicated loading fixtures, and
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complex sample preparation for CB and SR
specimens. The cracked chevron-notched
Brazilian disc (CCNBD) and the cracked

straight-through Brazilian disc (CSTBD)

specimen  geometries overcome these
problems. CCNBD is an ideal specimen
geometry for rock Mode | fracture toughness,
while the CSTBD is an ideal specimen to be
used for mixed Mode | and Il fracture studies
such as Mode |l fracture toughness
measurement, rock fracture strength locus
tests, and rock mixed mode crack propagation
investigations. Good features of CSTBD are
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high failure load, simple loading fixture, and
convenient and flexible specimen preparation.
In this paper, stress field and stress intensity
factor for CSTBD specimens have been
theoretically presented. In addition, the
analytical solution has been compared with
numerical modelling results, showing the
same outcome for both methods. Finally, it
should be mentioned that the proposed method
thus remains valid for any crack of arbitrary
length and angle. The results demonstrate that
the magnitude of critical load in structures that
prevent cracks from initiation shall be
identified.
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