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Abstract 
Considering the fact that rocks fail faster under tensile stress, rock tensile strength is of great 
importance in applications such as blasting, rock fragmentation, slope stability, hydraulic fracturing, 
caprock integrity, and geothermal energy extraction. There are two direct and indirect methods to 
measure tensile strength. Since direct methods always encompass difficulties in test setup, indirect 
methods, specifically the Brazilian test, have often been employed for tensile strength measurement. 
Tensile failure is technically attributed to crack propagation in rock. Fracture mechanics has 
significant potential for the determination of crack behaviour as well as propagation pattern. To apply 
Brazilian tests, cracked disc geometry has been suggested by the International Society for Rock 
Mechanics ISRM. Accordingly, a comprehensive study is necessary to evaluate stress field and stress 
intensity factor (SIF) around the crack in the centre of the specimen. In this paper, superposition 
principle is employed to solve the problem of cracked straight-through Brazilian disc (CSTBD), using 
two methods of dislocation and complex stress function. Stress field and SIF in the vicinity of the 
crack tip are then calculated. With the proposed method, the magnitude of critical load for crack 
initiation in structures can be predicted. This method is valid for any crack of any arbitrary length and 
angle. In addition, numerical modelling has been carried out for the Brazilian disc. Finally, the 
analytical solution has been compared with numerical modelling results showing the same outcome 
for both methods. 

Keywords: cracked straight-through Brazilian disc (CSTBD), numerical modelling, stress field, stress 
intensity factor (SIF), tensile strength. 

1. Introduction 
Tensile strength is of great importance in the 
scope of rock mechanics such as blasting, rock 
fragmentation, slope stability, hydraulic 

fracturing, cap rock integrity, and geothermal 
energy extraction. There are two methods to 
determine tensile strength, namely the direct 
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and indirect methods. Indirect methods, 
specifically the Brazilian test, have often been 
employed in an effort to determine tensile 
strength since direct methods always 
encompass difficulties in test setup. 

Crack initiation or microcrack propagation 
results in rock failure. Rock failure is an 
important issue in fracture mechanics. For 
applying Brazilian tests, cracked Brazilian 
disc geometry has been taken into account by 
ISRM due to its benefits compared to other 
geometries. SIF and magnitude of induced 
stress are necessary factors in crack 
propagation. 

Over the past two decades there has been a 
great deal of interest and debate on the stress 
intensity factor and the unique fracture 
toughness test method suggested by the 
International Society for Rock Mechanics 
(ISRM) [1-11]. The two chevron-notched rock 
fracture specimens, chevron bend (CB) and 
short rod (SR), recommended by the ISRM 
[12, 13] and aimed at determining rock Mode I 
fracture toughness, have a number of practical 
disadvantages, such as very low loads required 
to initiate failure at the correct orientation, 
complicated loading fixtures, and complex 
sample preparation for CB and SR specimens 
[1]. The aforementioned methods have also 
been unsuitable for mixed mode fractures [3, 
5]. The cracked chevron-notched Brazilian 
disc (CCNBD) and the cracked straight-
through Brazilian disc (CSTBD) specimen 
geometries overcome these problems and are 
also suitable for mixed fracture mode testing 
[14, 15]. The general case for the cracked 
Brazilian disc problem is when the sample is 
loaded diametrically with the crack inclined at 
an angle of zero to the loading direction [Fig. 
1a]. Different combinations of Mode I and 
Mode II fracture intensities can be obtained 
simply by changing this angle. 

For the special case when 0θ =  the 
problem is reduced to the Mode I fracture 
situation. This problem for CSTBD geometry 
was studied by Rooke and Tweed [16] and 
Atkinson [17]. Only Rooke and Tweed [16] 
have considered the long crack case. The 

mixed mode CSTBD problem was 
investigated by Awaji and Sato [14] and 
Atkinson [17]. These authors only studied 
short crack cases, so that the higher order 
components describing the crack and the 
boundary were neglected [6]. Based on 
investigations, CSTBD has priority over 
CCNBD. The main reason for proposing 
CSTBD is that producing a stream crack is 
easier than a V-shape crack. Additionally a 
comparison of studies has shown that 
toughness in CCNBD for a specific rock is 
much lower than CSTBD [8]. 

2.Theoretical Solutions for the CSTBD 
Fracture Problem under Mixed Mode 
Conditions 

Under plane strain conditions, the problem 
shown in Fig. 1a can be solved by 
superimposition of the solutions to the 
following simpler problems: 

• Problem 1: a solid Brazilian disc loaded 
with a pair of diametrical forces P [Fig. 2a]; 

• Problem 2: problem 1 will create normal 
and tangential stresses σN and σT  along the 
part of the diameter 0 < r < a, β = ±π/2-θ 
where there is a crack. This crack is normal 
and tangential stress-free on its surfaces, so 
therefore σN and σT have to be reduced to 
zero. The second problem will be an infinite 
region with a central crack (length 2a) 
subjected to surface normal and tangential 
stresses -σN and -σT  [Fig. 2b]. 

• Problem 3: Problem 2 will generate 
forces -PY and PY along the circumference 
line, which is the disc boundary line. Again 
these stresses need to be cancelled to enforce 
the stress-free conditions along the disc 
boundary. Hence, the third problem is also a 
solid Brazilian disc, identical to that in 
problem 1, but subjected to boundary forces –
PX and -PY instead [Fig. 2c]. This will again 
set up the normal and tangential stresses along 
that part of the diameter mentioned in problem 
1. Therefore the solution procedure goes back 
to solve the condition of problem 2. This 
iteration goes on step by step until the stresses 
created along the crack surface and the disc 
boundary are negligible. 
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Fig. 1. CSTBD and CCNBD specimen geometries [14]. 
 

In this paper, the proposed solution for 
solving the problem in the first and third 

method states are discussed; then, the problem 
is solved and reported in the second state. 

 
Fig. 2. Solution procedure for the mixed mode CSTBD geometry [6]. 

 

We can solve problem 1 from the solution 
of a solid disc subjected to an arbitrary 
boundary concentrated force, given by 
Timoshenko [18]. The derived solutions for 

the normal and tangential stresses set up along 
any arbitrary diameter A-A are as follows 
(Fig. 3): 

 

ϕ ϕ
σ = − θ + ϕ − θ + ϕ +π π π

2P cos 2P cos2 21 2 2Psin ( ) sin ( )N 1 2r r D1 2
 

ϕ θ + ϕ ϕ θ + ϕσ = − −π π
2

2 22P cos sin [ 2( )] 2P cos sin [ 2( )]1 1 2. .r r 2 r 21 2
 

(1a) 

2 2 2
1 .sin ( .cos )r a a Rθ θ= + −  

1
1

.sin
arcsin

a

r

θϕ =  

2 2 2
2 .sin ( .cos )r a a Rθ θ= + +  

2
2

.sin
arcsin

a

r

θϕ =  
(1b) 

 

Similarly we can derive a solution for problem 3 as follows: 
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(2a) 

21 1
N 1 2 3

1 1

2 cos 2 sin
. . .sin .sin 2 sin 2

. .
X Y X YP P P P

r r D D

δ δσ δ δ δ
π π π π

   = + + +       

1 1
N 1

1 1

cos sin
. . .sin 2X YP P

r r

δ δσ δ
π π

 
= + 
   

where 

(2b) 

2 2
1 ( )r x a y= − +  

1 1
1 1

sin ,cos
y x s

r r
δ δ −= =

 

2 3arctan , arctan
x y

y R x R
δ δ= =

+ +  
x and y are components of coordinates. 

Problem 2 was solved using the dislocation 
method and a complex stress function method 
[19]. The stress field within an infinite field 

with a central crack subjected to arbitrary 
normal and tangential surface stresses can be 
calculated by the following expressions: 

(3) 

2 2 2 2
2

2 2 2
2

( ).( sin ).[ ( sin ) ] ( ). .[3( sin ) ]
.

[( sin ) ]xx

F x a y x a G y x a y
d

x a y

π

π
ϕ ϕ ϕ ϕ ϕσ ϕ

ϕ−

 − − − − − +=  − + 
∫  

2 2 2 2
2

2 2 2
2

( ).( sin ).[3 ( sin ) ] ( ). .[( sin ) ]
.

[( sin ) ]yy

F x a y x a G y x a y
d

x a y

π

π
ϕ ϕ ϕ ϕ ϕσ ϕ

ϕ−

 − − + − + − −=  − + 
∫  

2 2 2 2
2

2 2 2
2

( ). .[ ( sin ) ] ( ).( sin ).[( sin ) ]
.

[( sin ) ]xy

F y y x a G x a x a y
d

x a y

π

π
ϕ ϕ ϕ ϕ ϕσ ϕ

ϕ−

 − − + − − −=  − + 
∫  

where ( )F ϕ and ( )G ϕ are the introduced 
dislocation densities, simulating the Mode I 
and Mode II fracture situations, respectively. 

They can be calculated by the following 
integration equations: 

(4) 
2 2

2

( )( ) 1
.

( ) ( )sin

a N

a
T

xF a x
dx

G xx a

σϕ
ϕ σπ ϕ−

   −=    −   
∫  

When using the complex stress function 
method to solve problem 2, the following 
complex stress functions are used to represent 

the action of the shear stress on the crack 
surface (Fig. 4): 

(5) 
2 2 2 2

2 2 2 2
( ) 1 , ( ) 1

4 ( ) 4 ( )

P iQ s a P iQ s a
Z Z

i Z s Z a i Z s Z a
φ ψ

π π
   − − − −= + = −   

− − − −      

 

which is taken from Erdogan’s solution [20] 
for a central crack subjected to a pair of 
surface normal and tangential concentrated 

forces P and Q. Then the stress field at any 
point within the infinite region can be 
calculated from the equations given below: 
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(6) 
2 ( ) ( )xx yy Z Zσ σ φ φ + = +   

2 2 ( ). ( ) ( ) ( )xx yy xyi Z Z Z Z Zσ σ σ φ φ ψ ′− + = − − +   

Here Z is the complex 
coordinateZ X iY= + . It has been proved that 
Erdogan’s stress function can only express the 

action of the crack surface tangential force Q 
but not the normal force P [20]. 

  

Fig. 4. Complex stress functions [21]. Fig. 3. Solid Brazilian disc [21]. 

3. Stress Field and Stress Intensity Factor 
Determination (Mode II) (x=a) 

According to Figure 3 and Figure 4, it is assumed 

in (x=a) such that Z=a+ξ, , ξ,=reiθ  
and 1

a

ξ < < , then: 

(7) 
2 2 22 2

2 2 2

21
( ) 1 .

4 ( ) 4 2

s a aP iQ s a P iQ
Z

i Z s Z a i a s a

ξ ξφ
π π ξ ξ ξ

   − + +− − −= + =   
− − + − +     

 

Considering 0ξ →  at crack tip, therefore power terms of the crack tip would be negligible; 

(8) 
1

( )
4 2

P iQ i a s
Z

i a s a sa
φ

π ξ
 − += + − −  

 

Substituting ξ,=reiθ  ; 

(9) 

1
( ) cos sin

4 2 22 2

sin cos
4 2 22 2

P a s Q a s Q
Z

a s a s a sar ar

i P a s Q a s P

a s a s a sar ar

θ θφ
π

θ θ
π

 + += − − − − − 

 + +− + + − − − 

 

By differentiating (8) onξ , it follows: 

(10) 
3

1 1
( )

4 42 2 2

d d P iQ i a s P iQ a s
Z

dZ d i a s a s a sa a

φφ
ξ π πξ ξ

   − + − − + ′ = = + =    − − −        
 

Substituting ξ,=reiθ  ; 



Ghavidel et al./ Int. J. Min. & Geo-Eng., Vol.48, No.1, June 2014 
 

60 

 

(11) 
1 1 3 3 3 3

( ) cos sin sin cos
4 2 2 2 22 2

a s
Z P Q i P Q

a sr ar

θ θ θ θφ
π

− +     ′ = − − +    −     
 

( )Zψ  is to be solved considering the same condition used for ( )Zφ at (x=a): 

(12) 
2 2

2 2

1
( ) 1

4 ( ) 4 2

P iQ s a P iQ a s i
Z

i Z s Z a a s a sa
ψ

π π ξ

   − − − += − = +   − − − −     
 

Substituting ξ,=reiθ  ; 

(13) 

1
( ) cos sin

4 2 22 2

sin cos
4 2 22 2

P a s Q a s Q
Z

a s a s a sar ar

i P a s Q a s P

a s a s a sar ar

θ θψ
π

θ θ
π

 + += − + − − − 

 + +− + − − − − 

 

Here, by substituting values of ( )Zφ , 

( )Zφ′  and ( )Zψ  in equation(6), the stress 

field over the crack tip, (x=a) is then 
calculated: 

(14) 
1

2 ( ) ( ) cos sin
2 22 2

xx yy

P a s Q a s Q
Z Z

a s a s a sar ar

θ θσ σ φ φ
π
 + +

 + = + = − −   − − − 
 

(15) 

2 2 ( ). ( ) ( ) ( )

1 3 3
cos sin sin sin cos cos

2 2 2 2 2 22 2

3 3
sin 1 cos cos cos 1 sin sin

2 2 2 2 2 22 2

xx yy xyi Z Z Z Z Z

P a s Q a s Q

a s a s a sar ar

i P a s Q a s

a s a sar ar

σ σ σ φ φ ψ

θ θ θ θ θ θ
π

θ θ θ θ θ θ
π

 ′− + = − − + 

 + +   = + +    − − −    

 + +   + + + −    − −    

 

Finally, stresses can be calculated as follows: 

(16) 

1
cos sin

2 2 22 2

1 3 3
cos sin sin sin cos cos

2 2 2 2 2 2 22 2

1 3 3
cos 1 sin sin sin 1 cos cos

2 2 2 2 2 22 2

xx

xx

P a s Q a s Q

a s a s a sar ar

P a s Q a s Q

a s a s a sar ar

a s
P Q

a sar

θ θσ
π

θ θ θ θ θ θ
π

θ θ θ θ θ θσ
π

 + += − − − − − 

 + +   + + + →    − − −    

+     = + − −   −    





 

(17) 
1 3 3

cos 1 sin sin sin 1 cos cos
2 2 2 2 2 2 ( )2 2

yy

a s Q
P Q

a s a sar

θ θ θ θ θ θσ
ππ

+     = − − − −    − −    
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(18) 
1 3 3

sin 1 cos cos cos 1 sin sin
2 2 2 2 2 22 2

xy

a s
P Q

a sar

θ θ θ θ θ θσ
π

+     = + + −    −     
 

As mentioned before, ϕ and ψ  are useful 
for describing the effect of shear stress; 
therefore based on these equations, the stress 

intensity factor in Mode II can be achieved. 
Once established, stress intensity factor at 
(x=a) could be calculated as: 

(19) 12
0
0

lim 2
2

A
II

x

Q a s
K r

a saθ
π σ

π→
→

+= =
−

 

4. Stress Field and Stress Intensity Factor 
Determination (Mode II) (x=-a) 

According to Figure 3 and Figure 4, it is assumed 

 in (x=-a) such that ( )Z a ξ= − + , ireθξ =  

and 1
a

ξ << , then: 

(20) 
2 2

2 2

1
( ) 1

4 ( ) 4 2

P iQ s a P iQ i a s
Z

i Z s Z a i a s a sa
φ

π π ξ

   − − − −= + = − +   − − + +     
 

Substituting ξ,=reiθ  ; 

(21) 

1
( ) cos sin

4 2 22 2

sin cos
4 2 22 2

P a s Q a s Q
Z

a s a s a sar ar

i P a s Q a s P

a s a s a sar ar

θ θφ
π

θ θ
π

 − − −= + + + + + 

 − −+ + + + + + 

 

By differentiating (21) onξ , it follows: 

(22) 
3

1 1
( )

4 42 2 2

d d P iQ i a s P iQ a s
Z

dZ d i a s a s a sa a

φφ
ξ π πξ ξ

   − − − − − ′ = = − + = −    + + +        
 

Substituting ξ,=reiθ  ; 

(23) 
1 1 3 3 3 3

( ) cos sin sin cos
4 2 2 2 22 2

a s
Z P Q i P Q

a sr ar

θ θ θ θφ
π

−     ′ = − − +    +     
 

( )Zψ  is to be solved considering the same condition used for ( )Zφ at (x=-a): 

(24) 
2 2

2 2

1
( ) 1

4 ( ) 4 2

P iQ s a P iQ a s i
Z

i Z s Z a a s a sa
ψ

π π ξ

   − − − −= − = − +   − − + +     
 

Substituting ξ,=reiθ  ; 
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(25) 

1
( ) cos sin

4 2 22 2

sin cos
4 2 22 2

P a s Q a s Q
Z

a s a s a sar ar

i P a s Q a s P

a s a s a sar ar

θ θψ
π

θ θ
π

 − − −= + − + + + 

 − −+ + − + + + 

 

Here, by substituting values of ( )Zφ , 

( )Zφ′  and ( )Zψ  in equation (6), stress field 

over crack tip (x=-a) is then calculated: 

(26) 
1

2 ( ) ( ) cos sin
2 22 2

xx yy

P a s Q a s Q
Z Z

a s a s a sar ar

θ θσ σ φ φ
π
 − − −

 + = + = + +   + + + 
 

(27) 

2 2 ( ). ( ) ( ) ( )

1 3 3
cos sin sin sin cos cos

2 2 2 2 2 22 2

3 3
sin 1 cos cos cos 1 sin sin

2 2 2 2 2 22 2

xx yy xyi Z Z Z Z Z

P a s Q a s Q

a s a s a sar ar

i P a s Q a s

a s a sar ar

σ σ σ φ φ ψ

θ θ θ θ θ θ
π

θ θ θ θ θ θ
π

 ′− + = − − + 

 − − −   = + +    + + +    

 − −   − + + −    + +    

 

Finally, stresses can be calculated as follows: 

(28) 

1
cos sin

2 2 22 2

1 3 3
cos sin sin sin cos cos

2 2 2 2 2 2 22 2

1 3 3
cos 1 sin sin sin 1 cos cos

2 2 2 2 2 22 2

xx

xx

P a s Q a s Q

a s a s a sar ar

P a s Q a s Q

a s a s a sar ar

a s
P Q

a sar

θ θσ
π

θ θ θ θ θ θ
π

θ θ θ θ θ θσ
π

 − − −= + + + + + 

 − −   − + + →    + + +    

−     = − + + +   +    


 
 

 

(29) 
1 3 3

cos 1 sin sin sin 1 cos cos
2 2 2 2 2 2 ( )2 2

yy

a s Q
P Q

a s a sar

θ θ θ θ θ θσ
ππ

−     = − − + + +    + +    
 

(30) 
1 3 3

sin 1 cos cos cos 1 sin sin
2 2 2 2 2 22 2

xy

a s
P Q

a sar

θ θ θ θ θ θσ
π

− −     = + + −    +     
 

As mentioned before, ϕ and ψ  are useful 
in describing the effect of shear stress; 
therefore based on these equations, stress 

intensity factor in Mode II could be achieved. 
Once established, the stress intensity factor at 
(x=-a) could be calculated as: 

(31) 
2

P a s

a saπ
−
+

 

As mentioned, equation) cannot describe P force for Mode I and equation (32) is used: 
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(32) 
2 2

2 2

.
( )

( ).

P a s
Z

Z s Z s
φ

π
−=

− −
 

Consideration of proposed φ  by Irwin stress field in an infinite region could be as follows: 

(33) 

Re ( ) .Im ( )

Re ( ) .Im ( )

.Re ( )

xx

yy

xy

Z y Z

Z y Z

y Z

σ φ φ
σ φ φ
σ φ

′= −
′= +

′= −

 

5. Stress Field and Stress Intensity Factor 
Determination (Mode I) (x=a) 

In order to determine stress field and stress 
intensity factor in Mode I, according to Figure 

3 and Figure 4, it is assumed in (x=a) such 

thatZ a ξ= + , ireθξ =  and 1
a

ξ << , then: 

(34) 
2 2 2 2

2 2 2 2 2
( )

( ). ( ( ) 2 ( ))( 2 )

P a s P a s
Z

Z s Z a a s a a s a
φ

π π ξ ξ ξ ξ
− −= =

− − + − + − +
 

Considering 0ξ →  at crack tip, the power terms of crack tip would be negligible; 

(35) ( )
2

P a s
Z

a sa
φ

π ξ
+=
−

 

Substituting
ireθξ = ; 

(36) ( ) cos sin
2 22

P a s
Z i

a sar

θ θφ
π

+  = − −  
 

By differentiating (35) on ξ , it follows: 

(37) 
3

( )
2 2 2

d d P a s P a s
Z

dZ d a s a sa a

φφ
ξ π ξ π ξ

 + − +′ = = = − −  
 

Substituting
ireθξ = ; 

(38) 
3 3

( ) cos sin
2 22 2

P a s
Z i

a sr ar

θ θφ
π

− +  ′ = − −  
 

Here, by substituting values of ( )Zφ and 

( )Zφ′  in equation (33), stress field over crack 

tip (x=a) is then calculated: 

(39) 

3
Re ( ) .Im ( ) cos cos sin sin

2 2 2 22 2

3
cos 1 sin sin

2 2 22

xx

P a s P a s
Z y Z

a s a sar ar

P a s

a sar

θ θ θ θσ φ φ
π π

θ θ θ
π

+ +′= − = −
− −

+  = − −  
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(40) 

3
Re ( ) .Im ( ) cos cos sin sin

2 2 2 22 2

3
cos 1 sin sin

2 2 22

yy

P a s P a s
Z y Z

a s a sar ar

P a s

a sar

θ θ θ θσ φ φ
π π

θ θ θ
π

+ +′= + = +
− −

+  = + −  

 

(41) 
3

.Re ( ) sin cos cos
2 2 22

xy

P a s
y Z

a sar

θ θ θσ φ
π

+′= − =
−

 

Considering the presented φ , which is 
useful in obtaining the stress intensity factor in 

Mode I, SIF at (x=a) could be calculated as: 

 

(42) 

0
22

3
2 2 cos 1 sin sin

2 2 22
A
I

A
I

P a s
K r r

a sar

P a s
K

a sa

θθ θ θπ σ π
π

π

= +  = = + →   −   

+=
−

 

6. Stress Field and Stress Intensity Factor 
Determination (Mode I) (X=-A) 

According to Figure 3 and Figure 4, it is assumed 

in (x=-a) such that ( )Z a ξ= − + , ireθξ =  

and 1
a

ξ << , then: 

(43) 
2 2 2 2

2 2 2 2 2
( )

( ). ( ( ) 2 ( ))( 2 )

P a s P a s
Z

Z s Z a a s a a s a
φ

π π ξ ξ ξ ξ
− −= =

− − + + + + +
 

Considering 0ξ →  at crack tip, therefore power terms of crack tip would be negligible; 

(44) ( )
2

P a s
Z

a sa
φ

π ξ
−=
+

 

Substituting
ireθξ = ; 

(45) ( ) cos sin
2 22

P a s
Z i

a sar

θ θφ
π

−  = − +  
 

By differentiating (44) on ξ , it follows: 

(46) 
3

( )
2 2 2

d d P a s P a s
Z

dZ d a s a sa a

φφ
ξ π ξ π ξ

 − − −′ = = = + +  
 

Substituting
ireθξ = ; 

(47) 
3 3

( ) cos sin
2 22 2

P a s
Z i

a sr ar

θ θφ
π

− −  ′ = − +  
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Here, by substituting values of ( )Zφ and 

( )Zφ′  in equation (33), stress field over crack 

tip (x=-a) is then calculated: 

(48) 

3
Re ( ) .Im ( ) cos cos sin sin

2 2 2 22 2

3
cos 1 sin sin

2 2 22

xx

P a s P a s
Z y Z

a s a sar ar

P a s

a sar

θ θ θ θσ φ φ
π π

θ θ θ
π

− −′= − = −
+ +

−  = − +  

 

(49) 

3
Re ( ) .Im ( ) cos cos sin sin

2 2 2 22 2

3
cos 1 sin sin

2 2 22

yy

P a s P a s
Z y Z

a s a sar ar

P a s

a sar

θ θ θ θσ φ φ
π π

θ θ θ
π

− −′= + = +
+ +

−  = + +  

 

Stress intensity factor at (x=-a) could be calculated as: 

(50) 

0
22

3
2 2 cos 1 sin sin

2 2 22
B
I

B
I

P a s
K r r

a sar

P a s
K

a sa

θθ θ θπ σ π
π

π

= −  = = + →   +   

−=
+

 

7. Model Description 
Numerical simulation of the problem has been 
carried out using the finite element method, 
since there are no analytical solutions of similar 
problems and no possibility to perform empirical 
tests. Model geometry includes a Brazilian disc 
containing two cracks with orientations of 0 and 
90 degrees (Fig. 5). Considering ISRM standard, 

the radius and thickness of the disc are 
considered to be 54 and 27 millimetres, 
respectively. SIF has thus been calculated for 
three different angles of 0 and 90 degrees, the 
results of which are shown in Table 2. 

Stress concentration near the crack tip has 
been numerically presented as shown in 
Figure 6.  

  
Fig. 6. Stress concentration near the crack tips. Fig. 5. Schematic FE model with a crack orientation of 0 

degrees. 
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8. Results and Discussions 
In summary, the results obtained from the solution 

for different angles shall be summarized as 
Table 1: 

 

Table 1. The results obtained from analytical solution. 

Angles (degree) 0 90 
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+
−

 
3 2
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+
−

 

A
IIK  
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+
−
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−
+

 [ ]1

4 2
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P Q

a saπ
− +
+

 

 

By substituting numeric equivalents for P, 
Q, a, and s, presented in Table 1, along with 
the results of numerical modelling, 

dimensionless values for K1 and K2 were 
obtained as provided in Table 2 (a/R=0.6). 

Table 2. The comparison between the results of analytical solution and numerical modelling. 

Angles (degree) 0 90 

Method 
Analytical 
solution 

Numerical 
modelling 

Analytical 
solution 

Numerical 
modelling 

/A
I ICK K  1.014 0.913 0.987 1.014 

/A
II IICK K  0.897 0.985 1.131 1.021 

/B
I ICK K  1.021 0.986 0.893 0.954 

/B
II IICK K  0.987 1.013 0.934 1.148 

 

According to the results showed in table 2, 
it can be seen that results of analytical solution 
and numerical modelling are in good 
agreement.  

9. Conclusions 
The two chevron-notched rock fracture 
specimens, chevron bend (CB) and short rod 
(SR), recommended by the ISRM to determine 
rock Mode I fracture toughness, have a 
number of practical disadvantages such as low 
loads required to initiate failure at the correct 
orientation, complicated loading fixtures, and 

complex sample preparation for CB and SR 
specimens. The cracked chevron-notched 
Brazilian disc (CCNBD) and the cracked 
straight-through Brazilian disc (CSTBD) 
specimen geometries overcome these 
problems. CCNBD is an ideal specimen 
geometry for rock Mode I fracture toughness, 
while the CSTBD is an ideal specimen to be 
used for mixed Mode I and II fracture studies 
such as Mode II fracture toughness 
measurement, rock fracture strength locus 
tests, and rock mixed mode crack propagation 
investigations. Good features of CSTBD are 
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high failure load, simple loading fixture, and 
convenient and flexible specimen preparation. 
In this paper, stress field and stress intensity 
factor for CSTBD specimens have been 
theoretically presented. In addition, the 
analytical solution has been compared with 
numerical modelling results, showing the 
same outcome for both methods. Finally, it 
should be mentioned that the proposed method 
thus remains valid for any crack of arbitrary 
length and angle. The results demonstrate that 
the magnitude of critical load in structures that 
prevent cracks from initiation shall be 
identified. 
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