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ABSTRACT: In this paper, we present an application of evolved neural networks using a 
real coded genetic algorithm for simulations of monthly groundwater levels in a coastal 
aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater 
elevations observed at a given time, the developed hybrid genetic algorithm-back 
propagation (GA-BP) should be able to reproduce groundwater level variations using the 
external input variables, including rainfall, average discharge, temperature, evaporation 
and annual time series. To achieve this purpose, the hybrid GA-BP algorithm is first 
calibrated on a training dataset to perform monthly predictions of future groundwater 
levels using past observed groundwater levels and additional inputs. Simulations are then 
produced on another data set by iteratively feeding back the predicted groundwater levels, 
along with real external data. This modelling algorithm has been compared with the 
individual back propagation model (ANN-BP), which demonstrates the capability of the 
hybrid GA-BP model. The later provides better results in estimation of groundwater 
levels compared to the individual one. The study suggests that such a network can be 
used as a viable alternative to physical-based models in order to simulate the responses of 
the aquifer under plausible future scenarios, or to reconstruct long periods of missing 
observations provided past data for the influencing variables is available. 
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INTRODUCTION
  

Estimation of groundwater level is very 

important in hydrogeology studies, aquifer 

management, and agriculture groundwater 

quality. In many cases, groundwater level 

fluctuations have resulted in irreparable 

damage to engineering structures. With 

considerable amounts of these fluctuations, 

appropriate decisions can be presented in 

terms of water quality, hydrogeology, and 

management purposes. Although, 

conceptual and physical based models are 

the main tools for understanding 

hydrological processes in a basin, they 

have application limitations because these 
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models require large quantities of good 

quality data. Furthermore, they are also 

time-consuming processes for simulation. 

In this regard, it is of high importance to 

develop a fast and cost-effective method 

for aquifer simulation, continuously with 

an acceptable accuracy. In order to achieve 

this goal, many researchers have used 

intelligent systems. Amongst these 

researchers are Coulibaly et al. (2001), 

Lallahem and Mania (2003), Daliakopoulos 

et al. (2005), Lallahem et al. (2005), Dogan 

et al. (2008), Nourani et al. (2008), Yang et 

al. (2009), Sreekanth et al. (2009). These 

researchers used artificial neural networks 

for aquifer modelling in a variety of basins. 
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A detailed review of ANNs applications 

can be found in Maier and Dandy (2000), 

Maier et al. (2010). They reviewed 43 

papers dealing with the use of neural 

network models for the prediction of water 

resources variables. In recent years, 

Nourani et al. (2011) evaluates a hybrid of 

the Artificial Neural Network-Geostatic 

methodology for spatiotemporal prediction 

of groundwater levels in a coastal aquifer 

system. Jalalkamali and Jalalkamali (2011) 

employed a hybrid model of Artificial 

Neural Network and Genetic Algorithm 

(ANN-GA) for forecasting groundwater 

levels in an individual well. The hybrid 

ANN-GA model was designed to find an 

optimal number of neutrons for hidden 

layers. The consequences of their research 

admitted the superiority of the ANN-GA 

model in prediction of groundwater levels. 

Taormina et al. (2012) employed an 

artificial neural network for simulation of 

hourly groundwater levels in a coastal 

aquifer system. They confirmed that the 

developed feed-forward neural network 

(FNN) can accurately reproduce 

groundwater depths of the shallow aquifer 

for several months. Moreover, a method 

combined of the discrete wavelet transform 

method and different mother wavelets with 

ANN (WANN) was proposed by Nakhaei 

and Saberi Naser (2012) for the prediction 

of groundwater level fluctuations. 

Furthermore, a hybrid model of Neuro-

Fuzzy Inference System with Wavelet 

(Wavelet-ANFIS) was proposed by 

Moosavi et al. (2013) for groundwater 

level forecasting in different prediction 

periods. These studies demonstrated that 

the wavelet transform can improve 

accuracy of groundwater level forecasting.  

The studies’ processes show that use of 

the more modern method is because of 

progression, and presentation of high 

accuracy in estimation of groundwater 

levels and high performance of computer 

speed and memory. The back-propagation 

algorithm (BP) is the most popular in the 

domain of neural networks, which is 

utilized in the most frequently mentioned 

studies for aquifers simulation. BP is the 

standard of the Gradient Descent 

algorithm. The Gradient Descent method, 

and therefore its algorithms, easily become 

stuck in local minimum and often needs a 

longer training time (Chau, 2007). In this 

study, the stochastic optimization method 

(GA) is utilized to train a feed forward 

neural network; therefore, numerical 

weights of neuron connections and biases 

represent the solution components of the 

optimization problem. In fact, a 

combination of genetic algorithm to adjust 

the neural network weights was proposed 

in several researches on artificial 

intelligence (Belew et al., 1991; Liang et 

al., 2000; Montana, 1995). GA is one type 

of stochastic algorithms that are capable of 

solving multi-dimensional complex 

problems, especially non-smooth, non-

continuous, non-differentiable objective 

function to find the global optimum, to 

escape the local optima and acquire a 

global optima solution. This combination 

would be an efficient method of training 

neural networks because it takes advantage 

of the strengths of genetic algorithms and 

back propagation (the fast initial 

convergence of stochastic algorithms and 

the powerful local search of back 

propagation), and circumvents the 

weaknesses of the two methods (the weak 

fine-tuning capability of stochastic 

algorithms and a flat spot in back 

propagation). After performing the hybrid 

model and the ANN-BP model, this study 

presents results for estimation of 

groundwater levels in a coastal aquifer. 

Finally, a comparison of their results 

introduces the more optimum model for 

generation to other coastal aquifers. 

Study area  
The data used in this study are from the 

Shabestar Plain (Fig.1), which is located in 

the East-Azerbaijan province in the 
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northwest of Iran. It is between 45 26 and 

46 2 north latitude and 38 3 and 38 23 

east longitude with a cold arid climate. The 

plain area is about 1,297 km
2
 and its main 

river is the Daryanchai. The headwaters of 

the river are situated at a height of about 

2,982m of the Misho Mountain, and it 

discharges to Urmia Lake. According to 

statistical results of data from the last 40 

years, the average discharge of the 

Daryanchai River is 0.475 m
3
/s. The mean 

daily temperature varies from -19C in 

January up to 42C in July with a yearly 

average of 11C and an average annual 

rainfall of about 250 mm (Nourani and 

Ejlali, 2012). 

As showed by Figure 1, the study area is 

a coastal aquifer system. There are about 

25 plains around the Urmia Lake basin. 

The water levels of the lake have a 

tremendous environmental impact on the 

groundwater resources from these plains, 

especially in terms of salinity (Azizi and 

Abbasi, 2013). A significant population 

lives in the Urmia Lake basin, whose 

irrigation economics are strongly 

dependent on the existing surface, and 

groundwater resources in the area. 

Accordingly, the focus of the human 

population, indiscriminate use, and the 

recent droughts has reduced the lake’s 

water level, and seasonal main river. So 

nowadays, groundwater is a major source 

of drinking and agricultural water supply. 

 

Fig. 1. Study area in northwest Iran 

This study has tried to evaluate the GA-

BP and ANN-BP performance models and 

to provide a comparison of a more optimal 

model for the estimation of groundwater 

levels. For this purpose, the data were 

collected for nine years (from October 

2000 to September 2009) with a one month 

time interval. The data utilized consist of 

observed groundwater level at 15 

piezometers, average discharge of the 

Daryanchai River, annual time series, 

evaporation, rainfall, and temperature at 

the Sharafkhane Station. Table 1 shows the 

statistical analysis of the observed 

groundwater levels of piezometers. 

Furthermore, Figure 2 shows positions of 

the piezometers located within the 

Shabestar Plain. The chosen piezometers 

were selected based on uniform 

distribution in the plain, completeness of 

the data category, and far enough distance 

from the coastal line. 
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Table 1. Statistical analysis of observed groundwater in 15 piezometers  

Skewness 

Coefficient 

Standard 

deviation 

(m) 

Variance 
Max 

(m) 

Min 

(m) 

Mean 

(m) 

Y(UTM) 

(m) 

X(UTM) 

(m) 

Piez. 

No. 

-0.047228 1.508182 2.274615 1415.95 1408.31 1412.45 4232500 576150 P1 

0.778455 0.638228 0.407335 1365.67 1362.74 1363.58 4235500 579250 P2 

6.299276 2.696162 7.269294 1357.68 1331.19 1334.10 4225050 561550 P3 

0.168759 5.060245 25.60608 1336.86 1322.81 1329.07 4225900 572350 P4 

0.880152 3.503471 12.27430 1318.91 1304.93 1311.56 4228700 577850 P5 

-3.637452 0.795523 0.632857 1300.16 1292.96 1298.84 4222950 577600 P6 

-0.491028 0.739837 0.547359 1296.01 1292.31 1294.82 4222550 573100 P7 

0.152471 0.933441 0.871312 1286.22 1282.23 1283.90 4220050 554550 P8 

-1.393301 1.849829 3.421868 1282.44 1269.56 1279.37 4223900 546600 P9 

0.170974 2.364509 5.590902 1278.54 1265.55 1272.48 4222000 564200 P10 

0.276150 2.939910 8.643071 1274.08 1259.51 1266.02 4223500 569900 P11 

0.284084 1.854802 3.440292 1266.72 1257.32 1260.85 4220800 559350 P12 

0.246874 3.775080 14.251235 1270.23 1256.44 1262.46 4220150 551800 P13 

1.230776 2.817036 7.935692 1264.02 1250.83 1254.83 4224100 555200 P14 

1.158132 0.520543 0.270965 1331.91 1328.99 1329.79 4234500 583700 P15 
 

 

Fig. 2. Piezometer positions in Shabestar Plain 

MARETIALS & METHODS 

Artificial neural network (ANN) 
Neural Networks basically comprise 

interconnected simulated neurons. In 

hydrological engineering applications to 

date, the most widely used network is the 

Feed-Forward Neural Network (FF-NN). 

This is largely due to its simplicity compared 

to other networks and its ability to learn the 

implicit governing relationship between the 

inputs and outputs if sufficient training data 

is supplied. FF-NN is a network structure in 

which the information or signals will 

propagate only in one direction.  
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The FF-NN typically consists of three 

layers, including input, hidden and output 

layers as depicted in Figure 3. It is possible 

to have more than one hidden layer but a 

single layer is sufficient to approximate 

any function to a desired degree of 

accuracy (Hornik et al., 1989). The number 

of neurons in the input and output layers 

are normally determined by the special 

problem. Furthermore, for most cases to 

date, the best way to determine the optimal 

number of neurons in the hidden layer is 

done by systemic trial and error. In fact, 

the inputs are fed through the input layer 

and, after being multiplied by synaptic 

weights, are delivered to the hidden layer. 

In the hidden neurons, the weighted sum of 

inputs is transformed by a nonlinear 

activation function, which is usually 

chosen as the logistic or the hyperbolic 

tangent. The same process takes place in 

each of the following hidden layers, until 

the outcomes reach the output neuron. 

Meanwhile, the linear activation function is 

most commonly applied to the output layer 

(Triana et al., 2010).  

Back-propagation (BP) algorithms are 

the most popular training algorithms that 

are widely used due to their simplicity and 

the application for training FF-NN (Kulluk, 

2013). In FF-BP networks, which are 

considered in this study, output error is 

reported back, and in this way, a more 

desirable output is acquired through 

updating the weighting coefficients matrix. 

This action is carried out until the error 

between the target data and output data 

derived from the weighting matrix is 

insignificant and consequently the value of 

the objective function is minimized (Fig.4). 

For further details on FF-NNs, the reader is 

referred to the bibliography (ASCE Task 

Committee on Application of Artificial 

Neural Networks in Hydrology, 2000).  

 

Fig. 3. Typical Feed-Forward Neural Networks 

 

Fig. 4. Neural systems modify themselves in the training stage by adjusting weight values between neurons 
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Hybrid genetic algorithm-back 
propagation (hybrid GA-BP)  
In order to avoid local optimum, the ANN 

learning process for the hybrid GA-BP 

model (Liang et al., 2000) consists of two 

stages: in the first stage, GA is employed to 

search for the optima or approximate 

optimal connection weights and biases for 

the network. Then in the second stage, the 

back-propagation training algorithm is 

used to adjust the final weights and biases 

(Fig.5).  

 

Fig. 5. GA-BP flow chart 

GA is the most well-known evolutionary 

algorithm, which was introduced by John 

Holland and his colleague in the 1960s. The 

study of Jong and Goldberg et al. made 

significant progress in theoretical study as 

well as practical applications (Goldberg, 

1989). This algorithm has an iterative 

progress, which begins the search with a 

random initial solution. In the hybrid GA-

BP model, the ANN weights and biases are 

initialized as genes of chromosomes, and 

then for searching for the global optimum, 

three operators (selection, crossover, 

and mutation) are used to generate the next 

population. GA is stopped when the 

stopping criteria (e.g., number of 

generation, stall generation, time limit and 

so on) is met. After that, this procedure is 

completed by applying a BP training 

algorithm on GA established initial 

connection weights and biases (Fig.5). 

RESULTS & DISCUSSION 
In this study, the hybrid GA-BP model is 

designed in comparison with the ANN-BP 

model for estimation of groundwater 

levels. For this purpose, the weights 

adjustment is done through minimizing the 

objective function, which is normally 

defined as a root mean squared error 

(RMSE), which calculates according to 

Equation 1. 

N
observed predictedi 1

1RMSE (WL WL )
N   (1) 

In this equation, RMSE is the root mean 

squared error, N is the number of training 

samples, WLobserved is the amount of 

observed groundwater levels for each 
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piezometer, and WLpredicted is the predicted 

groundwater level using the GA-BP or 

ANN-BP model. 

As has been explained, the utilized dataset 

was acquired for October 2000 to September 

2009 including Rainfall (mm/month), 

average discharge of the Daryanchai River 

(m
3
/s), temperature (


C), evaporation 

(mm/month), and annual time series (year), 

which was defined as the external inputs for 

determining groundwater fluctuations from 

15 piezometers. According to recent 

researches (Coulibaly et al., 2001a; Lallahem 

et al., 2005; Nourani et al., 2008) effective 

factors in the fluctuation of groundwater 

levels include temperature, rainfall and 

average discharge of the basin. However, 

typical hydrology and hydrogeology of every 

basin are different. In the coastal aquifer of 

the Shabestar Plain, groundwater levels 

decreased in all piezometers. Undoubtedly, 

evaporation also has an important role in 

these decreases. So, in this case study the 

evaporation data were added to the input 

layer. Furthermore, in another case study, the 

evaporation factor is used for the estimation 

of groundwater levels in another coastal 

aquifer located in Italy (Taormina et al., 

2012). These four input data (temperature, 

rainfall, average discharge and evaporation) 

reflect monthly fluctuations in the 

groundwater level since piezometer 

groundwater levels decrease with a constant 

gradient annually, annual time series are also 

included in the present study. Rainfall values 

ranged from 3 to 110.2 mm/month (average 

20.39), average discharge value from 0.03 to 

2.658 m
3
/s (average 0.41), temperature value 

from -6.7 to 27

C (average 13.41) and 

evaporation value from 0 to 265.9 

mm/month (average 87.39). 

For better assessment of the results, all 

input and output data were normalized using 

the method introduced by Larose in data 

mining and statistical analysis (Larose, 

2005). Normalization is performed   in the

 typical range of 0 (L) and 1 (H) by using 
the maximum and minimum values according

 to Equations 2-4. 

*
iX mX b   (2) 

H Lm
Max ( X ) Min( X )




 (3) 

Max ( X )L Min( X )H
b

Max ( X ) Min( X )





 (4)    

where, X
*
 are the normalized and Xi are 

main variables. 

Table 2 represents the parameters that 

were used in construction of the GA-BP 

model. Structure of the ANN-BP model 

designed (5:7:1) for both models consists 

of three layers, including the input layer, 

hidden layer and output layer, as shown in 

Figure 6. Architecture of the feed forward 

BP neural network consists of five input 

variables, seven hidden neurons with 

hyperbolic tangent function and one output 

variable with a linear activation function, 

transform the sum of all the weighted 

inputs into an output signal. By using a 

trial and error method it was realized that a 

structure with seven neurons in the hidden 

layer (5:7:1structure) gives the best results. 

Table 2. Parameters used in the construction of the GA-BP model 

Properties GA-BP Properties 

40 Initial population 
50 Maximum number of generations 
4 elite children Number of 

0.75 Fraction of crossover children 
9 Number of mutation children 
7 Number of neurons in hidden layer 

TANSIG Transfer function from layer 1 to 2 
PURELIN Transfer function from layer 2 to 3 
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Fig. 6. Typical Architecture of feed forward BP neural network with seven neurons in the hidden layer (Hosseini, 

2013); by comparing produced groundwater level (WLProduced) and observed groundwater level (WLObserved) 

during the training phase, errors propagate backward to the connections in the previous layers. 

To make an appropriate comparison 

between the different intelligent 

optimization methods the same set of 

input/output data and training, testing and 

validation data were used. Meanwhile, the 

same parameter settings for the individual 

and hybrid models were used. The total 

dataset includes 84 training data for each 

piezometer (October 2000 to September 

2007), 12 testing data (October 2007 to 

September 2008) and 12 validation data 

(October 2008 to September 2009) for 

evaluating its accuracy. RMSE and 

correlation coefficient (R
2
) between the 

observed and estimated data were 

calculated as criteria to evaluate their 

accuracy.  

All results of the training and test stage 

for each model (GA-BP and ANN-BP 

models) are shown in Table 3. It can be 

observed that the performance of GA-BP 

model is much better than that of the ANN-

BP model in training, testing and validation 

data. According to Table 3, the GA-BP 

model has the best performance in the 

training step, providing the best results for 

test data. Average RMSE and R
2
 between 

observed and estimated data using the GA-

BP model in training data from 15 

piezometers are 0.026 and 0.98, 

respectively. These amounts for test data 

are calculated 0.03 and 0.873, and 0.049 

and 0.843, respectively, for the validation 

set. Furthermore, average RMSE and 

average R
2
 between observed and predicted 

groundwater level using the ANN-BP 

model are 0.036 and 0.965, respectively, in 

training data, and 0.042 and 0.778, 

respectively, in test data, as well as 0.068 

and 0.768 in the validation data. 

The results of the prediction at 3 

piezometers (P4, P8 and P13) that were 

illustrated for a clearer comparison 

between the performances of the GA-BP 

and ANN-BP models are presented in 

Figure 7 and Figure 8. These image plots 

show a graphical comparison between 

observed groundwater level and estimated 
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data by using two intelligent models for 

testing data. The results clearly show that 

the GA-BP model is more successful 

among the individual models designed 

(ANN-BP) in this study. This model is 

faster than GA stochastic models. So, the 

GA-BP model can be of high prominence 

in the estimation of groundwater levels.  
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Fig. 7. Graphical comparison of estimated versus observed groundwater level at selected piezometers using GA-

BP and ANN-BP in test stage 
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Fig. 8. Graphical comparison of estimated versus observed groundwater levels at selected piezometers using the 

GA-BP and ANN-BP models in the validation stage 
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  Table 3. The results of models for estimation of normal groundwater levels  

ANN-BP GA-BP 
Piez. 

No. 
Validation Test Training Validation Test Training 

R
2 

RMSE R
2 

RMSE R
2 

RMSE R
2 

RMSE R
2 

RMSE R
2 

RMSE 

0.805 0.046 0.821 0.047 0.971 0.041 0.848 0.043 0.917 0.039 0.974 0.037 P1 

0.758 0.051 0.757 0.041 0.974 0.032 0.786 0.028 0.905 0.032 0.986 0.026 P2 

0.479 0.013 0.452 0.02 0.985 0.011 0.532 0.011 0.685 0.017 0.987 0.011 P3 

0.828 0.024 0.881 0.047 0.972 0.039 0.904 0.015 0.967 0.024 0.994 0.015 P4 

0.952 0.029 0.586 0.038 0.976 0.027 0.976 0.023 0.751 0.021 0.991 0.021 P5 

0.682 0.042 0.728 0.033 0.925 0.038 0.833 0.031 0.856 0.026 0.973 0.023 P6 

0.619 0.071 0.792 0.079 0.959 0.053 0.873 0.053 0.896 0.039 0.976 0.036 P7 

0.815 0.036 0.849 0.041 0.965 0.033 0.907 0.027 0.919 0.028 0.974 0.025 P8 

0.883 0.017 0.845 0.015 0.981 0.015 0.871 0.013 0.911 0.011 0.992 0.009 P9 

0.648 0.47 0.771 0.04 0.956 0.031 0.86 0.027 0.825 0.032 0.987 0.025 P10 

0.812 0.039 0.866 0.038 0.971 0.036 0.877 0.037 0.901 0.035 0.976 0.035 P11 

0.927 0.063 0.922 0.063 0.942 0.062 0.932 0.049 0.947 0.045 0.965 0.041 P12 

0.906 0.031 0.92 0.032 0.989 0.031 0.941 0.025 0.962 0.024 0.996 0.022 P13 

0.816 0.055 0.831 0.06 0.956 0.053 0.835 0.051 0.91 0.046 0.963 0.041 P14 

0.597 0.038 0.653 0.037 0.953 0.033 0.675 0.031 0.751 0.036 0.969 0.024 P15 

 

CONCLUSION 
In this study, the GA-BP and ANN-BP 

models are designed to estimate 

groundwater levels in the Shabestar Plain. 

The nine years of monthly average data 

including rainfall, temperature, river 

discharge, annual time series and 

evaporation criteria, were used as inputs 

and groundwater level data were 

considered as output of the models. Results 

of this study showed that the GA-BP model 

has better performance than each model 

individually (GA and ANN-BP models). 

Results of the simulation with the GA-BP 

and the ANN-BP models for all 

piezometers show that average RMSE for 

testing data are 0.03 and 0.042, 

respectively. Data for the validation stage 

are 0.049 and 0.068, respectively. 

Furthermore, average R
2
 of the testing and 

validation set was 0.873 and 0.843 for the 

GA-BP model and 0.778 and 0.768 for the 

ANN-BP model, respectively. The findings 

of this research demonstrate that 

employing a genetic algorithm to initialize 

neural network connection weights in 

complex space avoids the risk of becoming 

stuck in local minima. Therefore, in water 

resources management projects, it can 

prevent high costs and time wasting for 

drilling more piezometers. It is expected 

that the GA-BP model is capable of 

identifying groundwater levels in other 

coastal aquifers. 
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