## **Progress in Biological Sciences**

Vol. 4, Number 2, Summer / Autumn 2014/153-166

# Genetic worth and stability of selection indices in rice (*Oryza sativa* L.)

Received: December 20, 2013; Accepted: March 10, 2014

Mohammad H. Fotokian\*, Kayvan Agahi

Crop Science and Plant Breeding Department, College of Agriculture, Shahed University, Tehran, Iran

## Abstract.

Improvement of one trait on its own will affect the performance of other traits because of genotypic correlations between traits. Index selection is one of the tools used by plant breeders to overcome this problem. The purpose of this paper is to evaluate selection indices developed for improving grain yield in rice (*Oryza sativa* L.). Forty-nine rice genotypes were cultivated at Tonekabon Rice Research Station, Iran, in 2009 and 2010. Selection indices were developed based on phenotypic and genotypic correlations, path coefficients, broad-sense heritability of traits and stepwise multiple linear regression coefficients. Assessment of indices revealed that the stability decreased concurrently with increase in the genetic worth, and hence an inverse association existed between stability and genetic worth of indices. The results also suggested that selection for TP, GW, GP and GL and against PH using their multiple linear regression parameters as economic weights was an effective criterion for improving grain yield in rice genotypes. On the other hand, the most stable indices were those that were developed based on heritability of traits as well as genotypic path coefficients.

Keywords: broad-sense heritability, expected genetic advance, genotypic correlation coefficients, path analysis, rice, selection indices, Smith-Hazel index, stepwise multiple linear.

\* Corresponding author: Fotokian@shahed.ac.ir



9

## Introduction

Selection for more productive genotypes has always been one of the basic goals in breeding programs. However, because of genotypic correlations, improving one trait will other traits. In rice, for example, the best families derived from selection for grain yield will have smaller panicles, smaller grain breadth and more days to maturity. Use of selection indices is one of the useful methods to overcome this problem.

Selection index theory was originally defined as a linear function of traits. The index is a linear weighted function of observations of an individual or its relatives that aims to rank the population for breeding values and thus expected progeny performance (1). To obtain an index, the economic values as well as the phenotypic and genotypic variance and covariances are necessary. The economic values may reflect market situation. preferences. the retrospective results, or simply arbitrarily fixed values. Ideally, the economic weight of a single trait should reflect the marginal benefit from a one-unit improvement (2). Samonte et al. (3), Rabiei et al. (4) and Sabouri et al. (5) have studied various economic weights and recommended path coefficients as the most appropriate economic values. Furthermore, the determination of traits contributing to or affecting the target trait is one of the most important steps. For this purpose, the inter-relationships between target trait and important characteristics should be accurately known. Various statistical techniques, such as correlation coefficient, path and regression analyses, were applied to this relationship.

Studies on rice have shown that grain yield is correlated with 1000-grain weight, number of tillers, plant height, number of panicles and productive tillers (3, 6-8).

Environmental factors strongly affect the

parameters commonly used to develop selection indices. Therefore, Singh and Bellman studied the problems of generalization of selection indices (9). They reported that selection indices are specific. In other words, an index developed for a particular population does not have the same effect on other similar populations.

The aim of this research was to evaluate the efficiency and stability of different selection indices in order to propose a suitable criterion for improving grain yield in rice.

## **Materials and Methods**

### Plant materials and studied traits

Plant materials of this research comprised 49 genotypes, including 29 Iranian and 20 introduced lines of rice (Table 1). The field trial was arranged in a square lattice design with two replications. The experiment was conducted at the Tonekabon Rice Research Station, at 50°, 40' eastern and 36°, 54' northern in Iran during 2009 and 2010. The soil was a sandy loam with 1.67 to 2.2% organic matter, pH 7.5, and low to medium natural fertility. The mean temperature and the average annual rainfall were 15°C and 1100 mm, respectively.

Twenty single seedlings of each genotype were planted in two rows with a spacing of 25 cm. In each plot, 10 plants were randomly selected and evaluated to score their traits. The studied traits were plant height (PH), tillers for each plant (TP), panicle length (PL), flag leaf length (FL), flag leaf width (FW), length of the uppermost inter-node (LU), grain length (GL), grain breadth (GB), 100-grain weight (GW), grains for each panicle (GP), grain yield for each plant (GY), days to heading (DH) and days to maturity (DM), based on the standard evaluation system for rice published by IRRI.

| Variety                         | Origin    | Land Race/Cross                          | Growth duration (128.36±7.21 <sub>day</sub> ) | Grain length<br>(9.26±1.17 <sub>mm</sub> ) | Grain yield per<br>plant<br>(6.72±2.32 <sub>gr</sub> ) |
|---------------------------------|-----------|------------------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------------------------------|
| Ali Kazemi                      | Iran      | Local Land Race                          | 127                                           | 11.3                                       | 6.692                                                  |
| Amol1                           | Iran      | IR8/Domsiah                              | 137                                           | 8.5                                        | 10.022                                                 |
| Amol2                           | Iran      | IR28 (Introduction)                      | 135.8                                         | 9.98                                       | 7.902                                                  |
| Amol3                           | Iran      | Sona (Introduction)                      | 134.5                                         | 10.83                                      | 8.896                                                  |
| Anbarboo                        | Iran      | Local Land Race                          | 121.8                                         | 8.98                                       | 6.148                                                  |
| H124-36-1-1                     | Argentina | Dawn/IR594-34                            | 123.8                                         | 8.9                                        | 5.468                                                  |
| Asgari Tarom                    | Iran      | Local                                    | 136                                           | 9.8                                        | 12.272                                                 |
| Bejar                           | Iran      | Domsiah/IR8/IR28                         | 135.3                                         | 9.35                                       | 7.858                                                  |
| Binam                           | Iran      | Local Land Race                          | 135.3                                         | 9                                          | 3.908                                                  |
| Caloro                          | USA       | CA, CI 1561-1                            | 121.5                                         | 8.13                                       | 6.38                                                   |
| Century<br>Patna231             | USA       | Texas Patna/Rexoro-Supreme<br>Blue Rose  | 120.5                                         | 8.7                                        | 6.428                                                  |
| Champa Boudar                   | Iran      | Local Land Race                          | 127.8                                         | 9.65                                       | 5.196                                                  |
| Kanto51                         | Japan     | Gin Bozu/To To                           | 122                                           | 6.93                                       | 5.576                                                  |
| CY1819                          | USA       | GID2953933                               | 123.3                                         | 10.95                                      | 4.674                                                  |
| Dasht                           | Iran      | IR29/Amol1                               | 137.8                                         | 10.95                                      | 8.602                                                  |
| DC1                             | Malaysia  | GID381148                                | 121.5                                         | 8.83                                       | 3.544                                                  |
| DCL-<br>Donghaechal             | Korea     | GID2274576                               | 120.8                                         | 9.1                                        | 5.428                                                  |
| Deylamani                       | Iran      | Local Land Race                          | 121.5                                         | 8.8                                        | 10.032                                                 |
| Dular                           | India     | Dumai/Larkoch                            | 131.8                                         | 8.85                                       | 5.074                                                  |
| Domsiyah                        | Iran      | Local Land Race                          | 135.3                                         | 8.4                                        | 3.492                                                  |
| Fuji-Minori                     | Japan     | Nourin17/Fujisaka5                       | 122                                           | 7.4                                        | 5.474                                                  |
| Gharib                          | Iran      | Local Land Race                          | 123.5                                         | 8.4                                        | 5.19                                                   |
| Gharib Seyah<br>Rayhani         | Iran      | Local Land Race                          | 127                                           | 8.2                                        | 7.766                                                  |
| Gil1                            | Iran      | Mosa Tarom /Ancitco                      | 121.3                                         | 9.05                                       | 4.476                                                  |
| Gil3                            | Iran      | IR498/Salari                             | 119.3                                         | 10.1                                       | 4.606                                                  |
| Hassan Saraei<br>Atashagah      | Iran      | Local Land Race                          | 124.5                                         | 7.98                                       | 5.926                                                  |
| Hassan Saraei                   | Iran      | Local Land Race                          | 125.8                                         | 10                                         | 4.096                                                  |
| Hassan Saraei<br>Pichide Ghalaf | Iran      | Local Land Race                          | 123.8                                         | 9.95                                       | 6.05                                                   |
| Hassani                         | Iran      | Local Land Race                          | 108                                           | 8.3                                        | 6.416                                                  |
| IR28                            | IRRI      | IR833-6-2-1-1//IR 1561-149-<br>1/IR 1737 | 129.8                                         | 9.95                                       | 10.088                                                 |
| IR36                            | IRRI      | IR1561-228-1-2/IR 1737//CR<br>94-13      | 140.3                                         | 9                                          | 6.246                                                  |
|                                 |           |                                          |                                               |                                            |                                                        |

#### Table 1. Plant materials studied in 2009 and 2010

Indices for improving rice yield and stability of the indices

| Variety              | Origin   | Land Race/Cross                                                                                    | Growth duration<br>(128.36±7.21 <sub>day</sub> ) | Grain length<br>(9.26±1.17 <sub>mm</sub> ) | Grain yield per<br>plant<br>(6.72±2.32 <sub>gr</sub> ) |
|----------------------|----------|----------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|--------------------------------------------------------|
| IR60                 | IRRI     | IR4432-53-33/PTB 33//IR 36<br>ARIKARAI///IR 24/TKM<br>6//IR 20*4/O NIVARA/4/<br>IR 1561-228-1-2/IR | 140                                              | 8                                          | 5.9                                                    |
| IR64                 | IRRI     | IR5657-33-2-1/IR 2061-465-<br>1-5-5                                                                | 137.3                                            | 10.03                                      | 4.08                                                   |
| Khazar               | Iran     | IR36 sister sel./TNAU 7456                                                                         | 135.5                                            | 9.23                                       | 5.324                                                  |
| Lebonnet             | USA      | Blue Belle/Belle Patna Dawn                                                                        | 128.8                                            | 9.03                                       | 4.204                                                  |
| Mazand               | Iran     | Local Land Race                                                                                    | 133                                              | 10.83                                      | 12.058                                                 |
| Neda                 | Iran     | Amol3/Sange Tarom/ Hassan<br>Saraei                                                                | 139.8                                            | 10.9                                       | 10.926                                                 |
| Nemat                | Iran     | Amol3/Sange Tarom                                                                                  | 138                                              | 11.03                                      | 10.048                                                 |
| Norin22              | Japan    | Kinki 15/Norin6                                                                                    | 124                                              | 7.98                                       | 8.382                                                  |
| Salari               | Iran     | Local Land Race                                                                                    | 130.3                                            | 10.2                                       | 5.178                                                  |
| Sange Jo             | Iran     | Local Land Race                                                                                    | 121.5                                            | 8.95                                       | 5.97                                                   |
| Shah Pasand          | Iran     | Local Land Race                                                                                    | 128.3                                            | 11.55                                      | 5.744                                                  |
| Strella              | Portugal | R82/STG55861                                                                                       | 120.8                                            | 7.98                                       | 9.322                                                  |
| Taichung Native<br>1 | Taiwan   | Dee geo woo gen/Tsai-Yuan-<br>Chan                                                                 | 133                                              | 7.18                                       | 6.378                                                  |
| Tarom Pakotah        | Iran     | Local Land Race                                                                                    | 132                                              | 10.18                                      | 7.336                                                  |
| Usen                 | Japan    | IRGC11116/GID336137                                                                                | 132.5                                            | 7.13                                       | 6.096                                                  |
| Zenith               | USA      | AR, Blue Rose (selection)                                                                          | 125.5                                            | 10.08                                      | 7.768                                                  |
| Zireh                | Iran     | Local Land Race                                                                                    | 121.3                                            | 9.5                                        | 9.718                                                  |

Table 1. Plant materials studied in 2009 and 2010

#### Statistical analyses

The normality of the distribution of the data was evaluated and non-normal traits were transformed using the power (Box-Cox) transformation using Minitab software release 15.1. The homogeneity of variances was tested using the Bartlett test. The analysis of the data was performed using Proc GLM in SAS statistical software, according to the following statistical model:

$$Y_{il(j)(g)} = \mu + t_i + (r/a)_{j(g)} + (b/r/a)_{l(j)(g)} + a_g + (ta)_{ig} + e_{il(j)(g)}$$

where:  $Y_{il(j)(g)}$  is the observation of the genotype  $i(i = 1,..., 49 = 7^2)$  in the block  $l(l = 1,..., 49 = 7^2)$ 

1,..., 7) of the replication j(j = 1,..., 2), in the year g(g = 1,..., 2);  $\mu$  is a constant common to all observations;  $t_i$  is the effect of the genotype i;  $(r/a)_{j(g)}$  is the effect of the replication j in the year g;  $(b/r/a)_{l(j)(g)}$  is the effect of the block l of the replication j in the year g;  $(ta)_{ig}$  is the effect of the set effect of the block l of the replication j in the year g;  $(ta)_{ig}$  is the effect of the effect of the set effect of the interaction between the genotype i and the year g;  $e_{il(j)(g)}$  is the error associated with the observation  $Y_{il(j)(g)}(10)$ .

Selection indices were calculated as described by Smith (11) and Hazel (12). In this method, the indices and the total genetic worth are defined as follows:

Index: 
$$I = \sum_{i=1}^{m} b_i x_i = x^T b_i$$

#### **Progress in Biological Sciences**

Total genetic worth:  $H = \sum_{i=1}^{n} a_i g_i = g^T a$ 

where  $\mathbf{x}^{T} = (\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_m)$  is the row vector of m known phenotypic values (transpose of the x vector),  $g^{T} = (g_1 g_2 \dots g_n)$  is a row vector of n unknown genetic values (transpose of the g vector);  $a = (a_1 a_2 \dots a_n)$  is a column vector of n known relative economic weights, and  $b = (b_1 b_2 \dots b_m)$  is a column vector of m index coefficients to be computed (13). The correlation between I and H is highest when  $b = P^{-1}Ga$  where G and Pare the genotypic and phenotypic variance-covariance matrices, respectively.

The alternative indices were compared based on the magnitude of the following two criteria:

$$\Delta G_i\% = \frac{\frac{KGb}{\sqrt{b^TPb}} + m_i}{m_i} \times 100$$

This criterion measures the average percentage of advance in each trait through an index relative to its mean. In this equation,  $\Delta G_i$  is the percentage of the expected genetic advance in trait *i* via the given index, *K* is the selection differential (with 10 % selection intensity, *K* is equal to 1.76),  $b^T$  is the transpose of *b* vector and  $m_i$  is the arithmetic average of trait *i* (13).

$$R_{\rm HI} = \sqrt{\frac{b^{\rm T} P b}{a^{\rm T} G a}}$$

where  $R_{HI}$  is the correlation coefficient between index and total genetic worth,  $a^T$  is the transpose of the vector *a*, and *a*, *b*,  $b^T$ , *P* and *G* are as defined before (13).

Phenotypic and genotypic variance covariances and phenotypic and genotypic

correlation coefficients were estimated using the SAS code assumed by Holland (14).

Broad-sense heritability  $(h_{bi}^2)$  was estimated using equation:

$$h_{bi}^2 = \frac{\sigma_{gi}^2}{\sigma_{pi}^2}$$

where  $\sigma_{gi}^2$  and  $\sigma_{pi}^2$  are the genotypic and phenotypic variances of trait *i*.

To identify which traits have the strongest influence on GY, stepwise multiple linear regression (SMLR) analysis was applied using likelihood-based methodology (15). For path analysis, the correlation coefficients between response (GY) and predictor variables were partitioned into direct and indirect effects using the following procedure:

$$\mathbf{r}_{iy} = \mathbf{p}_{iy} + \sum_{ij} \mathbf{r}_{ij} \mathbf{p}_{jy}$$

where  $r_{iy}$  is the correlation coefficient between grain yield (y) and predictor variable *i*,  $p_{iy}$  and  $p_{jy}$  are the direct effects of predictor variables *i* and *j* on grain yield, respectively, and  $r_{ij}$  is the correlation coefficient between predictor variables *i* and *j* (16).

The stability of indices were assessed using the technique suggested by Finlay and Wilkinson (17). In this method, stability of index was described with linear regression of index mean over year mean. The more stable indices are those that have regression coefficients close to one.

## Results

# Analysis of variance and correlation coefficients between traits

Analysis of variance showed that variation due to genotypes was significant for all studied traits (Table 2).

| Source                                              | df  | DH                                         | DM                                        | ЧÐ                                           | GI.                                        | GB                                        | ΓΩ                                       | ΡL                                        | Hd                                           | ĠΨ                                          | NT                 | FW                                                   | ΕL                 | GΥ                                          |
|-----------------------------------------------------|-----|--------------------------------------------|-------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------|---------------------------------------------|--------------------|------------------------------------------------------|--------------------|---------------------------------------------|
|                                                     |     |                                            | ;                                         | 5                                            | 1                                          |                                           |                                          |                                           |                                              | ;                                           |                    |                                                      |                    |                                             |
| Model                                               | 123 | 123 106.46**                               | 81.52***                                  | 3216.23**                                    | 2.18 **                                    | 0.32                                      | 43.50                                    | 16.048**                                  | 630.66**                                     | 0.224**                                     | 24.15**            | 0.054**                                              | 42.67**            | 211.79**                                    |
| Υ                                                   | 1   | 28.70**                                    | 27.94**                                   | 1669.31**                                    | 0.04 ns                                    | 0.037*                                    | 0.823 <sup>ns</sup>                      | 10.19**                                   | 2.42 <sup>n.s</sup>                          | 0.052**                                     | 200.75**           | 0.029**                                              | 25.21**            | 115.22 ***                                  |
| R(Y)                                                | 3   | 7.597*                                     | 15.2**                                    | 44.133 <sup>ns</sup>                         | 0.01 ns                                    | 0.056 <sup>ns</sup>                       | 0.69 ns                                  | 2.71 <sup>n.s</sup>                       | 126.65**                                     | 0.009 as                                    | 5.98*              | 0.004 <sup>ns</sup>                                  | 2.79 <sup>ns</sup> | 0.56 <sup>ns</sup>                          |
| $\operatorname{IB}(Y \times R)$                     | 24  | 3.133*                                     | 3.79**                                    | 62.01 ns                                     | 0.02 ns                                    | 0.062 ns                                  | 2.57 <sup>ns</sup>                       | 1.45 <sup>ns</sup>                        | 21.90*                                       | 0.006 ns                                    | 1.78 <sup>ns</sup> | 0.002 <sup>n.s</sup>                                 | 2.10 <sup>ns</sup> | 2.95 ns                                     |
| ŋ                                                   | 84  | 200.58***                                  | 162.54**                                  | 7369.51***                                   | 5.30 **                                    | 0.584 ***                                 | 93.17**                                  | 27.87**                                   | 1159.17**                                    | 0.479**                                     | 48.32***           | $0.106^{**}$                                         | 83.29**            | 448.03***                                   |
| $G{\times}Y$                                        | 48  | 13.88**                                    | 2.51 <sup>ns</sup>                        | 155.74***                                    | 0.26 **                                    | 0.014**                                   | 6.91**                                   | 3.11**                                    | 108.14**                                     | 0.024**                                     | 2.72 <sup>ns</sup> | 0.008**                                              | 3.23**             | 31.63**                                     |
| Error                                               | 12  | 1.78                                       | 1.66                                      | 43.73                                        | 0.02                                       | 0.01                                      | 223                                      | 1.45                                      | 14.66                                        | 0.004                                       | 1.86               | 0.003                                                | 1.39               | 2.62                                        |
| $\mathbb{R}^2$                                      |     | 0660                                       | 0.988                                     | 0.992                                        | 0.995                                      | 0.988                                     | 176.0                                    | 0.950                                     | 0.987                                        | 686:0                                       | 0.957              | 0.970                                                | 0.981              | 0.993                                       |
| C.V%                                                |     | 1.30                                       | 1.01                                      | 4.25                                         | 1.47                                       | 2.92                                      | 3.94                                     | 4.67                                      | 3.28                                         | 2.68                                        | 9.81               | 4.40                                                 | 4.31               | 4.82                                        |
| $h_b^2$                                             |     | 87.10                                      | 95.72                                     | 95.06                                        | 89.58                                      | 92.53                                     | 83.21                                    | 78.60                                     | 82.90                                        | 89.63                                       | 85.14              | 82.06                                                | 91.31              | 80.67                                       |
| $G \times Y$<br>Error<br>$R^2$<br>C.V%<br>$h_{r}^2$ | 48  | 13.88***<br>1.78<br>0.990<br>1.30<br>87.10 | 2.51 ns<br>1.66<br>0.988<br>1.01<br>95.72 | 155.74***<br>43.73<br>0.992<br>4.25<br>95.06 | 0.26 ***<br>0.02<br>0.995<br>1.47<br>89.58 | 0.014**<br>0.01<br>0.988<br>2.92<br>92.53 | 6.91**<br>2.23<br>0.971<br>3.94<br>83.21 | 3.11***<br>1.45<br>0.950<br>4.67<br>78.60 | 108.14***<br>14.66<br>0.987<br>3.28<br>82.90 | 0.024***<br>0.004<br>0.989<br>2.68<br>89.63 | ~ ~ ~              | : 72 <sup>ns</sup><br>1.86<br>1.957<br>9.81<br>85.14 | 0                  | 0.008***<br>0.003<br>0.970<br>4.40<br>82.06 |

variation;  $h_b^2$ , broad-sense heritability; \*, \*\* mean squares are significant at the 0.05 and 0.01 levels, respectively.

Table 2. Combined analysis of 2009 and 2010 data on 13 agronomic traits measured over 49 rice genotypes

#### **Progress in Biological Sciences**

Year had significant effect on all traits except GL, LU and PH. Genotype by year interaction had no significant effect on DM and on TP. Days to maturity (DM) and PL had the highest and lowest heritability, respectively (Table 2).

Table 3 shows significant phenotypic  $(r_p)$ and genotypic  $(r_g)$  correlation coefficients according to the typology of traits (cycle, vegetative, reproductive and final target trait). The absolute values of the genotypic correlations  $(|r_g|)$  were higher than the respective phenotypic correlations  $(|r_p|)$ .

Negative significant correlations (P<0.001)

were observed between PH and traits GY ( $r_p$ = -0.260;  $r_g$ = -0.424), DH ( $r_p$ = -0.276;  $r_g$ = -0.373), DM ( $r_p$ = -0.270;  $r_g$ = -0.279) and TP ( $r_p$  = -0.262;  $r_g$  = -0.286). Furthermore, late maturing varieties had higher grain length with regard to the positive correlation (P < 0.001) between GL and DM (Table 3). Grain yield showed a significant positive correlation with DH, DM, GL, GW, TP and GP, while it was negatively correlated with both LU and PH. Cycle traits (DH and DM) were positively correlated with most of the reproductive traits (five out of seven), while they were negatively correlated with all vegetative traits (eight out of eight).

Table 3. Significant phenotypic (P) and genotypic (G) correlation coefficients between 13 agronomic traits among 49 rice genotypes evaluated in 2009 and 2010

|             |   | Cycle   |          | Vegeta   | atice compo | onents   |         | Direct   | yield comp           | onents   | Grain Co             | mponents | Grain yield                   |
|-------------|---|---------|----------|----------|-------------|----------|---------|----------|----------------------|----------|----------------------|----------|-------------------------------|
|             |   | DM      | РН       | LU       | PL          | FL       | FW      | NT       | GP                   | GW       | GL                   | GB       | GY                            |
| DH          | Р | 0.877** | -0.276** | -0.229** | -0.166*     | -0.311** |         | 0.185**  |                      |          | 0.240**              | -0.263** | 0.260**                       |
|             | G | 0.962** | -0.373** | -0.298** | -0.244**    | -0.387** |         | 0.194**  |                      |          | 0.332**              | -0.290** | 0.244**                       |
| DM          | Р | 1       | -0.270** | -0.238** | -0.156*     | -0.330** |         | 0.178*   | 0.129 <sup>n.s</sup> |          | 0.285**              | -0.345** | 0.209**                       |
|             | G |         | -0.279** | -0.229** | -0.153*     | -0.347** |         | 0.175*   | 0.147*               |          | 0.291**              | -0.350** | 0.258**                       |
| $_{\rm PH}$ | Р |         | 1        | 0.630**  | 0.534**     | 0.666**  | 0.190** | -0.262** |                      |          |                      |          | -0.260**                      |
|             | G |         |          | 0.654**  | 0.554**     | 0.714**  | 0.151*  | -0.286** |                      |          |                      |          | -0.424**                      |
| LU          | Р |         |          | 1        | 0.450**     | 0.492**  |         | -0.306** |                      |          | -0.305**             |          | -0.169*                       |
|             | G |         |          |          | 0.437**     | 0.541**  |         | -0.339** |                      |          | -0.269**             |          | -0.330**                      |
| PL          | Ρ |         |          |          | 1           | 0.483**  |         |          |                      |          | 0.262**              | -0.330** | -0.0 <b>73</b> <sup>n.s</sup> |
|             | G |         |          |          |             | 0.518**  |         |          |                      |          | 0.408**              | -0.390** | -0.221**                      |
| FL          | Ρ |         |          |          |             | 1        | 0.323** | -0.153*  |                      |          | -0.153*              |          | -0.127 <sup>n.s</sup>         |
|             | G |         |          |          |             |          | 0.349** | -0.175*  |                      |          |                      |          | -0.174*                       |
| FW          | Р |         |          |          |             |          | 1       | -0.167*  | 0.509**              |          | 0.080 <sup>n.s</sup> |          |                               |
|             | G |         |          |          |             |          |         | -0.174*  | 0.524**              |          | 0.170*               |          |                               |
| NT          | Р |         |          |          |             |          |         | 1        | -0.291**             |          |                      |          | 0.346**                       |
|             | G |         |          |          |             |          |         |          | -0.300**             |          |                      |          | 0.422**                       |
| GP          | Р |         |          |          |             |          |         |          | 1                    | -0.211** |                      |          | 0.276**                       |
|             | G |         |          |          |             |          |         |          |                      | -0.246** |                      |          | 0.237**                       |
| GW          | Р |         |          |          |             |          |         |          |                      | 1        | 0.272**              | 0.388**  | 0.222**                       |
|             | G |         |          |          |             |          |         |          |                      |          | 0.337**              | 0.413**  | 0.211**                       |
| GL          | Р |         |          |          |             |          |         |          |                      |          | 1                    | -0.377** | 0.177*                        |
|             | G |         |          |          |             |          |         |          |                      |          |                      | -0.408** | 0.305**                       |
| GB          | Р |         |          |          |             |          |         |          |                      |          |                      | 1        |                               |
| _           | G |         |          |          |             |          |         |          |                      |          |                      |          |                               |

Traits are grouped on X- and Y-axes according to biological functions. Trait symbols: DH, days to heading; DM, days to maturity; GP, number of grains per panicle; GL, grain length; GB, grain breadth; LU, length of the uppermost inter-node; PL, panicle length; PH, plant height; GW, 100-grain weight; TP, tillers for each plant; FW, flag leaf width; FL, flag leaf length; GY, grain yield. \* , \*\* correlation is significant at the 0.05 and 0.01 level, respectively, n.s non-significant.

# Indices for improving rice yield and stability of the indices

#### SMLR and path coefficients

highest direct effects on GY (Figure 1 and Tables 4 and 5).

According to SMLR and path analysis, some traits, namely TP, GP and GW, had the

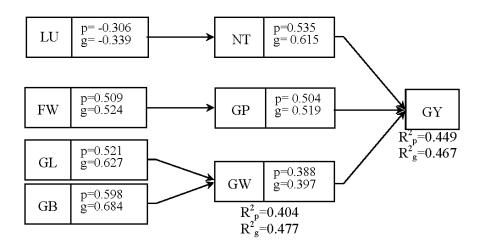



Figure 1. Phenotypic (p) and genotypic (g) path coefficients for the path analysis of eight effective traits that influence grain yield derived from evaluation of 13 agronomic traits among 49 rice genotypes during 2009 and 2010. The phenotypic  $(R_p^2)$  and genotypic  $(R_g^2)$  coefficients of determination for each component of path analysis affected by more than one trait are located below the respective component. Trait symbols: TP, tillers for each plan; GP, number of grains per panicle; GW, 100-grain weight; FW, flag leaf width; LU, the length of the uppermost inter-node; GL, grain length; GB, grain breadth; PH, plant height; and GY, grain yield

|     | Traits | Direct a<br>GY | nd indirect | effects on | Direct effect on<br>NT | Direct effect on<br>GP | Direct and<br>GW | indirect effects on |
|-----|--------|----------------|-------------|------------|------------------------|------------------------|------------------|---------------------|
|     |        | NT             | GP          | GW         | LU                     | FW                     | GL               | GB                  |
| NT  | Р      | 0.535          | -0.147      | -0.044     |                        |                        |                  |                     |
| 191 | G      | 0.615          | -0.156      | -0.038     |                        |                        |                  |                     |
| GP  | Р      | -0.156         | 0.504       | -0.082     |                        |                        |                  |                     |
| Ur  | G      | -0.185         | 0.519       | -0.098     |                        |                        |                  |                     |
| CW  | Р      | -0.060         | -0.107      | 0.388      |                        |                        |                  |                     |
| GW  | G      | -0.059         | -0.128      | 0.397      |                        |                        |                  |                     |
| LU  | Р      |                |             |            | -0.306                 |                        |                  |                     |
| LU  | G      |                |             |            | -0.339                 |                        |                  |                     |
| FW  | Р      |                |             |            |                        | 0.509                  |                  |                     |
| ГW  | G      |                |             |            |                        | 0.524                  |                  |                     |
| CI  | Р      |                |             |            |                        |                        | 0.487            | -0.184              |
| GL  | G      |                |             |            |                        |                        | 0.606            | -0.248              |
| CD  | Р      |                |             |            |                        |                        | -0.216           | 0.571               |
| GB  | G      |                |             |            |                        |                        | -0.270           | 0.660               |

Table 4. Phenotypic (P) and genotypic (G) direct effects (bold) and indirect effects (not bold) of first- and secondorder predictor variables on rice grain yield studied over 49 rice genotypes in 2009 and 2010

Trait symbols: TP, tillers for each plant; GP, number of grains per panicle; GW, 100-grain weight; LU, the length of the uppermost inter-node; FW, flag leaf width; GL, grain length; GB, grain breadth.

#### **Progress in Biological Sciences**

| S.O.V     | df | Sum of squares | Mean square | Partial R <sup>2</sup> | Model R <sup>2</sup> | Parameter<br>estimate (b) |
|-----------|----|----------------|-------------|------------------------|----------------------|---------------------------|
| Model     | 3  | 2703.405       | 901.135***  |                        |                      |                           |
| Intercept | 1  | 727.59         | 727.59**    |                        |                      | -42.009                   |
| GP        | 1  | 1440.59        | 1440.59**   | 0.144                  | 0.144                | 0.134                     |
| GW        | 1  | 879.27         | 879.27**    | 0.159                  | 0.303                | 12.140                    |
| NT        | 1  | 1820.61        | 1820.61**   | 0.146                  | 0449                 | 1.802                     |
| Error     | 45 | 3320.830       | 73.80       |                        |                      |                           |

 Table 5. Results of stepwise multiple linear regression analysis carried out over traits in 49 rice genotypes evaluated in 2009 and 2010

Dependent variable = grain yield.

\*, \*\* significant at the 0.05 and 0.01 level, respectively.

Trait symbols: GP, number of grains per panicle; GW, 100-grain weight; TP, tillers for each plant.

Coefficient of variation = 19.22%

The  $R^2$  values show that these traits explained about 45% and 47% of the phenotypic and genotypic variability in GY, respectively. Path analysis also revealed that a positive direct effect due to each of the predictors was concurrently associated with some negative indirect effects due to other predictors (Table 4). The length of the uppermost inter-node (LU) had a negative direct effect on TP. GL and GB also showed positive direct effects on GW, while FW had a positive direct effect on GP (Figure 1 and Table 4).

#### The genetic worth and stability of indices

With regard to SMLR results and path analysis, three yield components (i.e., TP, GP and GW) had the highest impact on GY. Besides these, as shown in Table 3, GY was correlated with DH, DM, GL and PH.

First, all possible combinations in relation to yield components and yield correlated traits were evaluated. Results showed that a combination comprising yield components plus two yield-correlated traits, namely GL and PH, had more effect on GY compared to other combinations of traits (Tables 6 and 7).

The economic weights assigned to the traits are presented in Table 6. Table 7, in addition, shows the expected genetic advance (EGA) for each trait through indices ( $\Delta G$ %), the correlation coefficient between index and total genetic worth  $(R_{HI})$  and the stability measures of indices. Based on the results, indices 13, 14 and 15 had the highest advances with 42.19%, 42.10% and 42.04%, respectively (Table 7). These indices showed a positive advance for GW and a suitable advance for TP with 22.31%, 22.24% and 22.31%. respectively. Moreover. these indices (13, 14 and 15) had a similar impact on GL (8.53%), which was higher compared to other indices. However, the highest EGA for GP belonged to indices 7, 9 and 8 with 48.67%, 48.66% and 48.62%, respectively. Cycle traits, i.e., DH and DM, showed the highest advance through indices 6 and 11 (Table 7). The high value of  $R_{HI}$  showed that all indices were highly correlated with total genetic worth.

|   | _                   |
|---|---------------------|
|   | ĩ                   |
|   | 2                   |
|   | 8                   |
|   | $\geq$              |
| t | α                   |
|   | $\underline{}$      |
|   | ě                   |
|   | Ë.                  |
|   | indic               |
|   | n                   |
|   | 5                   |
|   | 듕                   |
|   | <u>a</u>            |
|   | ŝ                   |
|   | рŋ                  |
|   | ÷Ē.                 |
|   |                     |
|   | ē                   |
|   | 8                   |
|   | þ                   |
|   | for                 |
|   | Ξ                   |
|   | used                |
|   | ŝ                   |
|   |                     |
|   | hts                 |
|   | 100                 |
|   | wei                 |
|   | 1.1                 |
|   | economic            |
|   | 0                   |
|   | Ē                   |
|   | ğ                   |
|   | ä                   |
|   | Ξ.                  |
|   | at                  |
|   | ē                   |
|   | traits and relative |
|   | ă                   |
|   | 2                   |
|   | E.                  |
|   | 2                   |
|   | ÷.                  |
|   | ef                  |
|   | S                   |
|   | Ξ.                  |
|   | ati                 |
|   | Ë.                  |
|   | combinations        |
|   | Ĩ                   |
|   | చ                   |
|   | Je                  |
|   |                     |
|   | 6. The              |
|   |                     |
|   | Table               |
|   | a                   |
|   |                     |
|   |                     |

|                           | $h^2_b$ | 16    | 0.871  | 0.957 | 0.951  | 0.896 | 0  | 0  | 0  | 0      | 0.896  | 0.851 | 0  | 0  | 0  | of the<br>, grain<br>icient;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------|---------|-------|--------|-------|--------|-------|----|----|----|--------|--------|-------|----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |         | 15    | 0.054  | 0     | 0.120  | 0.753 | 0  | 0  | 0  | -0.090 | 11.120 | 1.610 | 0  | 0  | 0  | the length<br>length; GY<br>path coeff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           | SMLRP   | 14    | 0      | 0.071 | 0.120  | 0.719 | 0  | 0  | 0  | -0.091 | 11.247 | 1.608 | 0  | 0  | 0  | grain breadth; LU, the length of the<br>width; FL, flag leaf length; GY, grain<br>nt; GPC, genotypic path coefficient;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           |         | 13    | 0      | 0     | 0.121  | 0.847 | 0  | 0  | 0  | -0.096 | 11.134 | 1.628 | 0  | 0  | 0  | s to maturity; GP, number of grains per panicle; GL, grain length; GB, grain breadth; LU, the length of the lant height, GW, 100-grain weight; TP, tillers for each plant; FW, flag leaf width; FL, flag leaf length; GY, grain GCC, genotypic correlation coefficient; PPC, phenotypic path coefficient; GPC, genotypic path coefficient; |
|                           |         | 12    | -1.129 | 1.032 | 0.335  | 0.258 | 0  | 0  | 0  | -0.422 | 0.367  | 0.490 | 0  | 0  | 0  | to maturity; GP, number of grains per panicle; GL, grain length; GB, grain theight; GW, 100-grain weight; TP, tillers for each plant; FW, flag leaf wid GCC, genotypic correlation coefficient; PPC, phenotypic path coefficient;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           | GPC     | 11    | -0.089 | 0.889 | 0.408  | 0     | 0  | 0  | 0  | -0.352 | 0.455  | 0.506 | 0  | 0  | 0  | , grain le<br>plant, FW<br>typic pat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ights                     |         | 10    | -0.060 | 0     | 0.424  | 0.163 | 0  | 0  | 0  | -0.260 | 0.336  | 0.527 | 0  | 0  | 0  | GP, number of grains per panicle; GL, grain length;<br>/, 100-grain weight; TP, tillers for each plant; FW, flag<br>pic correlation coefficient; PPC, phenotypic path coe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Relative economic weights |         | 6     | -0.016 | 0.06  | 0.479  | 0.074 | 0  | 0  | 0  | -0.157 | 0.372  | 0.527 | 0  | 0  | 0  | ns per pa<br>TP, tillers<br>ficient; PJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| lative eco                | PPC     | 8     | 0      | 0.045 | 0.4795 | 0.740 | 0  | 0  | 0  | -0.156 | 0.370  | 0.527 | 0  | 0  | 0  | er of grai<br>in weight;<br>tion coef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Re                        |         | 2     | 0      | 0     | 0.484  | 0.087 | 0  | 0  | 0  | -0.164 | 0.366  | 0.533 | 0  | 0  | 0  | <u>JP, numb</u><br>, 100-grai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                           |         | 6     | 0.871  | 0.957 | 0.951  | 0.896 | 0  | 0  | 0  | 0      | 0.896  | 0.851 | 0  | 0  | 0  | iaturity; (<br>ight; GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           | GCC     | 5     | 0      | 0.258 | 0.237  | 0.305 | 0  | 0  | 0  | -0.424 | 0.211  | 0.422 | 0  | 0  | 0  | days to n<br>I, plant he<br>ent; GCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                           |         | 4     | 0.244  | 0     | 0.237  | 0.305 | 0  | 0  | 0  | -0.424 | 0.211  | 0.422 | 0  | 0  | 0  | ng; DM, e<br>ength; PE<br>n coefficié                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                           |         | 3     | 0.260  | 0.209 | 0.276  | 0.177 | 0  | 0  | 0  | -0.260 | 0.222  | 0.346 | 0  | 0  | 0  | Trait symbols: DH, days to heading: DM, days to maturity;<br>uppermost inter-node; PL, panicle length; PH, plant height; GV<br>yield; PCC, phenotypic correlation coefficient; GCC, genoty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | PCC     | 7     | 0.260  | 0.209 | 0.276  | 0     | 0  | 0  | 0  | -0.260 | 0.222  | 0.346 | 0  | 0  | 0  | DH, days<br>-node; PL,<br>motypic o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |         |       | 0.260  | 0     | 0.276  | 0.177 | 0  | 0  | 0  | -0.260 | 0.222  | 0.346 | 0  | 0  | 0  | symbols: _<br>nost inter-<br>PCC, phe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                           |         | Trait | DH     | DM    | GP     | GL    | GB | ΓΩ | ΡL | Hd     | GW     | NT    | FW | FL | GΥ | Trait s<br>uppern<br>yield;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## **Progress in Biological Sciences**

| Motor         DH         DM         PH         GL         GP         GW         NT         GB         LU         PL         FW         FL         GY           1         4.88         3.61         -14.37         4.64         44.57         -6.14         -2.52         -3.91         -6.97         -4.50         9.84         -7.78         23.86         -           2         2         5.89         4.40         -14.56         5.07         43.44         -6.14         -1.66         -4.62         -7.18         -4.62         9.84         -8.58         24.31         0           3         5.93         4.40         -14.56         5.07         43.44         -6.14         -1.66         -4.62         -7.18         -4.62         9.84         -8.58         24.31         0           4         5.57         3.91         -18.81         4.97         3.73         -5.73         3.17         -4.27         -9.92         -6.60         7.38         -12.67         27.52         0           7         2         2.57         3.17         -4.27         -5.92         -1.79         14.8         -1.10         18.86         -1.10         14.8         -1.10         14. |                                                    |                        |                           |                        |                         |                       | 9% DD                    | 0                         |                                 |                        |                           |        |                          | d                      | . <u>.</u> 2         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|---------------------------|------------------------|-------------------------|-----------------------|--------------------------|---------------------------|---------------------------------|------------------------|---------------------------|--------|--------------------------|------------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (                                                  |                        |                           | GL                     | GP                      | GW                    | ΝT                       | GB                        | ΓΩ                              | ΡL                     | FW                        | FL     | GΥ                       | <i>H</i> 44            | 5                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c                                                  |                        |                           | 4.64                   | 44.57                   | -6.14                 | -2.52                    | -3.91                     | -6.97                           | -4.50                  | 9.84                      | -7.78  | 23.86                    | 0.988                  | 0.026                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                  |                        |                           |                        | 43.47                   | -6.14                 | -1.66                    | -4.62                     | -7.10                           | -4.74                  | 9.84                      | -8.58  | 24.13                    | 0.988                  | 0.200                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                        |                           |                        | 43.44                   | -6.14                 | -1.66                    | -4.62                     | -7.18                           | -4.62                  | 9.84                      | -8.62  | 24.31                    | 0.988                  | 0.742                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                        |                           | 4.43                   | 38.97                   | -5.73                 | 2.45                     | -3.20                     | -9.87                           | -6.60                  | 7.38                      | -12.67 | 27.52                    | 0.983                  | 0.071                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                  |                        |                           | 4.32                   | 39.35                   | -6.14                 | 2.30                     | -3.20                     | -9.71                           | -6.44                  | 7.38                      | -12.49 | 27.52                    | 0.984                  | 0.266                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                        |                           | 4.97                   | 37.73                   | -5.73                 | 3.17                     | -4.27                     | -9.92                           | -6.60                  | 7.38                      | -13.33 | 27.73                    | 0.984                  | 0.744                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 2.2                                              |                        |                           | 3.56                   | 48.67                   | -6.55                 | -7.84                    | -3.56                     | -3.25                           | -1.79                  | 11.48                     | -1.10  | 18.30                    | 0.988                  | 0.386                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                  |                        |                           | 4.32                   | 48.62                   | -6.14                 | -7.84                    | -3.91                     | -3.41                           | -1.48                  | 11.48                     | -1.28  | 18.86                    | 0.988                  | 0.470                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                        |                           | 3.67                   | 48.66                   | -6.55                 | LT.T-                    | -3.56                     | -3.22                           | -1.79                  | 11.48                     | -1.13  | 18.36                    | 0.988                  | 0.663                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                        |                           | 3.56                   | 47.64                   | -6.55                 | -5.97                    | -3.20                     | -4.67                           | -2.79                  | 10.66                     | -3.32  | 20.47                    | 0.988                  | 0.876                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                 |                        |                           | 4.75                   | 43.88                   | -6.14                 | -2.01                    | -4.98                     | -6.60                           | -4.31                  | 9.84                      | -7.96  | 23.77                    | 0.988                  | 0.668                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                        |                           | 2.91                   | 44.93                   | -7.37                 | -2.52                    | -2.49                     | -6.73                           | -4.19                  | 9.02                      | -6.98  | 23.77                    | 0.983                  | 1.249                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                        |                           | 8.53                   | 20.16                   | 7.37                  | 22.31                    | 1.78                      | -10.77                          | -4.27                  | 4.92                      | -8.00  | 42.19                    | 0.959                  | 2.787                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                 |                        |                           | 8.53                   | 20.12                   | 7.37                  | 22.24                    | 1.42                      | -10.72                          | -4.46                  | 4.92                      | -8.33  | 42.10                    | 096.0                  | 2.483                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                        |                           | 8.53                   | 20.05                   | 7.37                  | 22.31                    | 1.42                      | -10.74                          | -4.43                  | 4.92                      | -8.29  | 42.04                    | 0.960                  | 2.801                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                                 |                        |                           | 5.61                   | 46.90                   | -5.73                 | -7.41                    | -6.40                     | -2.82                           | -1.16                  | 12.30                     | -1.64  | 18.18                    | 0.988                  | 0.909                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trait symbols: DH, day<br>uppermost inter-node; PI | s to head<br>, panicle | ing; DM, d<br>length; PH, | ays to me<br>plant hei | aturity; G:<br>ght; GW, | P, numbe<br>100-grair | ar of grain<br>1 weight; | ns per paı<br>TP, tillers | nicle; GL,<br>tor each <u>1</u> | grain ler<br>olant; FW | ngth; GB,<br>', flag leaf |        | adth; LU,<br>, flag leaf | the lengt<br>length; G | h of the<br>Y, grain |

and each index  $(R_m)$  hased on and the second here coefficient hetw each trait with 10% selection intensity ( $\Delta G$ %), and correlation Table 7. Exnected genetic advance in

### Indices for improving rice yield and stability of the indices

The stability parameters of indices are shown in Table 7. Index 16, developed based on heritability of traits, was the most stable index (bi= 0.909). Indices 10 and 12 (developed based on genotypic path coefficients) also had a high stability with regression coefficients 0.876 and 1.249, respectively (Table 7).

Despite high stability, indices 16, 10 and 12 had low EGA for GY. The lowest stabilities were observed for indices 13, 14 and 15.

## Discussion

## Correlation coefficients between traits

According to Table 3, negative correlations between PH and some traits such as GY, DH, DM and TP showed competition between the vegetative and reproductive functions. Most of the correlations between vegetative and reproductive traits, such as the negative correlation between GY and traits LU and PH", were negative showing competition in the partitioning of the plant resources between vegetative and reproductive functions. The reproductive traits were positively correlated with GY. while vegetative traits were correlated negatively. There was more antagonism between traits (TP-GP. **GP-GW** and GB-GL) than associations. In the vegetative component, traits were highly and positively correlated. The positive correlation between GY and DM also showed that longer maturity duration may raise the amount of GY. Accordingly, direct selection for GY can raise DM, negative correlation between GP and TP, as well as between GP and GW, showed a compensatory relationship between these traits (Table 3).

Most of the correlations were consistent with other reports, such as those of Sarawgi *et* 

al. (18), Surek and Beser (19) and Rabiei et al. (4).

## SMLR and path coefficients

Path analysis showed that LU had a negative direct effect on TP, which shows the existence of competition between vegetative and reproductive functions.

Although Rabiei *et al.* (4) and Sabouri *et al.* (5) recommended indices developed based on path coefficients, however, in this research the highest genetic worth was observed using SMLR coefficients as economic weights (indices 13, 14 and 15 in Tables 6 and 7). We suggest the following reasons for the observed superiority of SMLR coefficients over path coefficients and other parameters.

(i) Path coefficients and correlation coefficients vary from -1 to +1. Heritability of traits is also varied from 0 to +1. These coefficients are limited between two constant values, while SMLR coefficients are not constrained by minimum and maximum values. (ii) In fact, the associated weight assigned to each trait acts as a slope of regression line; therefore indices developed based on SMLR coefficients had more genetic advance.

## The genetic worth and stability of indices

In this research, index 16 (developed based on heritability of traits) was the most stable index, followed by indices 10 and 12, which are developed based on genotypic path The result coefficients. shows that, compared to other indices, the index developed based on the use of genetic components of variance had more stability. However, as shown in Table 7, such indices (16, 12 and 10) had low genetic advance for important traits such as GY. On the other hand, indices 13, 14 and 15, which showed the highest EGA for GY were the most unstable indices. Based on these results, there was an inverse relationship between the stability and genetic worth of indices and, thus, in agreement with Singh and Bellman (9) report, there is no possibility of developing an index with a high level of both genetic worth and stability. Therefore, an index developed for a given plant population with a good genetic worth may not be useful populations, for the same and the corresponding economic values should be recalculated.

The results of this study showed that selecting for higher TP, GW, GP and GL and decreased PH by using SMLR coefficients as economic weights would be an effective criterion for improving rice grain yield based on the Smith-Hazel index. On the other hand, the heritability of traits and genotypic path coefficients may be used to develop indices with more stability.

Indices for improving rice yield and stability of the indices

## **References**.

- 1. Falconer, D.S. (1981) Introduction to quantitative genetics. Longmans Green, London.
- 2. Magnussen, S. (1990) Selection index: economic weights for maximum simultaneous genetic gain. *Theoretical and applied genetics*, 79, 289-293.

و

- 3. Samonte, S.O.P.B., Wilson, L.T. and McClung, A.M. (1998) Path analyses of yield and yield-related traits of fifteen diverse rice genotypes. *Crop Science*, 38, 1130-1136.
- 4. Rabiei, B., Valizadeh, M., Ghareyazie, B. and Moghaddam, M. (2004) Evaluation of selection indices for improving rice grain shape. *Field Crops Research*, 89, 359-367.
- 5. Sabouri, H., Rabiei, B. and Fazlalipour, M. (2008) Use of selection indices based on multivariate analysis for improving grain yield in rice. *Rice Science*, 15, 303-310.
- 6. Fotokian, M.H. (2008) Genetics Statistical analysis of traits to grain in rice (*Oryza sativa* L.). *AIP Conference Proceedings*, 971, 192-196.
- 7. Ibrahim, S.M., Ramalingam, A. and Subramanian, M. (1990) Path analysis of rice grain yield under rainfed lowland conditions. *International Rice Research Newsletter*, 15, p 11.
- 8. Sundaram, T. and Palanisamy, S. (1994) Path analysis in early rice (*Oryza sativa* L.). *Madras Agricultural Journal*, 81, 28-29.
- 9. Singh, R.K. and Bellman, K. (1972) Problems of generalization of selection indices. *Theoretical and Applied Genetics*, 42, 331-334.
- 10. Viana, J.M.S. and Regazzi, A.J. (1999) Estimation of genetic parameters in the analysis of squared lattice experiment group. *Bragantia*, 58, 195-208.
- 11. Smith, H.F. (1936) A discriminant function for plant selection. Ann Epidemiol Annals of }{eugenics, 7, 240-250.
- 12. Hazel, L.N. (1943) The genetic basis for constructing selection indexes. Genetics, 28, 476-490.
- 13. Nordskog, A.W. (1978) Some statistical properties of an index of multiple traits. *Theoretical and Applied Genetics*, 5, 91-94.
- 14. Holland, J.B. (2006) Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. *Crop Science*, 46, 642-654.
- 15. Beal, D.J. and Ridge, O. (2005), In SESUG 2005: The Proceedings of the SouthEast SAS Users Group, Portsmouth, VA, pp. SA01-05.
- 16. Dewey, D.R. and Lu, K.H. (1959) A correlation and path coefficient analysis of components of crested wheatgrass seed production. *Agronomy Journal*, 51, 515-518.
- 17. Finlay, K. and Wilkinson, G. (1963) The analysis of adaptation in a plant-breeding programme. *Australian Journal of Agricultural Research*, 14, 742-754.
- 18. Sarawgi, A.K., Rastogi, N.K. and Soni, D.K. (1997) Correlation and path analysis in rice accessions from Madhya Pradesh. *Field Crops Research*, 52, 161-167.
- 19. Surek, H. and Beser, N. (2003) Correlation and path coefficient analysis for some yield related traits in rice (*Oryza sativa* L.) under thrace condition. *Turkish Journal of Agriculture and Forestry*, 27, 77-83.

#### **Progress in Biological Sciences**