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Abstract 

Investment casting is a versatile manufacturing process to produce high quality parts with high 

dimensional accuracy. The process begins with the manufacture of wax patterns. The dimensional 

accuracy of the model affects the quality of the finished part. The present study investigated the 

control and optimization of dimensional deviations in wax patterns. A mold for an H-shaped wax 

pattern was designed and fabricated and the two most important dimensional deviations (sink marks 

and warpage), are investigated. Four process parameters (injection temperature, injection pressure, 

hold time, cooling time) affecting dimensional deviations of the wax pattern were measured. Using a 

2
k
 factorial DOE technique, 32 experiments were designed to investigate the effect of these parameters 

on the two main defects in wax patterns. The results show the effect of the parameters on warpage and 

sink marks (output variables). The relationships between these inputs and the output variables were 

identified using an artificial neural network. The optimal level of each factor to minimize warpage and 

sink marks was determined using a multi-objective genetic algorithm. The results of this research can 

help decrease the time and cost of the process, dimensional deviations, and waste. 
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1. Introduction
 
 

Investment casting is one of the oldest 

manufacturing processes. Ancient Egyptians 

used this method to fabricate bronze statues 

and jewelry. In this method, the mold is 

destroyed by the molten metal and is, thus, also 

known as the lost wax process. This method is 

used to fabricate highly complex parts with 

                                                           
  Corresponding Author. Tel.: +98 2188003318 

Email: m hamedi@ut.ac.ir 

precision. Investment casting is also suitable 

for producing parts that cannot be accurately 

produced using machining or forging 

operations. It is used for a variety of alloys and 

is appropriate for parts with specific and 

sensitive applications, such as in aerospace 

industry, where the parts must operate under 

extreme conditions [1].  

Investment casting is used to fabricate near-

net-shape parts of high quality and precision 

where dimensional accuracy and control of 
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dimensional deviations of the finished part is 

essential. Shrinkage and expansion of the wax 

pattern, ceramic mold and the cast metal must 

be controlled to control dimensional deviations 

in the finished part [2]. Preparation of a wax 

pattern is the first step of investment casting 

and strongly affects the quality of the finished 

part. This quality is achieved when the model 

is determined to possess high dimensional 

accuracy and a high-quality finished surface.  

The control of the parameters for injection 

molding significantly affects deviations in the 

wax pattern. In this respect, injection 

temperature, pressure, hold time and cooling 

time are considered to be the most important 

[3-4]. 

Optimization of shrinkage and expansion of 

wax patterns and thermoplastics have been 

extensively investigated [5-8]. Bisepar [9] 

studied shrinkage of injection molding of ABS 

thermoplastics used to manufacture automotive 

parts. Valtonen et al. [10] experimentally 

investigated the injection parameters of melt 

temperature, mold temperature, injection 

pressure, solidification time and injection time. 

ANN was then employed to select the best 

level of each parameter. No previous studies 

have been found that investigated wax pattern 

behavior during injection molding for 

investment casting. 

The present study investigated four 

parameters (injection temperature, pressure, 

hold time and cooling time) affecting 

dimensional deviation of a part to optimize 

injection molding. An artificial neural network 

(ANN) was trained to determine the 

relationship between input and output 

parameters and a genetic algorithm (GA) was 

used to optimize the process. MATLAB 

toolbox was used to implement the algorithm. 

2. Methods  

The model that was designed and fabricated for 

the present study is based on the design of 

Yarlagada and Hock [11] as shown in Figure 1. 

This model offers easy ejection of the part 

from the mold and effortless distortion of the 

part as required for testing. The model 

possesses constrained and non-constrained 

dimensions with different shrinkage 

conditions. The model surface is planer-planar 

and has parallel walls, which facilitate 

measurement and decrease measurement error. 

The mold used to manufacture the model is 

shown in Figure 2.  

 

Fig. 1. Design of model for optimization 

 

Fig. 2. Experimental mold 

The type and chemical composition of the 

wax can affect dimensional deviation. The 

specifications of the wax used in this study are 

given in Table 1. It should be noted the results 

of the present testing and analysis are valid 

only for this type of wax and should be 

repeated for other types of wax and analysis. A 

metal mold is required for injection of the 

molten wax to produce the wax model. Several 

parameters must be controlled during injection 

to produce a part without defects with the 

dimensions required by design specifications. 

These parameters are injection temperature, 

pressure, hold time and cooling time. Table 2 

shows the variation of these parameters for the 

present testing. Other injection process 

parameters were held constant and are shown 

in Table 3.  
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Table 1. The specification of the wax 

Grade Filled wax  B417 

Producer REMET 

Filler Type Polystyrene 

Filler quantity 38% weight 

Melting point 75°C 

Conglition point 61°C 

Viscosity at 80 C° 1000cPa 

Penetration in 25 C° 3dmm 

Ash content Max. 0.03% of Weight 

Color Green 

Table 2. The significant factors and their levels 

Factor 
Level 

I II III IV 

A، Injection Temp. (ºC) 60 70 80  

B، Injection Press. (bar) 20 40 60 70 

C  ،  Hold time (S) 10 25 40 55 

D  ،  Cooling Time (S) 60 120 180  

Table 3. The constant parameters of injection 

molding process 

Factor Constant value 

Injection Press. 50 m/s

Mould Temp. 10±2 ºC

Ambient Temp. 27±2 ºC

Injection Stroke minimum 

Clamp Press. 80 bar

Barrel Temp. 71ºC

Injection Time 1 S

The H-model used in this study had 

constrained and non-constrained parts. Testing 

showed that parts underwent two types of 

dimensional deviation. In one, the end parts of 

the wing were distorted and displaced toward 

each other. In another, the surfaces of the parts 

show evidence of substantial sinking. These 

deviations can be observed in Figure 3. After 

determining the critical areas undergoing 

deviation, the areas of the defects were 

measured and are shown in Figure 4. Area 1 

shows the wing distortion inward and area 2 

show the sink marks. 
 

 

Fig. 3. Warpage and sink marks of test parts 

 

Fig. 4. Positions and areas of defects 

2.1. Modeling injection wax 

Classic statistical and mathematical modeling 

is not appropriate for predicting the behavior of 

wax during injection and determining the 

dimensional deviation of the wax pattern 

because of the complex and nonlinear relations 

between inputs and outputs. An artificial neural 

network (ANN) can efficiently model complex 

phenomena and was used in the present study. 

The ANN was trained using experimental data 

to determine the relationship between input 

injection parameters and distortion and sink 

marks as outputs. To train and test the ANN, a 

number of experiments were carried out to 

gather sufficient data to determine the levels of 

the parameters. Design of experiment (DOE) 

techniques were used for the experiments using 

a (3×4×4×3) full factorial approach that 

produced a total of 144 tests.  

A two-layer ANN with a hidden layer using 

a sigmoid function for neurons was adopted. 

The linear conversion function for output and 

input layers is a powerful architecture that can 

be used for regression [12]. A perceptron ANN 

with feed forward back propagation was 

employed and is shown in Figure 5. The 

hidden layer consists of 25 neurons; there are 

four neurons in the input layer and two neurons 

in the output layer. 

 

Fig. 5. Architecture of ANN 

The network used the tansig function in the 

hidden layer and purelin linear function in the 

1 
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output layer. A Bayesian regularization 

function was used to train the ANN. Out of 144 

tests, 15 experimental data-sets are used for 

testing and 15 sets of data for validation of the 

ANN. The convergence of the ANN after 

training is shown in Figure 6.    

 

Fig. 6. Convergence of ANN 

To verify performance of the ANN, the test 

data were introduced and the network output 

and error pertaining to the data were recorded. 

The average percentage of error for the two 

output sets was 12.5%. This error figure lies 

within an acceptable range and indicates the 

validity and accuracy of the model for 

predicting the relationship between input and 

output.  

2.2. Parameter Optimization 

The ANN was used to find a mathematical 

relation between input parameters and 2D 

deviations that show adequate accuracy. An 

evolutionary algorithm was applied to find the 

optimum level of parameters required to 

minimize the dimensional deviations. 

Injection temperature and pressure, hold time 

and cooling time were monitored to produce a 

wax pattern with minimal warpage and sink 

marks.  

Genetic algorithms (GAs) are inspired by 

biological evolutionary processes that function 

by natural selection. A GA follows function 

evaluator, selection and reproduction stages. 

Determining the optimal parameter set is a 

multi-objective optimization (MOO) problem 

because the 2D deviations vary independently 

and their minimum values do not inevitably 

occur simultaneously. A MOO algorithm must 

be used if the process designer must control 

each individual dimensional deviation in the 

final pattern.  

In contrast to single-objective optimization, 

the solution to a multi-objective problem is 

more of a concept than a definition. There is no 

single global solution and it is often necessary 

to determine a set of points that all fit a 

predetermined definition for an optimum. The 

predominant concept for defining an optimal 

point is Pareto optimality, as suggested by 

Pareto (1906). A point, xЄX, is Pareto optimal 

if no other point x'ЄX exists such that F(x) ≤ 

F(x'), and Fi(x) < Fi(x') for at least one 

function. For any given problem, there can be 

an infinite number of Pareto optimal points 

constituting the Pareto front.  

A promising MOO algorithm is the multi-

objective GA (MOGA). Several variations of 

this algorithm have been reported, of which the 

non-dominated sorting genetic algorithm II 

(NSGA II) developed by Deb et al. [13] is the 

most successful for a range of engineering 

applications. Since the aim of a MOGA search 

is to locate Pareto-optimal solutions, the MOO 

problem must be treated as a multi-modal 

problem. This means that the use of additional 

genetic operators, such as fitness-sharing and 

mating restrictions to locate all the peaks and 

valleys of the function is also required.  

For the use of an ANN as a function 

evaluator, the MOGA uses a population size of 

30, a two-point crossover rate of 0.9, a uniform 

mutation probability of 0.1, and the maximum 

number of generations as 40. Values for the 

decision variables and function values for the 

30 Pareto optimal points are presented in 

Figure 7. These are all non-dominated 

solutions where an improvement in the value 

of one objectives, say warpage value, results in 

deterioration of another objective and vice 

versa. 

From Figure 7 it is clear that the algorithm 

successfully determined optimum values in the 

search space of each function for the range of 

variation of each function. 
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Fig. 7. Pareto front 

2.3. Validation  

After determining the Pareto points, the results 

should be validated. One point was selected for 

experimentation from the 30 Pareto points. 

Each objective function for this point must 

benefit from a mid-level optimum as shown in 

Table 4. Ten validation experiments were 

performed. Figures 8 and 9 show that the 

results from MOGA and testing are in 

agreement. Tables 5 and 6 give the error for 

each output variable. 

Table 4. The conditions of the Pareto point selected 

for validation experiments  

Factor value 

Injection Press. (bar) 64.5 

Injection Temp. (ºC) 73 

Hold Time  (S) 42 

Cooling Time (S) 135 

Warpage (mm) 0.206 

Sinkmark (mm) 0.094 

Table 5. MOGA and Experimental results for 

sinkmark 

Error 

(%) 

Exp.  

Results 

(mm) 

MOGA 

Results (mm) 

Experiment 

No. 

6 0.10 

0.094 

1 

4.4 0.09 2 

14.5 0.11 3 

17.5 0.08 4 

6 0.10 5 

4.4 0.09 6 

4.4 0.09 7 

14.5 0.11 8 

4.4 0.09 9 

14.5 0.11 10 

9.1 
x =0.

097 
0.094 Average 

 

Table 6. MOGA and Experimental results for 

warpage 

Error 

(%) 

Exp.  

Results 

(mm) 

MOGA 

Results 

(mm) 

Experiment 

No. 

10.4 0.23 

0.206 

1 

17.6 0.25 2 

14.4 0.18 3 

3 0.2 4 

6.3 0.22 5 

3 0.2 6 

8.4 0.19 7 

1.9 0.21 8 

8.4 0.91 9 

1.9 0.21 10 

7.5 
x =0.2

08 
0.206 Average 

 

Fig. 8. Results of warpage of MOGA and testing 

 

Fig. 9. Results of sink mark from MOGA and testing 

For the selected Pareto point, the value of 

warpage was 0.206 mm and for sink marks was 

0.094 mm. The average error between the 

experimental and MOGA results was 9.1% for 

warpage and 7.5% for sink marks, which shows 

the validity of the optimum values found. Table 

7 shows the average values for warpage and 

sink marks prior to and after optimization. The 

results indicate a decrease in warpage and sink 

marks of 41% and 52%, respectively, after 

optimization. This is a significant improvement 
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in the process. It can be said that MOGA helped 

determine the optimum set of process 

parameters in the search space and strongly 

decreased the incidence of defects.  

Table 7. Optimized versus non-optimized values for 

warpage and sinkmark 

Improve

ment (%) 
Optimized 

value (mm) 

Prior to 

Optimization 
 

41 0.208 0.351 Warpage 
53 0.094 0.201 Sink 

3. Summary and Conclusion 

This study used a hybrid system comprising an 

ANN and a GA to optimize the process 

parameters for injection of wax patterns used 

for investment casting. DOE was used to 

design a set of experiments to generate results 

for training the ANN. The optimum set of 

parameters for minimum warpage and sink 

marks significantly decreased the level of 

defects. A pattern was produced that was closer 

to design specifications and allowed 

fabrication of a ceramic mold that improved 

the quality of the parts. The results of this 

research can be used to decrease manufacturing 

lead time, waste, and production costs. The 

methodology can be adopted by manufacturing 

companies for investment casting, especially 

for producers of turbine blades. 
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