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Abstract 

Gyroscopes are used as rotation rate sensors. Conventional gyroscopes are heavy and bulky, which 

creates important problems regarding their usage in different applications. Micro-gyroscopes have 

solved these problems due to their small size. The beam micro-gyroscope is one of the popular types 

of inertial sensors. Their small dimensions and low energy consumption are key reasons for their 

popularity. In this investigation, the model of an electrostatically actuated beam-based micro-

gyroscope is used to study the effect of design parameters on pull-in voltage and fundamental 

frequency. The micro-gyroscope includes a rotating cantilever beam and a tip mass attached to the free 

end. DC voltages are applied to both sense and drive electrodes to actuate the system. The tip mass is 

actuated by an AC voltage in the drive direction to produce oscillations in the sense direction. 

Equations of motion are solved numerically to study different pull-in and vibrational parameters. 

Eigenvalues of the uncoupled system are computed to obtain the fundamental frequency of the micro 

beam for different values of DC voltages and design parameters. The frequencies are computed and 

validated with those in the literature. The results are beneficial for the design process of micro-

gyroscopes. 
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1. Introduction
 
 

Position and orientation sensors have become 

an integral part of many modern engineering 

systems such as satellites, vehicles, and robots. 

Continuous progress in micromachining has 

significantly increased the accuracy and 

reliability of Micro-Electro-Mechanical 

System (MEMS) inertial sensors and played a 

crucial role in revolutionizing the related 
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industries. MEMS sensors have been studied in 

many research papers [1-10]. 

Gyroscopes are widely used as rotation rate 

sensors. Conventional gyroscopes are heavy, 

costly, and bulky, which imposes major 

limitations their use in demanding 

applications. Micro-gyroscopes have solved 

the abovementioned problems to a large degree 

and have become the object of intensive study 

in order to satisfy new market demands. 

Although an enormous variety of gyroscopes 

with different features exist, the basic operation 
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principle of their architecture is to generate and 

maintain a constant linear or angular 

momentum coupled to the sense mode. In the 

linear vibration gyroscope, a proof mass 

oscillates in the drive direction by an altering 

force. When the frame rotates, the Coriolis force 

generates oscillations orthogonal to the drive 

direction. The angular velocity can be estimated 

by measuring the amplitude of oscillations. 

The beam micro-gyroscope is one of the 

most widely used types of inertial sensors. 

Batch production, small size and low energy 

consumption are some of the reasons for its 

popularity. Shupe and Connor first introduced 

the beam micro-gyroscope in 1983 [11]. They 

used an electrostatic force with a frequency 

near the fundamental frequency of a cantilever 

beam as excitation and a piezoelectric element 

for sensing the induced vibrations. 

Maenaka et al. used piezoelectric actuators 

to excite a tip mass in the drive direction [12]. 

Capacitance variation between proof mass and 

sense electrode was used to identify the 

induced sense oscillations. Seok and Scarton 

derived a mathematical model for a cantilever 

beam excited by a distributed electrostatic 

force and investigated the eigenvalues of the 

system [13]. Esmaili et al. introduced an 

elementary model of a beam mass gyroscope 

considering an Euler-Bernoulli beam excited 

by electrostatic force [14]. They obtained a 

solution for the frequency equation and 

investigated the effect of excitation amplitude 

at the resonance frequency on the gyroscope 

output to input rotations. 

Ghommen and Nayfeh developed a 

mathematical model of a beam micro-

gyroscope excited by a pair of DC and AC 

voltages and obtained closed-form solutions 

for the linearized problem [15]. They 

investigated the relationship between the base 

rotation and gyroscopic coupling.  

In the current research, we investigate the 

variation of pull-in voltage and first natural 

frequency of the micro beam with the input 

DC voltage for different values of design 

parameters. Results can be used as a guideline 

for selecting appropriate design values. 

2. Equations of motion 

A tip mass M is attached to the free end of a 

cantilever beam and oscillates in two 

orthogonal directions. Equal DC voltages are 

applied in both directions to constrain the 

motion to flexural displacements and an AC 

voltage as an excitation to connect the 

orthogonal vibrations via angular velocity. We 

assume that the beam has a square uniform 

cross-section. 

 

Fig. 1. Schematic of the cantilever beam with tip mass 

Following Nayfeh et al. the equations of 

motion are obtained as follows [15]: 
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0v w   (3) 

0v w    (4) 

and at x=L: 

2 2

2

2

2 2

2( )

v DC

v

EIv Mv Jv Mw Mv

A V
Mw Jw Jv

d v



      

     


 (5) 

2 2

2

2

2 2

( )

2( )

w DC AC

w

EIw Mw Jw Mv Mw

A V V
Mv Jv Jw

d w



      


     



 (6) 

0v w    (7) 

Introducing the following non-dimensional 

parameters: 
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and ignoring terms containing angular velocity 

and its derivatives, the non-dimensional 

uncoupled equations of motion are acquired. 
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at x=0 
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3. Static analysis 

The analysis of the uncoupled system in the 

drive and sense directions is similar. 

Therefore, we follow the analysis only in the 

drive direction. The deflection is separated into 

static and dynamic components: 

ˆ ˆˆ ˆ ˆ ˆ( , ) ( ) ( , )s dw x t w x w x t   (15) 

Substituting equation (15) into (9), the 

static equation of motion is obtained: 

(4) 0sw   (16) 

Applying boundary conditions, the solution 

can be represented as follows: 
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where C is the solution of the following 

equation: 
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4. Natural frequencies 

The natural frequencies of the uncoupled 

system are obtained by solving the eigenvalue 

problem. Substituting (15) into (9)-(14) the 

dynamic equations of motion are determined: 
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Assuming solution of the form: 
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the eigenvalue problem is obtained: 
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where (1)sw is static deflection at the end of 

the beam. Solution of equation (24) is given 

by: 
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Applying boundary conditions to the 

general solution, and following standard 

procedures, a characteristic equation is 
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obtained and solved for . The static pull-in 

voltage is the point where  reaches zero. 

5. Numerical results 

The following numerical values for the micro 

beam gyroscope are used to display the effect 

of design parameters on pull-in voltage and 

fundamental frequency.  

Table 1. Design parameters. 

Symbol Description Unit Value 

L Beam length m  400 
  Density 3/kg m  2300 

E Young’s 

modulus 

2/N m  160*10
9 

M Tip mass kg  7.212*10
-

12 

m Mass per unit 

length 
/kg m  1.8*10

-8 

b Beam width m  2.8*10
-6 

h Beam 

thickness 
m  2.8*10

-6
 

In order to validate the results and the 

applied method, a comparison is performed 

using the numerical results presented in the 

literature. In Figure 2 variation of fundamental 

frequency with the input DC voltage obtained 

from the current research is compared with 

those of Ghommen et al. for three values of 

non-dimensional mass [15]. As can be seen, 

the results show great agreement. 

 

Fig. 2. Fundamental frequencies vs. input DC voltage 

Figures 3 to 7 show the variation of the 

fundamental frequency with the DC voltage 

for different values of design parameters. It is 

evident from the results that the pull-in voltage 

is independent of the values of tip mass (M) 

and the values of the mass per unit length (m). 

The first natural frequency is directly 

proportional to the value of mass per unit 

length. Meanwhile it is inversely proportional 

to the value of tip mass. Increasing the 

Young’s modulus (E) or the cross-sectional 

second moment of area (I) results in higher 

pull-in voltages. However, there is no 

significant effect on fundamental frequency in 

voltages well under the pull-in voltage. Pull-in 

voltage tends to decrease as the beam length 

(L) increases, while first natural frequency 

slightly increases with higher beam length. 

 

Fig. 3. Variation of the first natural frequency with 

DC voltage for various values of beam length 

 

Fig. 4. Variation of the first natural frequency with 

the DC voltage for various values of the tip mass 

 

Fig. 5. Variation of the first natural frequency with 

DC voltage for various values of the Young’s modulus 
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Fig. 6. Variation of the first natural frequency with 

DC voltage for various values of the mass per unit 

length 

 

Fig. 7. Variation of the first natural frequency with 

DC voltage for various values of the cross-sectional 

second moment of area 

6. Conclusions 

In this study, model of a beam micro-

gyroscope was used to study the effect of 

design parameters on pull-in voltage and 

natural frequency of a micro-gyroscope. The 

uncoupled equations of motion were derived 

and solved for different values of DC voltage 

and design parameters. The results illustrate 

how the pull-in voltage and natural frequency 

of the beam micro-gyroscope depends on 

design parameters and can provide researchers 

a guideline to satisfy the design requirements. 
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