Hydrothermal synthesis of cobalt oxide nanoparticles: Its optical and magnetic properties

M. Yarestani¹, A.D. Khalaji^{2*}, A. Rohani³, D. Das⁴

¹Department of Chemical Engineering, College of Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Islamic Republic of Iran

²Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Islamic Republic of Iran

³Research institute of Petroleum Industry, the west entrance toAzadi stadium, Olympic Blv., Tehran, Islamic Republic of Iran

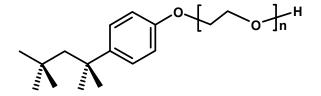
⁴Department of Chemistry, The University of Burdwan, Burdwan, West Bangal, India

Received: 21 April 2014 / Revised: 28 May 2014 / Accepted: 5 July 2014

Abstract

Cobalt oxide (Co3O4) nanoparticleshave been synthesized by hydrothermal method using mixture of cobalt(II)chloride, Triton X-100 and KOH in an autoclave at 180 °C for 6 h followed by heating at 400 °C for 3 h in air. The product have been characterized by Fourier transform infrared (FT-IR), UV-Vis spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Optical properties of the Co3O4nanoparticleshave revealed the presence of two band gaps, viz.2.9 and 2.4 eV. Data fromvibrating sample magnetometer (VSM) confirm the purity of the product along with single phase paramagnetic behavior.

Keywords: Cobalt oxide; XRD; SEM; TEM; Optical properties.


Introduction

Cobalt oxide (Co_3O_4) nanoparticlesexhibit interesting properties and applications when compared with their bulk, such as lithium storage [1], gas sensing [2] and electro-catalyst [3]. The most stable phase of cobalt oxides (Co_3O_4) with a direct band gap of 1.48-2.19 eV, is used asanp-type semiconductor and received considerable attention [1-5]. Various methodshave been developed to synthesize Co₃O₄ nanoparticles, including hydrothermal [4,5], microwave-assisted[6] the andreverse micelles [7]. However, hydrothermal method isgreen and less expensive. Synthesis of Co₃O₄ nanoparticles via hydrothermal method generally requires reducing and precipitating agents. Until now, various nanoparticles of Co₃O₄ have been prepared by different methods [8-12]. Therefore, development of facile and rapid method to prepare high purity Co₃O₄ nanoparticles havingvariousmorphologies [1-14] is highly desirable.Recently, our group has been synthesized metal oxides nanoparticles via thermal decomposition method of transition metal Schiff base complexes [15,16].Herein, we report synthesis, characterization and possible growth mechanism of Co_3O_4 nanoparticles by hydrothermal method.

Materials and Methods

All reagents and solvents for synthesis and analysis were commercially available and used as received without further purifications. X-ray powder diffraction (XRD) pattern of the complex was recorded on a Bruker AXS diffractometer D8 ADVANCE with Cu-K α radiation with nickel beta filter in the range $2\theta = 4^{\circ}-84^{\circ}$. Fourier Transform Infrared spectra were recorded as a KBr disk on a FT-IR Perkin–Elmer spectrophotometer.

^{*} Corresponding author: Tel: +98 171 2245882; Fax: +98 171 2245964; Email: alidkhalaji@yahoo.com

Scheme 1. Chemical structure of Triton X-100

The scanning electron microscopy (SEM) images were obtained from a Philips XL-30ESEM. The transmission electron microscopy (TEM) images were obtained from a JEOL JEM 1400 transmission electron microscope with an accelerating voltage of 120 kV. Optical absorption spectra are recorded at room temperature on a Cary 100 UV-visible spectrophotometer(VARIAN EL 12092335)having wavelength range of 200 – 700 nm. A homogeneous suspension in distilled water, obtained through sonication (for 10 minutes) of well dispersed sample is used for UV-vis studies. Magnetic measurements are made at room temperature using a vibrating sample magnetometer (VSM) (BHV-55, Riken, Japan).

Preparation of Co₃O₄ nanoparticles

Cobalt chloride (2.5 mmol)is dissolved in 40 mL distilled water and a certain amount of surfactant (1%, w/w, Triton X-100, Scheme 1) is added subsequently. Aqueous KOH and surfactant solutions are added drop wise until dark green solution is obtained. The resultant mixture is transferred into a 100 mL sealed teflon-lined autoclave and kept at 180 °C for 6 h. After cooling the autoclave to room temperature, the dark precipitate is obtained, filtered, washed with distilled water followed by absolute ethanol, and dried at 90°C for 6 h under vacuum. Thus obtained Co_3O_4 compoundis labeled as MY-1. MY-1 is further heated at 400 °C for 3 h in presence of air and the productis labeled as MY-2.

Results and Discussion

Triton X-100, used as stabilizing agent in nanocolloidal system is absorbed on the surface of cobalt ion. H_2O_2 and KOH function as homogeneous precipitating agents. The probable chemical reactionsare as follows:

•
$$CoCl_2 + 2 \text{ KOH} \rightarrow Co(OH)_2 \downarrow + 2 \text{ KCl}$$

• 3 $Co(OH)_2 \downarrow + H_2O_2 \rightarrow Co_3O_4 \downarrow + H_2O$

FTIR spectra

Figure 1a and 1b show FTIR spectra of Co_3O_4 nanoparticles(MY-1 and MY-2). The strong bands at 576 and 670 cm⁻¹ for MY-1 and 662 and 568 cm⁻¹ for MY-2, belonging to the spinel structure of Co_3O_4 [5]. The former peak at about 660-670 cm⁻¹ is attributed to the stretching vibration mode of Co-O in which Co is Co^{+2} and is tetrahedrally coordinated. The latter one at 568-576 cm⁻¹ can be assigned to Co-O of octahedrally coordinated Co⁺³. The two bands appeared at 3551 and 1610 cm⁻¹ have been assigned to the stretching and binding vibrations of absorbed water molecule on Co_3O_4 nanoparticles [4].

PXRD studies

The as-prepared Co₃O₄ nanoparticles have been characterized by X-ray powder diffraction (XRD) (Fig. 2). The XRD patterns of MY-1 and MY-2 are slightly different, because MY-2 is a mixed Co₃O₄ and CoO phases. All diffraction peaks at $2\theta = 19$ (111), 31 (220), 37 (311), 39 (222), 45 (400), 56 (422), 59 (511) and 66 (440) displayed on the PXRD pattern of MY-1 and MY-2 can be indexed to the cubic Co₃O₄ structure(JCPDS No. 43-1003). No characteristic peaks of other impure phases like $CoO(2\theta = 20 (111), 23 (220), 37 (220)$ and 38 (311)) in the XRD od MY-1 could be detected, indicating that the Co₃O₄ products were of high purity. The average size of the Co₃O₄nanoparticleshave been determined using the Debye-Scherrer formula (D = $0.9 \lambda / \beta \cos \theta$), found as 26.6 nm for MY-1 and 21.3 nm for MY-2.

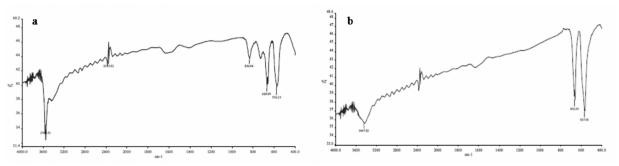
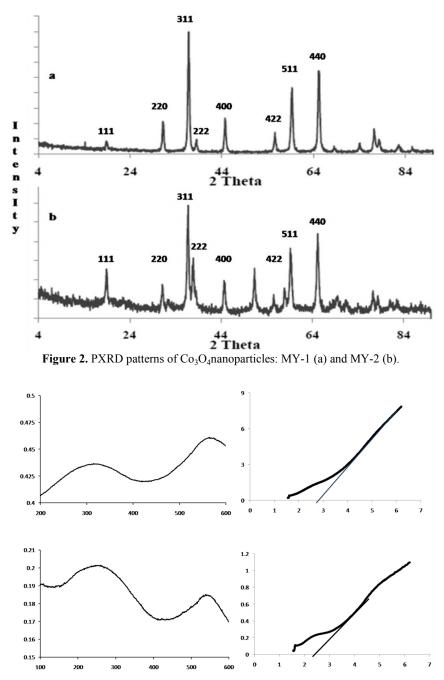
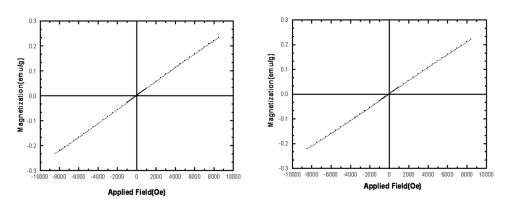


Figure 1. FTIR spectra of Co₃O₄nanoparticles MY-1 (a) and MY-2 (b).




Figure 3. The UV-Vis and band gap of Co₃O₄nanoparticles: MY-1 (top) and MY-2 (bottom).

Optical and VSM studies

The optical absorption spectra of the Co_3O_4 nanoparticles have been carried out using UV-vis spectroscopy. The optical absorption profile (Fig. 3) shows two bands at 560 and 315 nm for MY-1 and 550 and 250 nm for MY-2, which indicating ligand-metal charge transfer events $O^{2-} \rightarrow Co^{3+}$ and $O2- \rightarrow Co^{2+}$, respectively and are expected for Co_3O_4 [12]. The direct band gaps energy of the Co_3O_4 nanoparticles are 2.9 eV for MY-1 and 2.4 eV for MY-2 [17]. The magnetic behavior of the Co_3O_4 nanoparticles has been investigated at room temperature. The fine hysteresis loop in Fig. 4 is characteristics of paramagnetic behavior, although bulk Co_3O_4 shows anti-ferromagnetic behavior.

SEM and TEM images

SEM and TEM images of MY-1 and MY-2 (Figs. 5 and 6, respectively) indicate that the Co_3O_4 crystals are formed by aggregation of smaller crystallites during the

Figure 4. $(\alpha hv)^2 vs.$ (hv) of Co₃O₄nanoparticles :MY-1 (left) and MY-2 (right).

synthesis process and the morphology of ${\rm Co}_3{\rm O}_4$ nanoparticles is much uniform.

a

Conclusion

Two Co_3O_4 nanoparticles, MY-1 and MY-2 with similar morphology are prepared successfully by hydrothermal method using cobalt nitrate and/ acetate in

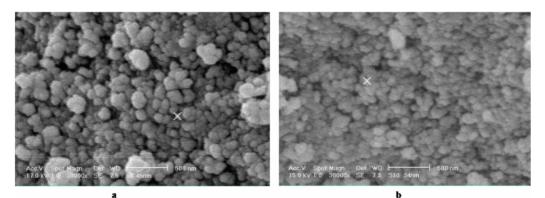


Figure 5. SEM images of Co₃O₄nanoparticles: MY-1 (a) and MY-2 (b).

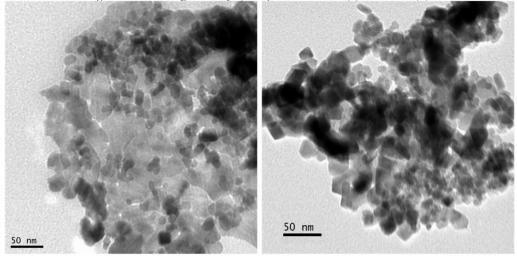


Figure 6. TEM images of Co₃O₄ nanoparticles: MY-1 (a) and MY-2 (b).

b

presence of Triton X-100 as surfactant, and KOH and H_2O_2 as homogeneous precipitating agents. The Co_3O_4 nanoparticles are spherical shaped with an average size 26.6 nm (MY-1) and 21.3 nm (MY-2). They are characterized by FTIR, XRD, SEM and TEM techniques. Optical properties of the Co_3O_4 nanoparticles have revealed the presence of two band gaps 2.9 and 2.4 eV. The vibrating sample magnetometer (VSM) experiments confirm the purity, single phase and paramagnetic behavior.

References

- 1. Yuan W. Xie D. Dong Z. Su Q. Zhang J. Du G. and Xu B. Preparation of porous Co_3O_4 polyhedral architectures and its application as anode material in lithium-ion battery. *Mater. Lett.* **97**: 129-132 (2013).
- Sun C. Su X. Xiao F. Niu C. and Wang J. Synthesis of nearly monodisperse Co₃O₄nanocubes via a microwaveassisted solvothermal process and their gas sensing properties. *Sens. Actuat. Chem.* B157: 681-685 (2011).
- Manigandan R. Giribabu K. Suresh R. Vijayalakshmi L. Stephen A. and Narayanan V. Cobalt oxide nanoparticles: Characterization and its electrocatalytic activity towards nitrobenzene. *Chem. Sci. Trans.* 2: S47-S50 (2013).
- Teng Y. Yamamoto S. Kusano Y. Azuma M. and Shimakawa Y. One-pot hydrothermal synthesis of uniformly cubic Co₃O₄nanocrystals. *Mater. Lett.* 64: 239-242 (2010).
- Lester E. Aksomaityte G. Li, J. Gomez S. Gonzalez-Gonzalez J. and Poliakoff M. Controlled continuous hydrothermal synthesis of cobalt oxide (Co₃O₄) nanoparticles. *Prog. Cryst. Growth Charact. Mater.* 58: 3-13 (2012).
- Vijayakumar S. KiruthikaPonnalagi A. Nagamuthu and S. Muralidharan G. Microwave assisted synthesis of Co₃O₄ nanoparticles for high-performance supercapacitors. *Electrochim. Acta.* 106: 500-505 (2013).
- 7. Vidal-Abarca C. LavelaP.and Tirado JL. Cobalt oxide

nanoparticles prepared from reverse micelles as highcapacity electrode materials for Li-ion cells. *Electrochem. Solid State Lett.* **11**: A198-A201 (2008).

- Xu J. Gao L. Cao J. Wang W. and Chen Z. Preparation and electrochemical capacitance of cobalt oxide (Co₃O₄) nanotubes as supercapacitor material. *Electrochim. Acta*. 56: 732-736 (2010).
- Pan L. Xu M. and Zhang ZD. Synthesis anselectrocatalytic properties of Co₃O₄nanocrystallites with various morphologies. *J. Clus. Sci.* 21: 655-667 (2010).
- Hui KS. Hui KN. Yin CL. and Hong X. Synthesis of Co₃O₄ nanowires on nickel foam by a novel microwaveassisted template-free method. *Mater. Lett.* **97**: 154-157 (2013).
- 11. Ren M. Yuan S. Su L. and Zhou Z. Chrysanthemum-like Co₃O₄ architectures: Hydrothermal synthesis and lithium storage performance. *Solid State Sci.* **14**: 451-455 (2012).
- Makhlouf SA. Bakr ZH. Aly KI. andMoustafa MS. Structural, electrical and optical properties of Co₃O₄ nanoparticles. *Superlat. Microstruct.* 64: 107-117 (2013).
- Farhadi S. Pourzare K. and Sadeghinejad S. Simple preparation of ferromagnetic Co₃O₄ nanoparticles by thermal dissociation of the [Co^{II}(NH3)₆](NO₃)₂ complex at low temperature. *J. Nanostruct. Chem.* **3**: 16-22 (2013).
- Farhadi S Pourzare K. and Bazgir S. Co₃O₄nanplates: Synthesis, characterization and study of optical and magnetic properties. *J. All. Compd.* 587: 632-637 (2014).
- Khalaji AD. Nikookar M. Charles C. Triki S. Thetiot F. and Das D. Facile Preparation of Mn₃O₄hausmanite nanoplatesfrom a new octahedral manganese (III) Schiff basecomplex. *J. Clust. Sci.* 25, 605-615 (2014).
 - Khalaji AD. andMalekan F. Synthesis of Mn₃O₄nanorods by solid-state thermal decomposition of manganese(III) Schiff base complex [Mn(Brsalmepn)(μ_{1,3}-N₃)]_n. J. Clust. Sci. 25: 517-521 (2014).
 - 17. Hosny NM. Single crystalline Co₃O₄: Synthesis and optical properties. Mater. Chem. Phys. **144**: 247-251 (2014).