Subpullbacks and Po-flatness Properties of S-posets

A. Golchin^{*} and L. Nouri

Department of Mathematics, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran

Received: 16 April 2014 / Revised: 1 November 2014 / Accepted: 19 November 2014

Abstract

In (Golchin A. and Rezaei P., Subpullbacks and flatness properties of S-posets. *Comm. Algebra.* **37**: 1995-2007 (2009)) study was initiated of flatness properties of right S-posets A_S over a pomonoid S that can be described by surjectivity of φ corresponding to certain (sub)pullback diagrams and new properties such as $(PWP)_w$ and $(WP)_w$ were discovered. In this article first of all we describe poflatness properties of S-posets over pomonoids by po-surjectivity of φ corresponding to certain subpullback diagrams. Then we introduce three new Conditions (P_{sw}) , $(WP)_{sw}$ and $(PWP)_{sw}$ and investigate the relation between them and Conditions (P), (P_w) , (WP), $(WP)_w$, (PWP) and $(PWP)_w$. Also we describe these properties by po-surjectivity of φ corresponding to certain subpullback diagrams and describe Conditions (P_w) , $(WP)_w$ and $(PWP)_w$ by weak po-surjectivity of φ corresponding to certain subpullback diagrams.

Keywords: Ordered monoid; S-poset; Subpullback diagram.

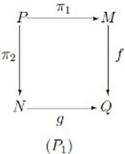
Introduction

In [5] the notation P(M, N, f, g, Q) was introduced to denote the pullback diagram of homomorphisms $f: {}_{S}M \rightarrow {}_{S}Q$ and $g: {}_{S}N \rightarrow {}_{S}Q$ in the category of left S-acts, where S is a monoid. Tensoring such a diagram by A_{S} produces a diagram (in the category of sets) that may or may not be a pullback diagram, depending on whether or not the mapping φ , obtained via the universal property of pullbacks in the category of sets, is bijective. It was shown that, if we require either bijectivity or surjectivity of φ for pullback diagrams of certain types, we not only recover most of the wellknown forms of flatness, but also obtain Conditions (WP) and (PWP) as well. In [4] Golchin and Rezaei extended the results from [5] to S-posets and two new Conditions (WP)_w and (PWP)_w were introduced. Let *S* be a pomonoid. A poset *A* is called a *right S*poset if *S* acts on *A* in such a way that (*i*) the action is monotonic in each of the variables, (*ii*) for all $s, t \in S$ and $a \in A$, a(st) = (as)t and a1 = a. Left *S*-posets are defined similarly. The notations A_S and $_SB$ will often be used to denote a right or left *S*-poset and $\Theta_S = \{\theta\}$ is the one-element right *S*-poset. The *S*-poset morphisms are the order-preserving maps that also preserve the *S*action. We denote the category of all right *S*-posets, with *S*-poset maps between them, by Pos- *S*. We recall from [3] that an *S*-poset map $f: A_S \to B_S$ is called an *embedding* if $f(a) \leq f(a')$ implies $a \leq a'$, for $a, a' \in A_S$.

We recall from [2] that in the categories of *S*-posets and posets the order relation on morphism sets is defined pointwise (i.e. $f \leq g$ for $f, g: A \rightarrow B$ if and only if $f(a) \leq g(a)$ for every $a \in A$). In such

^{*} Corresponding author: Tel: +989153498782; Fax: +985412447166, Email: agdm@math.usb.ac.ir

categories, a diagram



is subcommutative if $f\pi_1 \leq g\pi_2$. If $f\pi_1 \leq g\pi_2$ and for every left *S*-poset *P'* and all homomorphisms $\pi'_1: P' \to M$ and $\pi'_2: P' \to N$ such that $f\pi'_1 \leq g\pi'_2$, there exists a unique homomorphism $h: P' \to P$ such that $\pi_1 h = \pi'_1$ and $\pi_2 h = \pi'_2$, then diagram (*P*₁) will be called *subpullback diagram* for *f* and *g*. In the category of *S*-posets or the category of posets, *P* may in fact be realized as

$$P = \{(m, n) \in M \times N \mid f(m) \le g(n)\}$$

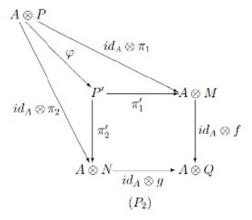
where π_1 and π_2 are the first and second coordinate projections. (Notice that *P* is possibly empty.) The subpullback diagram (*P*₁) will be denoted by *P*(*M*, *N*, *f*, *g*, *Q*). Tensoring the subpullback diagram *P*(*M*, *N*, *f*, *g*, *Q*) by any right *S*-poset *A* one gets the subcommutative diagram

$$\begin{array}{c|c} A \otimes P & \stackrel{id_A \otimes \pi_1}{\longrightarrow} A \otimes M \\ id_A \otimes \pi_2 & & & \\ A \otimes N & \stackrel{id_A \otimes g}{\longrightarrow} A \otimes Q \end{array}$$

in the category of posets. For the subpullback of mappings $id_A \otimes f$ and $id_A \otimes g$ in the category of posets we may take

$$P' = \{ (a \otimes m, a' \otimes n) \\ \in (A \otimes M) \times (A \otimes N) \mid a \otimes f(m) \\ \leq a' \otimes g(n) \}$$

with π'_1 and π'_2 the restrictions of the projections. It follows from the definition of subpullbacks that there exists a unique monotone mapping $\varphi: A \otimes_S P \longrightarrow P'$ such that, in the diagram



we have $\pi'_1 \varphi = id_A \otimes \pi_i$ for i = 1,2. We shall call this mapping the φ corresponding to the subpullback diagram P(M, N, f, g, Q). It can be seen that the mapping φ in diagram (P_2) is given by

 $\varphi(a \otimes (m, n)) = (a \otimes m, a \otimes n)$ for all $a \in A_s$ and $(m, n) \in {}_{SP}$.

we define po-surjectivity and weak po-surjectivity of φ corresponding to the subpullback diagram P(M, N, f, g, Q) as

$$(\forall a, a' \in A_S)(\forall m \in_S M)(\forall n \in_S N)[a \otimes f(m) \leq a' \otimes g(n) \Rightarrow (\exists a'' \in A_S)(\exists m' \in_S M)(\exists n' \in_S N)(f(m') \leq g(n'), a \otimes m = a'' \otimes m', a'' \otimes n' \leq a' \otimes n)] and (\forall a, a' \in A_S)(\forall m \in_S M)(\forall n \in_S N)[a \otimes f(m) \leq a' \otimes g(n) \Rightarrow (\exists a'' \in A_S)(\exists m' \in_S M)(\exists n' \in_S N)(f(m') \leq g(n'), d(m')))$$

 $a \otimes m \le a'' \otimes m'$, $a'' \otimes n' \le a' \otimes n$], respectively.

Obviously, surjectivity of $\varphi \Rightarrow$ po-surjectivity of $\varphi \Rightarrow$ weak po-surjectivity of φ .

We say that an S-poset A_S satisfies Condition (P_{sw}) if for all $a, a' \in A_S$ and $s, s' \in S$, $as \leq a's'$ implies $a = a''u, a''v \leq a'$, for some $a'' \in A_S$ and $u, v \in S$, such that $us \leq vs'$. An S-poset A_S satisfies Condition $(WP)_{sw}$ if for all elements $s, t \in S$, all homomorphisms $f: {}_{S}(Ss \cup St) \rightarrow {}_{S}S$ and all $a, a' \in A_S$, if $af(s) \leq$ a'f(t), then there exist $a'' \in A_S$, $u, v \in S$, $s', t' \in$ $\{s, t\}$, such that $f(us') \leq f(vt')$ and $a \otimes s = a'' \otimes us'$, $a'' \otimes vt' \leq a' \otimes t$ in $A_S \otimes {}_{S}(Ss \cup St)$. An S-poset A_S satisfies Condition $(PWP)_{sw}$ if for all $a, a' \in A_S$ and $s \in S$, $as \leq a's$ implies a = a''u, $a''v \leq a'$, for some $a'' \in A_S$ and $u, v \in S$, such that $us \leq vs$.

For a pomonoid S the following relations exist among flatness properties of an S-poset.

free
$$\Rightarrow$$
 projective
 $\Rightarrow (P) \Rightarrow (WP) \Rightarrow (PWP)$
 $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$
 $(P_{sw}) \Rightarrow (WP)_{sw} \Rightarrow (PWP)_{sw}$
 $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$
 $(P_w) \Rightarrow (WP)_w \Rightarrow (PWP)_w$
 $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$
 $po - flat \Rightarrow w.po - f. \Rightarrow p.w.po - f. \Rightarrow po - t.f.$
 $flat \Rightarrow w.f. \Rightarrow p.w.f. \Rightarrow t.f.$

 (P_{1})

In this article for a pomonoid *S*, using the information from [5, 4] we describe po-flatness and Conditions (P_{sw}) , $(WP)_{sw}$ and $(PWP)_{sw}$ of *S*-posets according to po-surjectivity of φ corresponding to certain subpullback diagrams. We also describe Conditions (P_w) , $(WP)_w$ and $(PWP)_w$ introduced in [7, 4] by weak po-surjectivity of φ corresponding to certain subpullback diagrams.

Results

1. Po-flatness of S-posets

In this section for a pomonoid S we give equivalences of po-flatness of S-posets by posurjectivity of the mapping φ corresponding to certain subpullback diagrams.

Recall from [7] that an *S*-poset A_S is called *po-flat* (in Pos- *S*) if and only if, for all embeddings ${}_{S}B \rightarrow {}_{S}C$ in the category of left *S*-posets, the induced orderpreserving map $A_S \otimes {}_{S}B \rightarrow A_S \otimes {}_{S}C$ is embedding, that is, $a \otimes b \leq a' \otimes b'$ in $A_S \otimes {}_{S}C$ implies $a \otimes b \leq a' \otimes b'$ in $A_S \otimes {}_{S}B$. The *S*-poset A_S is called (*principally*) weakly *po-flat* if the functor $A_S \otimes -$ preserves embeddings of (principal) left ideals of monoid *S* into *S*, that is, for all (principal) left ideals *I* of monoid *S*, $a, a' \in A_S$, $s, s' \in$ *I*, $a \otimes s \leq a' \otimes s'$ in $A_S \otimes {}_{S}S$ implies $a \otimes s \leq a' \otimes s'$ in $A_S \otimes {}_{S}I$. For more po-flatness properties we refer the reader to [8].

Lemma 1.1. [7, Lemma 3.5] An *S*-poset A_S is po-flat if and only if for every left *S*-poset $_{S}B$, any $a, a' \in A_S$ and any $b, b' \in _{S}B$, $a \otimes b \leq a' \otimes b'$ in $A_S \otimes _{S}B$ implies $a \otimes b \leq a' \otimes b'$ in $A_S \otimes _{S}(Sb \cup Sb')$.

Theorem 1.2. An *S*-poset A_s is po-flat if and only if the corresponding φ is po-surjective for every subpullback diagram $P(M, M, \iota, \iota, Q)$, where $\iota: {}_{S}M \to {}_{S}Q$ is an embedding of left *S*-posets.

Proof. Suppose A_s is po-flat, $\iota: {}_{s}M \to {}_{s}Q$ is an embedding of left S-posets and let $a \otimes \iota(m) \leq a' \otimes$

 $\iota(m')$ in $A_S \otimes_S Q$, for $a, a' \in A_S$ and $m, m' \in {}_{S}M$. Since A_S is po-flat, $id_A \otimes \iota$ is embedding, and so $a \otimes m \leq a' \otimes m'$ in $A_S \otimes {}_{S}M$. Since $\iota(m) \leq \iota(m), a \otimes m = a \otimes m$ and $a \otimes m \leq a' \otimes m'$, the corresponding φ is posurjective for the subpullback diagram $P(M, M, \iota, \iota, Q)$.

Conversely, suppose the corresponding φ is posurjective for every subpullback diagram $P(M, M, \iota, \iota, Q)$, where $\iota: {}_{S}M \to {}_{S}Q$ is an embedding of left S-posets. Let _SM be an S-poset, $a, a' \in A_S, m, m' \in$ $_{S}M$ and $a \otimes m \leq a' \otimes m'$ in $A_{S} \otimes _{S}M$. If $i: _{S}(Sm \cup Sm')$ $\rightarrow {}_{S}M$ is the inclusion map, then *i* is an embedding (since $_{S}(Sm \cup Sm')$ is a S-subposet of $_{S}M$). Also $a \otimes i(m) = a \otimes m \le a' \otimes m' = a'$ $\otimes i(m')$. By posurjectivity of φ for the subpullback diagram $P(Sm \cup$ $Sm', Sm \cup Sm', i, i, M$), there exist $a'' \in A_S$ and $t, t' \in$ $_{\rm S}(Sm \cup Sm')$ such that $i(t) \leq i(t')$, $a \otimes m = a'' \otimes t$ and $a'' \otimes t' \leq a' \otimes m'$ in $A_s \otimes S(Sm \cup Sm')$. Thus $t \leq t'$, and so $a \otimes m = a'' \otimes t \leq a'' \otimes t' \leq a' \otimes m'$ in $A_S \otimes S(Sm)$ \cup Sm'). That is, A_S is po-flat as required.

Similarly, we can prove the following theorems.

Theorem 1.3. An *S*-poset A_S is weakly po-flat if and only if the corresponding φ is po-surjective for every subpullback diagram $P(I, I, \iota, \iota, S)$, where *I* is a left ideal of *S* and $\iota: {}_{S}I \rightarrow {}_{S}S$ is an embedding of left *S*-posets.

Theorem 1.4. An *S*-poset A_S is principally weakly po-flat if and only if the corresponding φ is posurjective for every subpullback diagram (*Ss*, *Ss*, *ι*, *ι*, *S*), where $s \in S$ and $\iota: {}_{S}(Ss) \rightarrow {}_{S}S$ is an embedding of left *S*-posets.

We recall from [1] that an element *c* of a pomonoid *S* is called *right po-cancellable* if $sc \leq s'c$ implies $s \leq s'$, for all $s, s' \in S$. An *S*-poset A_S is called *po-torsion free* if $ac \leq a'c$ implies $a \leq a'$, whenever $a, a' \in A$ and *c* is a right po-cancellable element of *S*.

Theorem 1.5. An *S*-poset A_S is po-torsion free if and only if the corresponding φ is po-surjective for every subpullback diagram $P(S, S, \iota, \iota, S)$, where $\iota: {}_{S}S \rightarrow {}_{S}S$ is an embedding of left *S*-posets.

Proof. Suppose A_s is po-torsion free and let $\iota: {}_{S}S \rightarrow {}_{S}S$ be an embedding of left *S*-posets. Then $\iota(1)$ is a right po-cancellable element of *S*, for if $s\iota(1) \leq s'\iota(1)$, for $s, s' \in S$, then $\iota(s) \leq \iota(s')$, and so $s \leq s'$. Suppose $a \otimes \iota(t) \leq a' \otimes \iota(t')$ in $A_S \otimes {}_{S}S$, for $a, a' \in A_S$ and $t, t' \in S$. Then $a\iota(t) \leq a'\iota(t')$, and so $at\iota(1) \leq a't'\iota(1)$. Since $\iota(1)$ is a right po-cancellable element of *S* and A_S is po-torsion free, we have $at \leq a't'$, and so $a \otimes t \leq a' \otimes t'$ in $A_S \otimes {}_{S}S$. Since $\iota(t) \leq \iota(t)$, $a \otimes t = a \otimes t$ and $a \otimes t \leq a' \otimes t'$, φ is po-surjective for the subpullback diagram $P(S, S, \iota, \iota, S)$.

Conversely, suppose the corresponding φ is posurjective for every subpullback diagram $P(S, S, \iota, \iota, S)$ where $\iota: {}_{S}S \rightarrow {}_{S}S$ is an embedding of left S-posets. Let *c* be a right po-cancellable element of S and let $ac \leq$ a'c, for $a, a' \in A_S$. If $i: {}_{S}S \to {}_{S}S$ is defined by i(x) = xc, for every $x \in S$, then *i* is an embedding, also $a \otimes i(1) = a \otimes c \leq a' \otimes c = a' \otimes i(1)$ in $A_S \otimes {}_{S}S$. By po-surjectivity of φ for the subpullback diagram P(S, S, i, i, S), there exist $a'' \in A_S$ and $u, v \in S$, such that $i(u) \leq i(v)$, $a \otimes 1 = a'' \otimes u$ and $a'' \otimes v \leq a' \otimes 1$ in $A_S \otimes {}_{S}S$. Thus $uc \leq vc$, and so $u \leq v$. Also, a = a''u and $a''v \leq a'$. Hence $a = a''u \leq a''v \leq a'$, and so A_S is po-torsion free.

2. S-Posets satisfying Condition $((P_w))(P_{sw})$

In this section we give some equivalent conditions on an *S*-poset A_s satisfying Condition $((P_w))$ (P_{sw}) according to (weak) po-surjectivity of φ corresponding to certain subpullback diagrams. Note that for *S*-posets A_s and $_sB$, $a \otimes b \leq a' \otimes b'$ in $A_s \otimes _sB$, for $a, a' \in A_s$ and $b, b' \in _sB$ if and only if there exist $a_1, a_2, ..., a_n \in$ $A_s, b_2, ..., b_n \in _sB, s_1, t_1, ..., s_n, t_n \in S$, such that

$$a \leq a_1 s_1$$

$$a_1 t_1 \leq a_2 s_2 \qquad s_1 b \leq t_1 b_2$$

$$\dots \qquad \dots$$

$$a_n t_n \leq a' \qquad s_n b_n \leq t_n b'.$$

Lemma 2.1. An *S*-poset A_S satisfies Condition (P_{sw}) if and only if for all ${}_{S}B$ and all $a, a' \in A_S$, $b, b' \in {}_{S}B$, $a \otimes b \leq a' \otimes b'$ in $A_S \otimes {}_{S}B$ implies the existence of $a'' \in A_S$ and $u, v \in S$, such that $a = a'' u, a'' v \leq a'$ and $ub \leq vb'$.

Proof. Suppose A_S satisfies Condition (P_{sw}) and let $a \otimes b \leq a' \otimes b'$ in $A_S \otimes {}_{S}B$, for $a, a' \in A_S$ and $b, b' \in {}_{S}B$. Then there exist $a_1, a_2, ..., a_n \in A_S$, $b_2, ..., b_n \in {}_{S}B$, $s_1, t_1, ..., s_n, t_n \in S$, such that

$$\begin{array}{ll} a \leq a_1 s_1 \\ a_1 t_1 \leq a_2 s_2 \\ \dots \\ a_n t_n \leq a' \end{array} \begin{array}{ll} s_1 b \leq t_1 b_2 \\ \dots \\ s_n b_n \leq t_n b'. \end{array}$$

Since $a_1t_1 \le a_2s_2$ and A_s satisfies Condition (P_{sw}) , there exist $c \in A_s$ and $u', v' \in S$, such that $a_1 = cu'$, $cv' \le a_2$ and $u't_1 \le v's_2$. Then

$$(u's_1)b = u'(s_1b) \le u'(t_1b_2) = (u't_1)b_2 \le (v's_2)b_2 = v'(s_2b_2) \le v'(t_2b_3),$$

and so we have the following S-tossing of length n-1

$$a \le c(u's_1)$$

$$c(v't_2) \le a_3s_3 \quad (u's_1)b \le v'(t_2b_3)$$

$$\dots \qquad \dots$$

$$a_nt_n \le a' \qquad s_nb_n \le t_nb'.$$

Continuing this procedure we have:

$$a \le a_1 s_1$$

$$a_1 t_1 \le a' \quad s_1 b \le t_1 b'.$$

Again $a \le a_1 s_1$ implies the existence of $\overline{a} \in A_s$ and $u_1, v_1 \in S$, such that $a = \overline{a}u_1$, $\overline{a}v_1 \le a_1$ and $u_1 \le v_1 s_1$. Since $a_1 t_1 \le a'$ and $\overline{a} v_1 \le a_1$, we have $\overline{a}(v_1 t_1) \le a'$, and so there exist $a'' \in A_s$ and $u_2, v \in S$, such that $\overline{a} = a'' u_2$, $a'' v \le a'$ and $u_2(v_1 t_1) \le v$. If $u = u_2 u_1$ then $a = \overline{a}u_1 = a''(u_2 u_1) = a''u$, $a''v \le a'$ and

 $ub = (u_2u_1)b \le u_2(v_1s_1)b = u_2v_1(s_1b) \le u_2v_1(t_1b') \le vb'.$

The converse is obvious.

Theorem 2.2. For an *S*-poset A_S the following assertions are equivalent:

(1) the corresponding φ is po-surjective for every subpullback diagram P(M, N, f, g, Q);

(2) the corresponding φ is po-surjective for every subpulback diagram P(M, M, f, g, Q);

(3) the corresponding φ is po-surjective for every subpulback diagram P(I, I, f, g, S), where I is a left ideal of S;

(4) the corresponding φ is po-surjective for every subpullback diagram $P(Ss, Ss, f, g, S), s \in S$;

(5) the corresponding φ is po-surjective for every subpullback diagram P(S, S, f, g, S);

(6) the corresponding φ is po-surjective for every subpullback diagram P(M, M, f, f, Q);

(7) A_s satisfies Condition (P_{sw}).

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow$ (5) and (2) \Rightarrow (6) are obvious.

 $(5) \Rightarrow (7)$. Suppose $as \leq a's'$, for $a, a' \in A_s$ and $s, s' \in S$. Then $a \otimes s \leq a' \otimes s'$. If f(x) = xs and g(x) = xs', for $x \in S$, then $a \otimes f(1) = a \otimes s \leq a' \otimes s' = a' \otimes g(1)$. By assumption there exist $a'' \in A_s$ and $u, v \in S$, such that $f(u) \leq g(v), a \otimes 1 = a'' \otimes u$ and $a'' \otimes v \leq a' \otimes 1$. Thus $us \leq vs', a = a''u$ and $a''v \leq a'$, and so A_s satisfies Condition (P_{sw}) as required.

(6) \Rightarrow (7). Suppose $as \leq a's'$, for $a, a' \in A_s$, $s, s' \in S$ and let ${}_{s}F = S \times \{x, y\}$, where t(s, z) = (ts, z) and $(s, z) \leq (t, w)$ if and only if $s \leq t$ and z = w, for $s, t \in S$ and $z, w \in \{x, y\}$. Define $f: {}_{s}F \to S$, as f(1, x) = s and f(1, y) = s'. Since $as \leq a's'$, we have $a \otimes s \leq a' \otimes s'$, and so $a \otimes f(1, x) = a \otimes s \leq a' \otimes$ $s' = a' \otimes f(1, y)$. By assumption there exist $a'' \in A_s$ and $(u, i), (v, j) \in {}_{s}F$, such that $f(u, i) \leq f(v, j)$, $a \otimes (1, x) = a'' \otimes (u, i)$ and " $\otimes (v, j) \leq a' \otimes (1, y)$. Then $a \otimes (1, x) = a^{"} \otimes (u, i)$ implies that there exist $a_1, \ldots, a_n, c_1, \ldots, c_m \in A_s$, $s_1, t_1, \ldots, s_n, t_n, u_1, v_1, \ldots, u_m$, $v_m \in S$ and $(b_2, i_2), \ldots, (b_n, i_n), (d_2, j_2), \ldots, (d_m, j_m) \in {}_{S}F$, such that

Thus $i_2 = i_3 = \ldots = i_n = x$, and so i = x. Also $j_2 = j_3 = \ldots = j_m = x$, and so $a \otimes 1 = a^{"} \otimes u$, that is, $a = a^{"}u$. Similarly, $a^{"} \otimes (v,j) \leq a' \otimes (1,y)$ implies that j = y and $a^{"}v \leq a'$. Since $f(u,i) \leq f(v,j)$, we have $us \leq vs'$, and so A_s satisfies Condition (P_{sw}) as required.

(7) \Rightarrow (1). Suppose $a \otimes f(m) \leq a' \otimes g(n)$, for $a, a' \in A_S$, $m \in {}_{S}M$ and $n \in {}_{S}N$. By Lemma 2.1 there exist $a'' \in A_S$ and $u, v \in S$ such that a = a'' u, $a'' v \leq a'$ and $uf(m) \leq vg(n)$. Thus $f(um) \leq g(vn)$. If m' = um and n' = vn, then $f(m') \leq g(n')$, $a \otimes m = a'' u \otimes m = a'' \otimes um = a'' \otimes m'$ and $a'' \otimes n' = a'' \otimes vn = a'' v \otimes n \leq a' \otimes n$. Thus the corresponding φ is po-surjective for every subpullback diagram P(M, N, f, g, Q) as required.

Recall from [7] that an *S*-poset A_s satisfies Condition (P_w) , if $as \le a't$, for $a, a' \in A_s$ and $s, s' \in S$ implies that there exist $a'' \in A_s$ and $u, v \in S$, such that $a \le a''u$, $a''v \le a'$ and $us \le vt$. Using an argument similar to that of the proof of Lemma 2.1 we have the following lemma.

Lemma 2.3. An *S*-poset A_S satisfies Condition (P_w) if and only if for all ${}_{S}B$ and all $a, a' \in A_S$, $b, b' \in {}_{S}B$, $a \otimes b \leq a' \otimes b'$ in $A_S \otimes {}_{S}B$ implies the existence of $a'' \in A_S$ and $u, v \in S$, such that $a \leq a''u$, $a''v \leq a'$ and $ub \leq vb'$.

Using Lemma 2.3 and an argument similar to that of the proof of Theorem 2.2 we have the following theorem.

Theorem 2.4. For an *S*-poset A_S the following assertions are equivalent:

(1) the corresponding φ is weakly po-surjective for every subpullback diagram P(M, N, f, g, Q);

(2) the corresponding φ is weakly po-surjective for every subpullback diagram P(M, M, f, g, Q);

(3) the corresponding φ is weakly po-surjective for

every subpullback diagram P(I, I, f, g, S), where *I* is a left ideal of *S*;

(4) the corresponding φ is weakly po-surjective for every subpullback diagram $P(Ss, Ss, f, g, S), s \in S$;

(5) the corresponding φ is weakly po-surjective for every subpullback diagram P(S, S, f, g, S);

(6) the corresponding φ is weakly po-surjective for every subpullback diagram P(M, M, f, f, Q);

(7) A_s satisfies Condition (P_w).

3. S-posets satisfying Condition $((WP)_w) (WP)_{sw}$

In this section first of all we give some equivalent conditions on an *S*-poset A_S satisfying Condition $((WP)_w) (WP)_{sw}$ according to (weak) po-surjectivity of φ corresponding to certain subpullback diagram. Then we give a necessary and a sufficient condition for an *S*-poset to satisfy Condition $(WP)_{sw}$.

Theorem 3.1. An S-poset A_S satisfies Condition $(WP)_{sw}$ if and only if the corresponding φ is posurjective for every subpullback diagram P(I, I, f, f, S), where I is a left ideal of S.

Proof. Suppose A_S satisfies Condition $(WP)_{sw}$, $f : {}_{s}I \rightarrow {}_{s}S$ be an *S*-poset morphism and let $a \otimes f(s) \leq a' \otimes f(t)$ in $A_S \otimes {}_{s}S$, for $a, a' \in A_S$ and $s, t \in I$. Then, $af(s) \leq a'f(t)$. If $J = Ss \cup St \subseteq I$ and $h = f|_J$ then $ah(s) \leq a'h(t)$, and so by assumption there exist $a'' \in A_S$, $u, v \in S$, and $s', t' \in \{s, t\}$, such that $h(us') \leq h(vt')$, $a \otimes s = a'' \otimes us'$ and $a'' \otimes vt' \leq a' \otimes t$ in $A_S \otimes {}_{s}J$. Clearly, $us', vt' \in I$, $f(us') = h(us') \leq h(vt') = f(vt')$ and $J \subseteq I$ implies that $a \otimes s = a'' \otimes us'$ and $a'' \otimes vt' \leq a' \otimes t$ in $A_S \otimes {}_{s}J$. Thus the corresponding φ is po-surjective for every subpullback diagram P(I, I, f, f, S).

Conversely, suppose the corresponding φ is posurjective for every subpullback diagram P(I, I, f, f, S), $f:_{S}(Ss \cup St) \rightarrow {}_{S}S$ is an S-poset morphism, for $s, t \in S$ and let $af(s) \leq a'f(t)$, for $a, a' \in A_{S}$. Then $a \otimes f(s) \leq a' \otimes f(t)$ in $A_{S} \otimes {}_{S}S$. By po-surjectivity of φ for the subpullback diagram $P(Ss \cup St, Ss \cup St, f, f, S)$, there exist $a'' \in A_{S}$, $u, v \in S$ and $s', t' \in \{s, t\}$, such that $f(us') \leq f(vt')$, $a \otimes s = a'' \otimes us'$ and $a'' \otimes vt' \leq a' \otimes t$ in $A_{S} \otimes {}_{S}Su \cup St$. Thus A_{S} satisfies Condition $(WP)_{Sw}$ as required.

An S-poset A_S satisfies Condition $(WP)_w$ if for all $s, t \in S$, all homomorphisms $f:_S(S \cup St) \to {}_SS$ and all $a, a' \in A_S$, if $af(s) \le a'f(t)$, then there exist $a'' \in A_S$, $u, v \in S$, $s', t' \in \{s, t\}$ such that $f(us') \le f(vt')$ and $a \otimes s \le a'' \otimes us'$, $a'' \otimes vt' \le a' \otimes t$ in $A_S \otimes {}_S(S \cup St)$ (see [4]). Using an argument similar to that of the proof of Theorem 3.1 we can show the following theorem.

Theorem 3.2. An S-poset A_S satisfies Condition $(WP)_w$ if and only if the corresponding φ is weakly po-

surjective for every subpullback diagram P(I, I, f, f, S), where I is a left ideal of S.

Theorem 3.3. An S-poset A_s satisfies Condition $(WP)_{sw}$ if and only if for all $s, t \in S$, all homomorphisms $f: {}_{S}(Ss \cup St) \rightarrow {}_{S}S$ and all $a, a' \in A_s$, if $af(s) \le a'f(t)$, then there exist $a'', a_1, a_2, a'_1, a'_2, a'_3 \in A_s$, $u, v, p_1, p_2, q_1, q_2, p'_1, p'_2, p'_3, q'_1, q'_2, q'_3 \in S$, such that either $f(ut) \le f(vt)$ and

$$\begin{array}{c} a^{"}v \leq a', \\ a = a_{1}p_{1} \\ a_{1}q_{1} \leq a_{2}p_{2} \\ p_{1}s \leq q_{1}s \\ a_{2}q_{2} = a^{"}u \\ p_{2}s \leq q_{2}t, \end{array}$$

$$\begin{array}{c} a^{"}u = a'_{1}p'_{1} \\ a'_{1}q'_{1} \leq a'_{2}p'_{2} \\ a'_{2}q'_{2} = a'_{3}p'_{3} \\ a'_{3}q'_{3} \leq a \\ \end{array} \begin{array}{c} p'_{1}t \leq q'_{1}t \\ a'_{2}q'_{2} = a'_{3}p'_{3} \\ p'_{2}t \leq q'_{2}s \\ a'_{3}q'_{3} \leq a \\ \end{array}$$

$$\begin{array}{c} p'_{1}t \leq q'_{1}t \\ p'_{2}t \leq q'_{2}s \\ p'_{3}s \leq q'_{3}s, \end{array}$$
or $f(us) \leq f(vs)$ and

$$a = a^{"}u,$$

$$\begin{array}{c} a^{"}v \leq a_{1}p_{1} \\ a_{1}q_{1} = a_{2}p_{2} \\ a_{2}q_{2} \leq a' \\ \end{array}$$

$$\begin{array}{c} p_{1}s \leq q_{1}t \\ p_{2}t \leq q_{2}t, \end{array}$$

or $f(us) \le f(vt)$ and $a = a_1p_1$ $a_1q_1 \le a^{"}u \qquad p_1s \le q_1s$, $a^{"}u = a'_1p'_1$ $a'_1q'_1 \le a \qquad p'_1s \le q'_1s$, $a^{"}v = a_2p_2$ $a_2q_2 \le a' \qquad p_2t \le q_2t$.

Proof. Necessity. Let $f:_{S}(S \cup St) \to S$ be a homomorphism, for $s, t \in S$ and $af(s) \leq a'f(t)$, for $a, a' \in A_{S}$. By assumption there exist $a'' \in A_{S}$, $u, v \in S$ and $s', t' \in \{s, t\}$, such that $f(us') \leq f(vt')$, $a \otimes s = a'' \otimes us'$ and $a'' \otimes vt' \leq a' \otimes t$. Then $a \otimes s = a'' u \otimes s'$ and $a'' \otimes vt' \leq a' \otimes t$, and so there exist $a_{1}, ..., a_{n}, c_{1}, ..., c_{n'}, c'_{1}, ..., c'_{m'} \in A_{S}$, $p_{1}, q_{1}, ..., p_{n}, q_{n}, u_{1}, v_{1}, ..., u_{n'}, v_{n'}, u'_{1}, v'_{1}, ..., u'_{m'}, v'_{m'} \in S$ and $z_{2}, ..., z_{n}, d_{2}, ..., d_{n'}, d'_{2}, ..., d'_{m'} \in \{s, t\}$, such that

$$a \leq a_1 p_1$$

$$a_1 q_1 \leq a_2 p_2$$

$$p_1 s \leq q_1 z_2$$

$$\dots$$

$$a_n q_n \leq a'' u$$

$$p_n z_n \leq q_n s',$$

$$a'' u \leq c_1 u_1$$

$$c_{1}v_{1} \leq c_{2}u_{2} \qquad u_{1}s' \leq v_{1}d_{2}$$
...
$$c_{n'}v_{n'} \leq a \qquad u_{n'}d_{n'} \leq v_{n'}s,$$

$$a''v \leq c'_{1}u'_{1}$$

$$c'_{1}v'_{1} \leq c'_{2}u'_{2} \qquad u'_{1}t' \leq v'_{1}d'_{2}$$
...
$$c'_{m'}v'_{m'} \leq a' \qquad u'_{m'}d'_{m'} \leq v'_{m'}t.$$

If $z_1 = s$, $z_{n+1} = s'$, $d_1 = s'$, $d_{n'+1} = s$, $d'_1 = t'$ and $d'_{m'+1} = t$, then there are three cases as follows:

Case 1. s' = t. In this case there exist $k \in \{1, ..., n\}$ and $k' \in \{1, ..., n'\}$, such that $z_k = s$, $z_{k+1} = z_{k+2} = ... = z_{n+1} = s' = t$, $d_{k'+1} = s$, $d_{k'} = d_{k'-1} = ... = d_1 = s' = t$. Then $a_k q_k f(t) \le a_{k+1} p_{k+1} f(t) = a_{k+1} f(p_{k+1} z_{k+1}) \le a_{k+1} f(q_{k+1} z_{k+2}) \le ... \le a_n f(q_n z_{n+1}) = a_n q_n f(z_{n+1}) \le a'' u f(s') = a'' f(us') \le a'' f(vt') = a'' v f(t') \le c'_1 u'_1 f(t') = c'_1 f(u'_1 t') \le c'_1 f(v'_1 d'_2) \le ... \le c'_{m'} f(v'_{m'} d'_{m'+1}) = c'_{m'} v'_m f(t) \le a' f(t).$

Since A_s satisfies Condition $(PWP)_{sw}$, there exist $d_1 \in A_s$ and $x_1, x_2 \in S$, such that $a_k q_k = d_1 x_1$, $d_1 x_2 \leq a'$ and $x_1 f(t) \leq x_2 f(t)$. Since also $as \leq a_1 p_1 s \leq a_1 q_1 z_2 \leq a_2 p_2 z_2 \leq \cdots \leq a_k p_k z_k$ $= a_k p_k s$

there exist $d_2 \in A_s$ and $y_1, y_2 \in S$, such that $a = d_2y_1, d_2y_2 \le a_kp_k$ and $y_1s \le y_2s$. Thus $f(x_1t) \le f(x_2t)$ and

$$d_1 x_2 \leq a',$$

$$a = d_2 y_1$$

$$d_2 y_2 \le a_k p_k \quad y_1 s \le y_2 s$$

$$a_k q_k = d_1 x_1 \quad p_k s \le q_k t.$$
Also,
$$d_1 x_1 t = a_k q_k t \le a_{k+1} p_{k+1} z_{k+1} \le a_{k+1} q_{k+1} z_{k+2} \le \cdots$$

$$\le a_n q_n z_{n+1} \le a'' u s' \le c_1 u_1 s'$$

$$\le c_1 v_1 d_2 \le c_2 u_2 d_2 \le \cdots \le c_k u_k d_k,$$

$$= c_k u_k t$$

and since A_s satisfies Condition $(PWP)_{sw}$, there exist $d'_1 \in A_s$ and $x'_1, x'_2 \in S$, such that $d_1x_1 = d'_1x'_1$, $d'_1x'_2 \leq c_{k'}u_{k'}$ and $x'_1t \leq x'_2t$. On the other hand, $c_{k'}v_{k'}s \leq c_{k'+1}u_{k'+1}s = c_{k'+1}u_{k'+1}d_{k'+1}$ $\leq c_{k'+1}v_{k'+1}d_{k'+2}$ $\leq c_{k'+2}u_{k'+2}d_{k'+2} \leq \cdots \leq c_{n'}u_{n'}d_{n'}$ $\leq c_{n'}v_{n'}s \leq as$

and so there exist $d'_2 \in A_s$ and $y'_1, y'_2 \in S$, such that $c_{k'}v_{k'} = d'_2y'_1, d'_2y'_2 \le a$ and $y'_1s \le y'_2s$.

Thus

$$\begin{array}{rl} d_{1}x_{1} = d'_{1}x'_{1} \\ d'_{1}x'_{2} \leq c_{k}, u_{k}, & x'_{1}t \leq x'_{2}t \\ c_{k'}v_{k'} = d'_{2}y'_{1} & u_{k'}t \leq v_{k'}s \\ d'_{2}y'_{2} \leq a & y'_{1}s \leq y'_{2}s \\ \text{as required.} \end{array}$$

Case 2. t' = s. In this case there exists $k' \in$ $\{1,...,m'\}$, such that $d'_{k'+1} = t$ and $d'_{k'} = d'_{k'-1} =$ $\cdots = d'_1 = s$. Thus

$$\begin{aligned} af(s) &\leq a_1 p_1 f(s) = a_1 f(p_1 s) \leq a_1 f(q_1 z_2) \leq \cdots \\ &\leq a_n f(q_n z_{n+1}) = a_n q_n f(s') \\ &\leq a'' u f(s') = a'' f(us') \leq a'' f(vt') \\ &= a'' v f(t') \leq c'_1 u'_1 f(t') \\ &= c'_1 f(u'_1 t') \leq c'_1 f(v'_1 d'_2) \\ &= c'_1 v'_1 f(d'_2) \leq \cdots \\ &\leq c'_{k'-1} v'_{k'-1} f(d'_{k'}) \\ &\leq c'_{k'} u'_{k'} f(s) \end{aligned}$$

Since A_S satisfies Condition $(PWP)_{sw}$, there exist $b \in A_S$ and $w, w' \in S$, such that $a = bw, bw' \leq c'_{k'}u'_{k'}$ and $wf(s) \le w'f(s)$. Since also

 $c'_{k'}v'_{k'}t \leq c'_{k'+1}u'_{k'+1}t = c'_{k'+1}u'_{k'+1}d'_{k'+1} \leq c'_{k'+1}u'_{k'+1}d'_{k'+1} \leq c'_{k'+1}u'_{k'+1}d'_{k'+1}$ $c'_{k'+1}v'_{k'+1}d'_{k'+2} \leq \dots \leq c'_{m'}v'_{m'}d'_{m'+1} \leq a't,$ there exist $b' \in A_S$ and $w_1, w'_1 \in S$, such that $c'_{k'}v'_{k'} = b'w_1$, $b'w'_1 \le a'$ and $w_1t \le w'_1t$. Thus $f(ws) \le f(w's)$ and

$$a = bw$$

$$\begin{array}{c} bw' \leq c'_{k'}u'_{k'} \\ c'_{k'}v'_{k'} = b'w_1 \\ b'w'_1 \leq a' \\ w_1t \leq w'_1t, \\ \text{as required.} \end{array}$$

Case 3. s' = s and t' = t. Then $f(us) \leq f(vt)$, $a \otimes s = a^{"}u \otimes s$ and $a^{"}v \otimes t \leq a' \otimes t$. Since $as = a^{"}us$ and A_{s} satisfies Condition $(PW P)_{sw}$, there exist $d_1, d_2 \in A_S$ and $x_1, x_2, y_1, y_2 \in S$, such that

$$a = d_1 x_1$$

$$d_1 y_1 \le a^{"} u \qquad x_1 s \le y_1 s,$$

$$a^{"} u = d_2 x_2$$

$$d_2 y_2 \le a \qquad x_2 s \le y_2 s.$$

Since $a''vt \le a't$, there exist $d_3 \in A_s$ and $x_3, y_3 \in S$, such that

$$\begin{aligned} a''v &= d_3 x_3 \\ d_3 y_3 &\leq a' \qquad x_3 t \leq y_3 t, \end{aligned}$$

Sufficiency. Suppose $f: S(Ss \cup St) \to S$ is a homomorphism, for $s, t \in S$ and let $af(s) \le a'f(t)$, for $a, a' \in A_s$. By assumption there are three cases as follows:

Case 1.
$$f(ut) \le f(vt)$$
 and
 $a^{"}v \le a',$
 $a = a_1p_1$
 $a_1q_1 \le a_2p_2$ $p_1s \le q_1s$
 $a_2q_2 = a^{"}u$ $p_2s \le q_2t,$
 $a^{"}u = a'_1p'_1$

$$\begin{array}{ll} a'_{1}q'_{1} \leq a'_{2}p'_{2} & p'_{1}t \leq q'_{1}t \\ a'_{2}q'_{2} = a'_{3}p'_{3} & p'_{2}t \leq q'_{2}s \\ a'_{3}q'_{3} \leq a & p'_{3}s \leq q'_{3}s. \end{array}$$

Thur

$$a \otimes s = a_1 p_1 \otimes s = a_1 \otimes p_1 s \le a_1 \otimes q_1 s$$
$$= a_1 q_1 \otimes s \le a_2 p_2 \otimes s = a_2 \otimes p_2 s$$
$$\le a_2 \otimes q_2 t = a_2 q_2 \otimes t = a^{"} u \otimes t$$
$$= a^{"} \otimes u t$$

and

$$a'' \otimes ut = a'' u \otimes t = a'_1 p'_1 \otimes t = a'_1 q'_1 \otimes t = a'_1 q'_1 \otimes t = a'_1 q'_1 \otimes t \leq a'_2 p'_2 \otimes t = a'_2 q'_2 \otimes t =$$

 $\bigotimes p'_{1} t \leq \\ \bigotimes p'_{2} t \leq a'_{2} \bigotimes$ a' $q'_{2}s = a'_{2}q'_{2} \otimes s = a'_{3}p'_{3} \otimes s = a'_{3} \otimes p'_{3}s \le$ $a'_3 \otimes q'_3 s = a'_3 q'_3 \otimes s \le a \otimes s,$

and hence $a \otimes s = a'' \otimes ut$. Since $a'' v \leq a'$, we have $a''v\otimes t \leq a'\otimes t$, and so $a''\otimes vt \leq a'\otimes t$. Thus A_s satisfies Condition $(WP)_{sw}$ as required.

Case 2.
$$f(us) \le f(vs)$$
 and
 $a = a^{"}u,$
 $a^{"}v \le a_{1}p_{1}$
 $a_{1}q_{1} = a_{2}p_{2}$ $p_{1}s \le q_{1}t$
 $a_{2}q_{2} \le a'$ $p_{2}t \le q_{2}t.$

Thus $a \otimes s = a^{"}u \otimes s = a^{"} \otimes us$ and $a'' \otimes vs = a''v \otimes s \le a_1p_1 \otimes s = a_1 \otimes p_1s \le a_1 \otimes s \ge a_1 \otimes p_1s \le a_1 \otimes s \ge a_1 \otimes p_1s \le a_1 \otimes s \ge a_1 \otimes a_1 \otimes s \ge a_1 \otimes s \ge a_1 \otimes s \ge a_1 \otimes s \ge a_1 \otimes a_1 \otimes s \ge a_1 \otimes s \ge a_1 \otimes a_1 \otimes s \ge a_1 \otimes a_1 \otimes$ $a_1 \otimes q_1 t = a_1 q_1 \otimes t = a_2 p_2 \otimes t = a_2 \otimes p_2 t \le a_2 \otimes q_2 t =$ $a_2q_2 \otimes t \leq a' \otimes t$, as required.

Case 3.
$$f(us) \le f(vt)$$
 and
 $a = a_1p_1$
 $a_1q_1 \le a^{"}u$ $p_1s \le q_1s$,
 $a^{"}u = a'_1p'_1$
 $a'_1q'_1 \le a$ $p'_1s \le q'_1s$,
 $a^{"}v = a_2p_2$

$$a_2q_2 \le a' \qquad p_2t \le q_2t.$$

Thus

$$a \otimes s = a_1 p_1 \otimes s = a_1 \otimes p_1 s \le a_1 \otimes q_1 s$$
$$= a_1 q_1 \otimes s \le a'' u \otimes s = a'' \otimes u s$$

and

$$a'' \otimes us = a'' u \otimes s = a'_1 p'_1 \otimes s = a'_1 \otimes p'_1 s \leq a'_1 \otimes q'_1 s = a'_1 q'_1 \otimes s \leq a \otimes s,$$

and so $a \otimes s = a'' \otimes us$. Also,
 $a'' \otimes vt = a'' v \otimes t = a_2 p_2 \otimes t = a_2 \otimes p_2 t \leq s$

 $a_2 \otimes q_2 t = a_2 q_2 \otimes t \le a' \otimes t$, as required.

4. S-Posets satisfying Condition ((PWP)_w) (PWP)_{sw}

In this section we give some equivalent conditions on an S-poset A_S satisfying Condition $((PWP)_w)$ $(PWP)_{sw}$ according to (weak) po-surjectivity of φ corresponding to certain subpullback diagrams.

Theorem 4.1. For an *S*-poset A_s the following assertions are equivalent:

(1) the corresponding φ is po-surjective for every subpullback diagram P(Ss, Ss, f, f, S), where $s \in S$;

(2) the corresponding φ is po-surjective for every subpullback diagram P(S, S, f, f, S);

(3) A_s satisfies Condition $(PWP)_{sw}$.

Proof. Implication $(1) \Rightarrow (2)$ is clear.

(2) \Rightarrow (3). Suppose $as \leq a's$, for $a, a' \in A_s$ and $s \in S$. Then, $a \otimes s \leq a' \otimes s$ in $A_s \otimes {}_{S}S$. If $\rho_s : {}_{S}S \rightarrow {}_{S}S$ is defined as $\rho_s(x) = xs$, for $x \in S$, then $a \otimes \rho_s(1) = a \otimes s \leq a' \otimes s = a' \otimes \rho_s(1)$. By po-surjectivity of φ for the subpullback diagram $P(S, S, \rho_s, \rho_s, S)$, there exist $a'' \in A_s$ and $t, t' \in {}_{S}S$, such that $\rho_s(t) \leq \rho_s(t')$, $a \otimes 1 = a'' \otimes t$ and $a'' \otimes t' \leq a' \otimes 1$ in $A_s \otimes {}_{S}S$. Thus $ts \leq t's$, a = a''t and $a''t' \leq a'$, and so A_s satisfies Condition $(PWP)_{sw}$ as required.

(3) \Rightarrow (1). Suppose $f : {}_{s}Ss \rightarrow {}_{s}S$ is an *S*-poset morphism and let $a \otimes f(ts) \leq a' \otimes f(t's)$ in $A_{S} \otimes {}_{s}S$, for $a, a' \in A_{S}$ and $s, t, t' \in S$. Then $(ts) \leq a' f(t's)$, and so $atf(s) \leq a' t' f(s)$. Since A_{S} satisfies Condition $(PWP)_{sw}$ there exist $a'' \in A_{S}$ and $u, v \in S$, such that at = a''u, $a''v \leq a't'$ and $uf(s) \leq vf(s)$. Thus $f(us) \leq f(vs)$. If m = us and m' = vs, then

 $a \otimes ts = at \otimes s = a'' u \otimes s = a'' \otimes us = a'' \otimes m$

and

 $a^{"} \otimes m' = a^{"} \otimes vs = a^{"} v \otimes s \le a' t' \otimes s = a' \otimes t's,$

and so the corresponding φ is po-surjective for the subpullback diagram P(Ss, Ss, f, f, S).

An S-poset A_S satisfies Condition (PWP)_w, if

 $at \leq a't$, for $a, a' \in A_s$ and $t \in S$, implies that there exist $a'' \in A_s$ and $u, v \in S$, such that $a \leq a''u$, $a''v \leq a'$ and $ut \leq vt$ (see [4]). Using an argument similar to that of the proof of Theorem 4.1 we can prove the following theorem.

Theorem 4.2. For an *S*-poset A_S the following assertions are equivalent:

(1) the corresponding φ is weakly po-surjective for every subpullback diagram P(Ss, Ss, f, f, S), where $s \in S$;

(2) the corresponding φ is weakly po-surjective for every subpullback diagram p(S, S, f, f, S);

(3) A_s satisfies Condition $(PWP)_w$.

5. Relations of the properties

In this section we demonstrate that with one possible exception $((P_w) \Rightarrow \text{po-flat})$, all of the implications in Figure (P_1) are strict.

The proof of the following theorem is clear.

Theorem 5.1. Let *G* be an ordered group. Then all *G*-posets satisfy Condition (P_{sw}) .

Theorem 5.2. [4, Theorem 4.6.] For any pomonoid *S*, there exists an *S*-poset that does not satisfy Condition (*PWP*).

Recall from [7], [8], [1], [4], that an S-poset A_S satisfies Condition (P), if $as \leq a't$, for $a, a' \in A_s$ and s, $t \in S$, implies that there exist $a'' \in A_S$ and $u, v \in S$, such that $a = a^{"}u$, $a^{"}v = a'$ and $us \leq vt$. An S-poset $A_{\rm S}$ is called *flat* (in SPOS) if and only if, for all embeddings ${}_{S}B \rightarrow {}_{S}C$ in the category of left S-posets, the induced order-preserving map $A_S \otimes {}_{S}B \rightarrow A_S \otimes {}_{S}C$ is injective. An S-poset A_S is called weakly flat if the induced morphism $A_S \otimes I \rightarrow A_S \otimes S$ is injective for all embeddings of left ideals into $_{S}S$. A pomonoid S is called *weakly right* reversible in case \cap (*St*] $\neq \emptyset$, for all $s, t \in S$ (if X is a subset of a poset P, $(X] := \{p \in X\}$ $P: p \leq x$ for some $x \in X$ is the down-set of X, or the order ideal generated by X). An S-poset $A_{\rm S}$ satisfies Condition (WP) if the corresponding φ is surjective for every subpullback diagram P(I, I, f, f, S), where I is a left ideal of S.

Using [4, Theorem 6.2.] the following theorem is clear.

Theorem 5.3. For a pomonoid *S* the following assertions are equivalent:

(1) Θ_S satisfies Condition (*P*);

(2) Θ_S satisfies Condition (P_{sw});

(3) Θ_S satisfies Condition (P_w);

- (4) Θ_S is po-flat;
- (5) Θ_S is flat;

(6) Θ_s satisfies Condition (*WP*);

- (7) Θ_S satisfies Condition (*WP*)_{*sw*};
- (8) Θ_S satisfies Condition $(WP)_w$;

(9) Θ_S is weakly po-flat;

(10) Θ_s is weakly flat;

(11) S is weakly right reversible.

The crucial things we need for distinctness of the properties are $(WP) \neq \text{flat}$ (from Example 3 of [5]), $(PWP) \neq w.f$ (from Theorem 5.3), $(P_{sw}) \neq (PWP)$ (from Theorems 5.1 and 5.2) and $(P_w) \neq (PWP)_{sw}$ (from the following example).

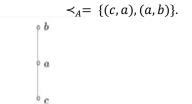
Example 5.4. $((P_w) \Rightarrow (PWP)_{sw})$ Let $S = \{1, x, e\}$ be the monoid with the following table

	1	x	е
1	1	x	е
x	x	x	x
е	е	е	е

and trivial order, and let $A = \{a, b, c\}$ be the set with the following order:

 $\leq_A := \{(a, a), (b, b), (c, c), (c, a), (a, b), (c, b)\}.$

We give the covering relation " \prec " and the figure of *A* as follows:



Define $x^*s = \begin{cases} x & s = 1 \\ b & s \neq 1 \end{cases}$, for all $x \in A$ and $s \in S$. Indeed A_S is an *S*-poset. We claim that A_S does not satisfy Condition $(PWP)_{sw}$. Otherwise, $a * x \le c * x$ implies that there exist $a'' \in A_S$ and $u, v \in S$, such that a = a'' * u, $a'' * v \le c$ and $u \cdot x \le v \cdot x$. Then a = a'' * u implies that a'' = a and u = 1, and so for every $v \in S$, $a'' * v \le c$, which is a contradiction. It can be shown that A_S satisfies Condition (P_w) (see [6] pages 121 and 122).

References

- Bulman-Fleming S., Gilmour A., Gutermuth D. and Kilp M., Flatness properties of S-posets. *Comm. Algebra.* 34: 1291-1317 (2006).
- Bulman-Fleming S. and Laan V., Lazard's theorem for Sposets. *Math. Nachr.* 278: 1743-1755 (2005).
- Bulman-Fleming S. and Mahmoudi M., The category of Sposets. Semigroup Forum. 71: 443-461 (2005).
- Golchin A. and Rezaei P., Subpulbacks and flatness properties of S-posets. *Comm. Algebra.* 37: 1995-2007 (2009).
- Laan V., Pullbacks and flatness properties of acts I. Comm. Algebra. 29: 829-850 (2001).
- Nouri L., On flatness properties of product acts and posets. Ph.D Thesis, Zahedan (2014).
- Shi X., Strongly flat and po-flat S-posets. Comm. Algebra. 33: 4515-4531 (2005).
- Shi X., Liu Z., Wang F. and Bulman-Fleming S., Indecomposable, projective, and flat S-posets. *Comm. Algebra*. 33: 235-251 (2005).