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Abstract 

Due to business and environmental issues, the efficient design of an integrated 

forward/reverse logistics network has recently attracted more attention from 

researchers. The significance of transportation cost and customer satisfaction spurs 

an interest in developing a flexible network design model with different delivery 

paths. This paper proposes a flexible mixed-integer programming model to deal with 

such issues. The model integrates the network design decisions in both forward and 

backward logistics networks, and also applies three kinds of delivering modes 

(normal delivery, direct shipment, and direct delivery) which enrich the model to be 

able to deliver the products to customers by distribution-skipping the mid-process 

strategy in order to deliver products in more flexible paths to customer zones. To 

tackle with such an NP-hard problem, a memetic algorithm (MA) with random path-

based direct representation and combinatorial local search methods is developed. 

Numerical experiments are conducted to demonstrate the significance and 

applicability of the model as well as the efficiency and accuracy of the proposed 

solution approach. 
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Introduction 

Extended producer responsibility is becoming more common across 

the world. Implementation of legislation, social responsibility, 

corporate imaging, environmental concern, economic benefits and 

customer awareness are forcing original equipment manufacturers 

(OEMs) to manufacture products that are environmentally friendly in 

order to contribute to the global large-scale effort towards 

environmental protection. One way of doing so is through the 

utilization of returned products, which extends their useful life cycle.  

Products can be returned for reasons such as customer 

dissatisfaction and warranty. Such products can be sorted for reuse, 

remanufacture, recycle and disposal. In addition, industries are using 

remanufacturing for expensive products such as turbines used in 

airplane and electricity generation systems. In these cases, the 

recovery of used products is economically more attractive than 

disposal (Koh, Hwang, Sohn, & Ko, 2002). 

One of the most important and strategic issues in supply chain 

management is the configuration of the logistics network having a 

significant effect on the total performance of the supply chain. The 

configuration of the reverse logistics network, however, has a strong 

influence on the performance of the forward logistics network, and 

vice versa, as they share a number of resources. Due to the fact that 

designing the forward and reverse logistics separately leads to sub-

optimal designs with respect to strategic and tactical costs, the design 

of the forward and reverse logistics networks should be integrated 

(Fleischmann, Beullens, Bloemhof, Ruwaard, & Wassenhove, 2001; 

Lee & Dong, 2008; Verstrepen, Cruijssen, de Brito, & Dullaert, 2007). 

Previous research in the area of forward, reverse and integrated 

logistics network design was often limited to the consideration of the 

flow to be transported between two consecutive stages. In other 

words, there is no flow between facilities that are not consecutive. 

Nevertheless, considering flows between facilities that are not 

consecutive will enhance logistics network efficiency and flexibility. 

Based on the aforementioned considerations, this paper addresses 

the issue of flexible, integrated, multi-stage forward/reverse logistics 

network design including suppliers, production, distribution, 
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collection/ inspection, recovery and disposal facilities with limited 

capacity. The rest of this paper is structured as follows: 

Section 2 offers a literature review to assess the state-of-the-art in 

forward/reverse logistics network design. To design flexible integrated 

forward/reverse logistics networks, a generalized mixed integer linear 

programming (MILP) formulation is developed in sections 3 and 4. 

Section 5 presents an efficient MA using a dynamic search strategy to 

find solutions for large-scale problems. The computational 

performance of the metaheuristic algorithm is analyzed in Section 6. 

Section 7 concludes this paper and offers guidelines for further 

research. 

Literature review 

This section presents a brief review of the most relevant and recent 

literature in closed-loop supply chain network design problems 

followed by two tables in order to categorize this area based on 

network types and demonstrate some gaps in this research field. 

Integrated forward and reverse logistics refers to all those activities 

associated with the transformation and flows of goods and services 

with their information from the sources of the materials to the end 

users. Dullaert et al. (2007) gave a general review of the supply chain 

design models to support the development of richer supply chain 

models. These models range from simple uncapacitated facility 

location models to complex capacitated multi-objective models aimed 

at determining the cost minimizing or profit maximizing system 

design. 

In the context of reverse logistics, various models have been 

developed in the last decade. Krikke et al. (1999) designed a MILP 

model for a two-stage reverse supply chain network for a copier 

manufacturer. In this model, processing costs of returned products and 

inventory costs are noticed in the objective function for minimizing 

the total cost. Fleischmann et al. (2001) designed a reverse logistics 

network by considering the forward flow together with the reverse 

flow, which has no capacity limitation. Extending Fleischmann et al.'s 

model, Salema et al. (2007) proposed a general model that has been 

applied to an Iberian company. However, when suspending the 
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logistics between dismantlers and plants, both Fleischmann et al. and 

Salema et al.'s models did not consider the supplier side, and lacked 

the relations between forward and reverse flows. Jayaraman et al. 

(1999) developed a MILP model for reverse logistics network design 

under a pull system based on customers’ demand for recovered 

products. The objective of the proposed model was to minimize total 

cost. Aras et al. (2008) developed a non-linear model and Tabu search 

solution approach for determining the locations of collection centers 

and the optimal purchase price of used products in a simple profit 

maximizing reverse logistics network. Biehl et al. (2007) simulated a 

carpet reverse logistics network, in which a specified experiment was 

used to analyze the effect of the system design and environmental 

factors influencing on the operational performance of the reverse 

logistics system. Kannan et al. (2010) developed a closed loop MILP 

model to determine raw materials, production, distribution and 

inventory, disposal, and recycling at different facilities. They 

presented a heuristic based on the genetic algorithm for their model 

minimizing the total supply chain costs. El-Sayed et al. (2010) 

presented a multi-period multi-echelon forward-reverse logistics 

network design model while the objective of their model was to 

maximize the profit of a supply chain. A bi-objective integrated 

forward/reverse supply chain design model was suggested by Pishvaee 

et al. (2010), in which the costs and the responsiveness of a logistics 

network were considered to be objectives of the model. They 

developed an efficient multi-objective priority-based MA by applying 

three different local searches in order to find the set of non-dominated 

solutions. 

In addition, some researchers have presented studies on the 

optimization of stochastic supply chain network design in reverse 

logistics. Listeş & Dekker (2005) proposed a stochastic approach to 

the case study of recycling and demolition waste, while uncertainty 

was associated with demand source and quality. Pouralikhani et al. 

(2013) proposed an uncertain multi-period multi-stage closed-loop 

logistics network design model incorporating strategic network design 

decisions along with tactical material flow to avoid sub-optimality 

from separated design in both parts. The demands of first market 

customer zones are assumed to be stochastic. The problem is 
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formulated in a mixed integer non-linear programming (MINLP) 

decision making form as a multi-stage stochastic program with 

objective function maximizing the total expected profit. 

In a practical case study of remanufacturing, Kerr et al. (2001) 

attempted to quantify the life cycle environmental benefits achieved 

by incorporating remanufacturing into a product system, based on a 

study of Xerox photocopiers in Australia. They found that 

remanufacturing could reduce resource consumption and wastes 

generation if a product is designed for disassembly and 

remanufacturing. 

Most of previous researches have utilized mixed integer 

programming (MIP) to model the problem. These models range from 

simple single objective forward facility location models (Jayaraman & 

Pirkul, 2001) to complex multi-objective closed-loop models 

(Chaabane, Ramudhin, & Paquet, 2012). 

Moreover, since the majority of logistics network design problems 

can be categorized as NP-hard, many powerful heuristics, 

metaheuristics and Lagrangian relaxation (LR)-based methods have 

been developed for solving these models. Dengiz et al., (1997) offered 

many examples of GA, demonstrating that it can be applied to a wide 

variety of applicative areas. In the reverse logistics, Min et al. (2006) 

also successfully used GA to develop a multi-echelon reverse logistics 

network for product returns. 

Elhedhli & Merrick (2012) have considered emission costs 

alongside fixed and variable location and production costs in a 

forward SCND problem. They used a concave function to model the 

relationship between CO2 emissions and vehicle weight. As the direct 

solution of their proposed model is not possible, Lagrangian relaxation 

is used to solve it. Wang et al. (2011) have considered the 

environmental concerns of forward SCND by proposing a multi- 

objective optimization model that captures the trade-off between the 

total costs and the environmental impacts. M. Pishvaee, Torabi, & 

Razmi (2012) proposed a credibility-based fuzzy mathematical model 

for a forward supply chain network with three stages. Their model 

aims to minimize both the environmental impacts and total costs. 

They showed the applicability of the model as well as the usefulness 

of the solution method in an industrial case study. 
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Jandagh et al. (2011) discussed the applications of qualitative 

research methods in management sciences. The differences between 

quantitative and qualitative research were clarified, and the statistical 

methods suitable for such research were explored.  

Safari et al. (2012) aimed at offering such a mathematical model 

where the coefficients and constants used have all been extracted 

based on the analysis of research and educational aspects of Shahed 

University. The proposed model was a lexicographic model with 36 

decision variables that were broken down into two classes of 

university source variables (15) and university product variables. The 

model also included 49 goals, seven structural constraints and 20 

integer variables.  

Mansourfar (2013) attempted to evaluate the potential advantages 

of international portfolio diversification for East Asian international 

investors when investing in the Middle Eastern emerging markets. 

Overall, the results of both econometric and the metaheuristic 

optimization methods supported each other. The findings of that study 

highlight the potential role of the Middle Eastern equity markets in 

providing international portfolio diversification benefits for East 

Asian investors. It was also found that the long and the short-term 

efficient frontiers in any of the intra- or inter-regionally diversified 

portfolios did not provide similar benefits. 

Hamid (2014) investigated whether there was any relationship 

between consumer attitude, perceived value, and green products. To 

establish such an assumption, a sample of 300 educated respondents 

was selected to participate in the survey. The study concluded that 

within the given context of a developing country, consumers had a 

negligible attitude to and low perceived value of green products. 

Hence, no significant relationship was found between attitude, 

perceived value, and green products. 

 Recently, the importance of collecting and treating end-of-life 

(EOL) products has increased substantially (Sasikumar et al., 2008a; 

Sasikumar et al., 2008b;, Sasikumar et al., 2009; Pokharel et al., 

2009) overviewed various aspects of reverse logistics (RL). 

Accordingly, the design of RL networks has interested researchers 

considerably (Kannan et al., 2012;Srivastava, 2008). Pishvaee, 

Kianfar, and Karimi (2010) developed a mixed integer linear 
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programming model for a multistage RL network in which both 

opening and transportation costs were taken into account. Since the 

model is NP-hard, they have proposed a simulated annealing 

algorithm with special neighbourhood search mechanisms. Kannan et 

al. (2012) considered the environmental impacts of the RL network 

model proposed by Pishvaee et al. (2010) by appending a carbon 

footprint term to the objective function. They tested their model with a 

case study in the plastic industry. Fonseca et al. (2010) developed a 

bi-objective model in which total costs and environmental impacts of 

an RL network are taken into account. By using two-stage stochastic 

programming, the uncertainty of both shipping costs and waste 

generation amount is captured in their model. They applied the model 

for a case in the province of Cordoba. 

To avoid the sub-optimality that arises from the separate modelling 

of forward and reverse networks, many researchers have integrated 

forward and reverse network design, known as closed-loop SCND 

(CLSC) (Soleimani, Seyyed-Esfahani, & Kannan, 2014). Fleischmann 

et al. (2001) suggested a mixed integer linear programming (MILP) 

model for designing a CLSC. They showed that RL operations could 

often be efficiently integrated into existing forward logistics. 

Schultmann, Zumkeller, & Rentz (2006) considered EOL vehicle 

treatment in Germany. They concentrated on the flow of used 

products and reintegrated reverse flow of used products into their 

genuine supply chains. They have modelled RL with vehicle routing 

planning and finally have used Tabu search (TS) to solve the model. 

Wang and Hsu (2010) have integrated environmental issues into an 

integer CLSC model, and have also developed a genetic algorithm 

(GA) based on a spanning tree structure to solve the propounded NP-

hard model. Pishvaee and Razmi (2012) proposed a multi-objective 

fuzzy mathematical programming model for designing an 

environmental supply chain under inherent uncertainty of input data in 

such problem. They applied the life cycle assessment (LCA) method 

to quantify the environmental influence of the network. 

Devika et al. (2014) simultaneously considered the three pillars of 

sustainability in the network design problem. A mixed integer 

programming model was developed for this multi-objective closed-

loop supply chain network problem. In order to solve this NP-hard 
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problem, three novel hybrid metaheuristic methods were developed. 

Moreover, they have classified the published literature according to 

some main features. A more detailed classification of the literature is 

illustrated in Table 2 by considering three characteristics: modelling 

type, outputs of the models and solution approaches. To summarize 

Table 2, a coding system is presented in Table 1 by which the 

literature is reviewed in Table 2. 
 

Table 1. Coding of logistics network design research 

Field Title Symbol 

Modeling   

 Stochastic mixed integer programming SMIP 

 Fuzzy mixed integer programming FMIP 

 Mixed integer non-linear programming MINLP 

 Mixed integer linear programming MILP 

Solution 

approach 
  

 Exact  

 Branch and bound B& B 

 Lagrangian relaxation-based LR 

 Genetic algorithm GA 

 Simulated annealing SA 

 Tabu search-based TS 

 Interactive fuzzy solution approach F 

 Others heuristics H 

Outputs   

 Suppliers/orders S 

 Facilities location L 

 Facility capacity FC 

 Allocation Al 

 Production amount PQ 

 Production assignment to production centers PA 

 Utilization of production centers UT 

 Transportation amount TA 

 Transportation mode TM 

 Delivery mode DM 

 Inventory I 

 Price of products P 
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Table 2. Review of some existing models 

 Modeling Outputs 
Solution 

method 

Forward networks    

Jayaraman and Pirkul (2001) MILP L, AL, PQ, TA LR 

Jayaraman and Ross (2003) MILP L, AL, TA SA 

Wang et al. (2011) MILP TA E 

Tsiakis and Papageorgiou (2008) MILP L, Al, FC, TA, PA, UT E 

Pishvaee et al. (2012b) FMIP L, AL, TM, FC, PQ F 

Syarif et al. (2002) MILP L, TA, SS, PQ GA 

Elhedhli and Merrick (2012) MINLP L, AL, TA LR 

 

Reverse networks 
   

Krikke et al. (1999) MILP AL, TA E 

Min and Ko (2008) MINLP L, AL, I GA 

Aras et al. (2008) MINLP L, AL, TA, NV TS 

Fonseca et al. (2010) SMIP L, TA E 

Kannan et al. (2012) MILP L, TA E 

 

closed-loop networks 
   

Fleischmann et al. (2001) MILP L, AL E 

Lu and Bostel (2007) MILP L, AL LR 

Salema et al. (2009) MILP L, AL, PQ, I, TA, B& B 

Ko and Evans (2007) MINLP L, TA, FC GA 

Pishvaee and Razmi (2012) FMIP L, TA, PQ F 

Wang and Hsu (2010) MILP L, PQ, TA GA 

Devika et al. (2014) MILP S, L, AL, PQ, TA H 

This paper MILP L, PQ, TA, DM H 

Many research directions still require intensive research in the area 

of closed-loop logistics network design problems. Moreover, since 

network design problems belong to the class of NP-hard problems, 

developing efficient solution methods is still a critical need in this 

area. 

Problem description 

As illustrated in Figure 1, in this paper an MILP model with seven 

echelons for a closed-loop supply chain network problem is proposed. 

The illustrated model emphasizes different delivery methods by 

considering three types of paths: i) normal delivery, in which products 

are delivered from one echelon to another adjoining one, ii) direct 

shipment delivery, in which products are delivered from plants to 

customers directly, and iii) direct delivery, in which products transport 

from DCs to customers or via plants to retailers directly.  
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Fig. 1. Framework of the flexible integrated forward/reverse logistics network 

The proposed model is based on the following common 

assumptions in the literature (Syarif, Yun, & Gen, 2002; H.-F. Wang 

& Hsu, 2010; Yao & Hsu, 2009): 

 The demand of customers must be satisfied. 

 The number of facilities in each echelon as well as their 

potential sites is restrained by pre-defined values. 

 There is no flow between the facilities of the same echelon. 

 The recovery and disposal rates are known in advance. 

 In this supply chain network, there are a maximum of seven 

echelons: suppliers, plants, DCs, retailers, customers, collection/ 

inspection centers, and disposal centers. 

 Customers have no special preferences; that is, the price of 

products is the same wherever a customer buys them. 

As a special characteristic of closed-loop logistics, suggested Van 

Der Laan et al. (1999), we assume that the number of the end-of-life 

products returned to the collection/inspection centers is a fraction of 

customers’ demands. In addition, they are allocated to the treatment 

facilities based on their qualities. 

The problem in this study can be stated as follows: 

Given: 

 The set of potential sites for locating facilities; 

 The set of available paths to deliver products to customers; 

 The demand of customers; 
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 The cost of opening facilities and shipping materials; 

 The fraction of end-of-life products in each customer zone 

that is returned to the respective collection/inspection center; 

 The fraction of end-of-life products classified in the 

collection/ inspection centers for each treatment center; 

 The fraction of end-of-life products transported from each 

collection/inspection center to the plants;  

 The capacity of each facility. 

Determine: 

 The configuration of supply chain network; 

 The best route to deliver products to customer zones; 

 The number of products that have to be manufactured at each 

plant; 

 The assignment of customers to distribution centers and 

collection/ inspection centers; 

 The assignment of suppliers to plants. 

The major contributions and features that distinguish this study 

from those previous are as follows: 

- The forward and reverse logistics are integrated, while many 

previous supply chain networks are just forward-extended logistics 

networks (see Gen, Cheng, & Lin 2008); 

- Different methods of delivering products to customers are 

considered in forward networks, while to the best of our knowledge 

there is no application of these methods in the closed-loop logistics 

network design (see Wang & Hsu, 2010; Devika et al. 2014); 

- Applying the random path-based solution representation in the 

metaheuristic approach to tackle the NP-hard nature of the problem in 

closed-loop networks is the last contribution of this paper. It should be 

noted that previous works in this area have applied other solution 

representations such as priority-based encoding method (M.S. 

Pishvaee, Farahani, et al., 2010), spanning tree-based (H.F. Wang & 

Hsu, 2010) or other approaches (see Govindan, Soleimani, & Kannan, 

2014). 

Model formulation 

The notations of the proposed model are presented as below: 
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Indices 

I
 

The Number of Suppliers with 1, 2, ...,i I  

J  The Number of Plants with 1, 2,...,j J  

K  The Number of Distribution Centers (DCs) with 1, 2,...,k K  

L
 

The Number of Retailers with 1, 2,...,l L  

M
 

The Number of Customers with 1, 2, ...,m M  

N
 

The Number of Collection/ Inspection Centers with 1, 2, ...,n N  

O
 

The Number of Disposal Centers with 1, 2, ...,o O  

 

Parameters 

i
cai  The Capacity of Supplier i  

j
caj  The Capacity of Plant j  

cak
k  The Capacity of Distribution Center k  

cal
l  The Capacity of Retailer l  

m
cam  The Demand of Customer m  

n
can  The Capacity of Collection/Inspection Center n  

oCao
 

The Capacity of Disposal Center o  

m
pr

 
The Recovery Percentage of Customer m  

n
pd

 
The Disposal Percentage of Collection/ Inspection Center n  

ij
a

 
The Unit Cost of Transportation from Supplier i  to Plant j  

jk
b

 
The Unit Cost of Transportation from Plant j  to DC k  

jl
c

 
The Unit Cost of Transportation from Plant j  to Retailer l  

jm
d

 
The Unit Cost of Transportation from Plant j  to Customer m 

kl
e

 
The Unit Cost of Transportation from DC k  to Retailer l  

km
f

 
The Unit Cost of Transportation from DC k  to Customer m  

lm
g

 
The Unit Cost of Transportation from Retailer l  to Customer m  

mn
h

 
The Unit Cost of Transportation from Customer m  to 

Collection/Inspection Center n  

nj
i

 

The Unit Cost of Transportation from Collection/Inspection Center 

n  to Plant j  

no
j

 
The Unit Cost of Transportation from Collection/Inspection Center 
n  to Disposal Center o  

j
FCJ

 
Fixed Cost of Operating Plant j  

k
FCK

 
Fixed Cost of Operating DC k  
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l
FCL

 
Fixed Cost of Operating Retailer l  

n
FCN

 
Fixed Cost of Operating Collection/Inspection Center n  

o
FCO

 
Fixed Cost of Operating Disposal Center o  

Variables 

Continuous 

Variables 

ij
XIJ

 
Quantity of Products Shipped from Supplier i  to Plant j  

jk
XJK

 
Quantity of Products Shipped from Plant j  to DC k  

jl
XJL

 
Quantity of Products Shipped from Plant j  to Retailer l  

jm
XJM

 
Quantity of Products Shipped from Plant j  to Customer m  

XKLkl  
Quantity of Products Shipped from DC k  to Retailer l  

km
XKM

 
Quantity of Products Shipped from DC k  to Customer m  

lm
XLM

 
Quantity of Products Shipped from Retailer l  to Customer m  

mn
XMN

 
Quantity of Products Shipped from Customer m  to Collection/ 

Inspection Center n  

nj
XNJ

 
Quantity of Products Shipped from Collection/Inspection Cente n  

to Plant j  

no
XNO

 
Quantity of Products Shipped from Collection/Inspection Center n  

to Disposal Center o  

Binary 

Variables 
1

0
j




 


 

If production takes place at Plant j  

 

Otherwise 

 

1

0
k




 


 

If a distribution center is opened at location k 

 

Otherwise 

 

1

0
l



 


 

If a distribution center is opened at location l 

 

Otherwise 

 

1

0
n



 


 

If a Collection/Inspection center is opened at location n 

 

Otherwise 

 

1

0
o




 


 

If a disposal center is opened at location o 

 

Otherwise 
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The model seeks to minimize the total investment and operation 

costs of the flexible closed-loop logistics network design problem 

with products being simultaneously shipped and collected (1). These 

costs are depicted as i) transportation costs between facilities and 

depots as well as between depots and customers for each forwarded or 

collected product, and ii) investments required to open a facility. 

The following constraints ensure that the flow of products is 

maintained and the demands are satisfied. 

 

  Subject to  

XIJ XNJ XJK XJL XJM
ij nj jk jl jmn mi k l
         j  (2)  

XJK XKL XKM
jk kl kmmj l

     
k  (3)  

XKL XLM
kl lmmk

   
l  (4)  

.

XJM XKM XLM
jm km lmj k l

pr XMNm mn
n

    


 m  (5)  

.XMN pd XNOmn nonm o
   

n  (6)  

 1 .XMN pd XNJmn n njm j
    

n  (7)  

The amount of products transmitted from each facility is restricted 

by its capacity in constraints 8 to 13: 

ijj
cai

i
XIJ 

 
i  (8)  
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Solution approach 

The inherent characteristics of the Genetic Algorithm (GA) indicate 

why this algorithm may be a suitable method for flexible logistics 

network design problems. Applying a population of answers in many 

generations causes GA to search in multiple directions. On the other 

hand, lack of capacity of enough search intensification is often a 

disadvantage to a pure GA. To improve the intensification of the 

search in GA, Moscato & Norman (1992) first introduced Memetic 

Algorithm (MA). MA is a population-based metaheuristic algorithm 

that is similar to GA and has an additional local search to improve the 

intensification of GA toward global optimum answers. It has been 

proved that MA has practical success in a variety of problem domains 

such as NP-hard optimization models (Moscato & Cotta, 2003). 

Applying domain knowledge and population-based search methods 

such as GA, as well as local search ones such as Simulated Annealing 

(SA), MA combine the advantages of both intensification and 

XJK XJL XJM caj
jk jl jm j jmk l

       j  (9)  

XKL XKM cak
kl km k kml

     k  (10)  

XLM cal
lm l lm

   l  (11)  

XNJ XNO canno n nnj oj
     n  (12)  

XNO cao
no o o

n

   o  (13)  

Constraint (14) ensures that the customer demand is satisfied: 

 

XJM XKM XLM cammjm km lmj k l
      m  (14)  

 

Finally, integrality and non-negativity of variables are guaranteed: 

 , , , , 0,1
j k l n o

       
, ,

, ,

j k l

n o


 (15)  

 

, , , , ,

, , , , 0

XIJ XJK XJL XJM XKL XKM
ij jk jl jm kl km

XLM XMN XNJ XNO N
lm mn nj no

 
 

, , ,

, ,

j k l

m n o


 

(16)  
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diversification of heuristic algorithms. Recently, MA has been applied 

in a variety of NP-hard problems such as production-distribution 

problems (Boudia & Prins, 2009), scheduling models (Tavakkoli-

Moghaddam, Safaei, & Sassani, 2009), minimum span frequency 

assignment problems (Kim, Smith, & Lee, 2007), and partitioning 

problems (ElMekkawy & Liu, 2009). This paper applies an MA to the 

flexible closed-loop logistics model described as follows. 

Chromosome representation 

Although applying a flexible logistics model improves the flexibility 

and efficiency of the supply chain network, using the new delivery 

routes makes the problem much more complex. To tackle such an NP-

hard problem, the random path-based direct encoding method is 

adopted; the ability of this approach to manage candidate solutions has 

been described by Gen & Cheng (1999). As shown in Figure 2, the 

chromosome’s length is 7 N  (N is the number of customers), and 

every seven genes produces one unit, each of which denotes the 

delivery route to a customer as well as the recovery route from that 

customer.  

 

Customeri 

C
o

ll
ec

ti
o

n
 C

en
te

r 

D
is

p
o

sa
l 

C
en

te
r 

P
la

n
t 

R
et

ai
le

r 

D
C

 

P
la

n
t 

S
u

p
p

li
er

 

3 2 4 6 3 4 2 

 

Fig. 2. Chromosome representation for customer i 

 

The first three alleles of a unit represent the backward flow of the 

network, which shows the flow to collection/inspection rcenters, 

disposal centers, and plants, respectively. The four remaining alleles 

of that unit show the forward flow from suppliers to customers, where 

each of alleles represents the ID of retailers, DCs, plants, and 

suppliers, respectively. As an illustration, an ID randomly assigned to 

these facilities in the reverse and forward flow is shown in Figure 4. It 
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should be noted that applying this encoding approach might generate 

an unfeasible solution, which violates the facility capacity constraint. 

A repairing method is therefore imperative. As discussed earlier, in 

the delivery route to a customer at least one plant must be assigned. If 

the total demand of a customer from a plant exceeds its capacity, that 

customer will be assigned to another plant with sufficient product 

supply so that the transportation costs between that assigned plant and 

the customer is the lowest. 

 

Inputs: 

M: The number of customers 
N: The number of collection/ inspection centers 
O: The number of disposal centers 
L: The number of retailers 
K: The number of DCs 
J: The number of plants 
I: The number of suppliers 
  Begin 

   For 0 1i to N   

   

   

   

   

   

   

   

7 1 1,

7 2 1,

7 3 1,

7 4 1,

7 5 1,

7 6 1,

7 7 1,

C i random N
k

C i random Ok

C i random Jk

C i random Lk

C i random Kk

C i random Jk

C i random I
k

  

  

  

  

  

  

  

 

  

End 

 End 

Output: The chromosome  C
k

 

 

Fig. 3. Random path-based direct encoding procedure 

 

Random path-based direct decoding 

The delivery and recovery paths can be conventionally determined by 

applying the random path-based direct decoding procedure. Using this 

method speeds up the algorithm. Table 3 and Figure 4 represent an 

instance of the delivery and recovery route in our model, which helps 

to understand better the decoding procedure for our approach.  
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Table 3. The delivery and recovery path 
 

 Delivery path 

1 ( , )2 4 3 6 1 3 4 2S P DC R C CI P D       

2 ( , )2 4 6 1 3 4 2S P R C CI P D      

3 ( , )2 4 3 3 4 2S P DC CI P D     

4 ( , )2 4 3 4 2S P CI P D    

Forward 

Flow 

Revers 

Flow 

C
o

ll
ec

ti
o

n
 C

en
te

r 

D
is

p
o

sa
l 

C
en

te
r 

P
la

n
t 

R
et

ai
le

r 

D
C

 

P
la

n
t 

S
u

p
p

li
er

 

3 2 4 6 3 4 2 
 

   Fig. 4. A sample of gen  

 

Memetic operators 

The role of operators in the quality of answers is unavoidable in MAs, 

and this paper has focused on the crossover and local search methods, 

population size, fitness function or selection approach and termination 

conditions. Inspired by the research conducted on these issues in the 

literature of metaheuristics algorithms in other fields of operations 

research, we applied the mostly compatible approaches to the closed-

loop logistics network design problem with different delivery paths, as 

below: 

Cross over 

We applied the most common method for GAs and MAs: the two-

point crossover. In this method we first generate two random 

positions: head and tail. Then, the substring between these positions is 

exchanged with the second chromosome in the same range. 

Local search 

After crossing, two offspring are created. The child with a better 

fitness function is selected for further improvement during the 

subsequent local search method in which a combinatorial crossover 

method has been applied, as explained below. 

Combinatorial local search 

In this approach, the most economic path in the neighbourhood of a 

customer is calculated, and the path with the lowest cost is selected. 

As illustrated in Figure 5 in a relatively narrow area, the trade-off 

between quality of the answers and consumption of CPU time is 

satisfactorily managed. 
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Input: problem data and qualified offspring from crossing 

For 1 :i M  

From all available routes from  C
k

 

Calculate the total transportation cost through each path 

Select the best path 

Output: the best delivery path to a customer in the qualified offspring 

 

Fig. 5. Pseudo code of combinatorial local search 

Selection 

In the proposed MA, the popular roulette wheel selection approach is 

applied to select the next generation from the old population, making 

the selection probability of a chromosome proportional to its fitness 

value. 

Computational results 

To test the accuracy and efficiency of the proposed MA, the following 

example is adopted as a base for comparison. To test the efficiency, 

different sizes of the test problems are produced through doubling the 

numbers of the nodes at each stage, as shown in Table 4, and running 

ten times for each problem. A total of 50 experiments were 

investigated by our algorithm. Other parameters are generated 

randomly using uniform distributions, as shown in Table 4. The 

results were compared with ILOG CPLEX . These experiments were 

all performed on a PC with an Intel® Core™ i5 2.53 GHZ computer 

with 4 GB. Test problem 1 is the illustrative example of which

1, 2, 5, 8 , 20,   2,   1I J K L M N O       . In test problem 2,

2I  , 4J  , 10K  , 16L   , 40M   ,  4N   and  2O  , there are 

142 constraints, and 516 variables (including 36 binary variables), and 

the optimal solution is 50742 by LINGO. In test problem 3, 4I  ,

8J  , 20K  , 32L  , 80M  ,  8N  , and 4O  , there are 284 

constraints, and 2012 variables (including 72 binary variables). The 

problem size increases to 568 constraints and 7848 variables in 

problem 4, and problem 5 reaches 1136 constraints and 30608 

variables. We can observe that the size of the problem increased 

immensely. 
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Table 4. The size of test problems 

Test 

problem 
Sup. Plant DC Retailer 

Cu. 

zone 

Co./ 

in. 
Disp. 

1 1 2 5 8 20 2 1 

2 2 4 10 16 40 4 2 

3 4 8 20 32 80 8 4 

4 8 16 40 64 160 16 8 

5 16 32 40 128 320 32 16 

 
Table 5. The values of the parameters used in the test problems 

Parameter  Range 

i
cai   (2000, 7000)Uniform  

j
caj   (1000,3000)Uniform  

k
cak   (500,1500)Uniform  

l
cal   (250,900)Uniform  

m
cam   (100,300)Uniform  

n
can   (200, 400)Uniform  

ocao
 

 (200, 400)Uniform
 

m
pr

 
 10% 

n
pd

 
 10 % 

, , , , , , , ,
ij jk jl jm kl km lm mn nj

a f gb c d e h i   (3,12)Uniform  

j
FCJ

  (2000, 4200)Uniform
 

k
FCK

 
 (1800,3200)Uniform

 

l
FCL

 
 (1500, 2500)Uniform

 

n
FCN

 
 (1600, 2000)Uniform

 

o
FCO

 
 (2000,3600)Uniform

 

To evaluate the efficiency and accuracy of our MA, LINGO was 

first implemented as it is the most commonly applied software. The 

results are illustrated in Table 6. For test problem 3, after 10^12 

iterations and 20 min(s) of elapsed runtime LINGO failed to obtain 

the final solution, as with test problem 4. For problem 5, LINGO 

failed to find a feasible solution before 40 min. With our MA, two 

cases were considered: one was done with the same population size of 
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80 for five test problems regardless of the problem size, and the other 

was done by increasing the population size with the problem size in 

order to obtain more accurate results. Table 6 summarizes the test 

results. 
 

Table 6. Problem size with the same and different population sizes 

10 times 

each 

problems 

Test problem 

 1 2 3 4 5 

LINGO Optimal 50742 99120 

195168 

(feasible 

solution) 

392931 

(feasible 

solution) 

789434 

(feasible 

solution) 

 Time (s) 7 33 >1800 >1800 >2400 

       

MA Min_cost 50742 99220 196254 396258 798456 

(pop- 

size=80) 
Ave_cost 50802 99248 205482 425648 851379 

 Ave_time 2.91 15.24 38.01 331.29 1508.84 

       

MA Pop_size 50 80 200 300 400 

(variable 

pop-size) 
Min_cost 50742 99220 195456 394576 788945 

 Ave_cost 51025 99248 204513 425111 819564 

 Ave_time 2.34 15.24 106.91 2150.68 10352.11 

From Table 6 it can be observed that LINGO fails to solve such 

kinds of large-scale models, whereas our algorithm is capable of doing 

so. Besides, with our MA, increasing the population size with problem 

size only slightly improved accuracy of the problem, yet requires a 

large computation time. Therefore, we do not have to use a large 

population size to implement our algorithm as the problem size 

increases. 

As far as LINGO cannot solve large-scale problems with its 

branch-and-bound method; CPLEX is considered to be more efficient 

by its branch-and-cut method, and thus was developed for more 

experiments. The comparisons of our algorithm and CPLEX with 

different error rates are illustrated in Table 7, of which the costs in 

boldface are the optimum answers. 

MA CPLEXanswer answererror rate
CPLEX answer


  (17)  
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Table 7. Comparisons of CPLEX via variable pop-size MA 

Problem 
ILOG-CPLEX  MA( variable pop_size)  Error 

rate 

(%) Min_cost Ave_time(s)  Min_cost Ave_time(s)  

1 50742 0.07  50742 2.34  0.00 

2 99120 1.14  99220 15.24  0.10 

3 

195161 

(feasible 

solution) 

>491.22 

(Out of 

memory) 

 195456 106.91  0.15 

4 

391909 

(feasible 

solution) 

>1165.34 

(Out of 

memory) 

 394576 2150.68  0.68 

5 

789152 

(feasible 

solution) 

>1325.28 

(Out of 

memory) 

 788945 10352.11  [----] 

Moreover, from Table 7, it can be illustrated that although a larger 

population size can improve the solution, it consumes huge 

computation time. The ‘trade-off’ between these is to find a suitable 

population size in the consideration of the error rate and CPU time. 

Therefore, if we set the acceptable error rate in advance, the respective 

population size can be determined. In our experiments, 7% of the 

acceptable error rate was assumed, and thus the population size of 80 

was used. In reality, the control of error and making of effective 

decisions are the most important concerns of a company, which can 

then be achieved by setting a suitable population size under a required 

accuracy using our algorithm. In summary, the proposed random path-

based memetic algorithm has demonstrated its performance in terms 

of both accuracy and efficiency. 

Conclusion and future remarks 

In this paper, an MILP for a multi-stage closed loop supply chain 

network design problem is developed that aims to minimize the total 

cost of opening facilities and transportation in the proposed network. 

Many research studies have been conducted on closed-loop logistics 

network design problems in which the network includes suppliers, 

plants, DCs, customer zones, collection/inspection and disposal 

centers with normal delivery paths from two consecutive echelons of 

the network. However, there still exists a gap in both quantitative 

modeling and the solution approach of flexible multi-stage closed- 
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loop logistics problems. The proposed model considering retailer 

centers in the network is able to build up a logistics network more 

productively and flexibly with different delivery modes. 

In more detail, the proposed network has considered three kinds of 

delivering paths in its model that were not used in closed-loop 

network problems previously. These are: normal delivery, to transport 

products from an echelon to another adjoining one; direct shipment, to 

deliver products from plants to customers directly rather than via DCs 

and retailers; direct delivery, to transport products from DCs to 

customers, or from plants to retailers to customers directly. Applying 

this strategy in distribution, skipping the mid-process, leads to closer 

routes to customers, reduced transportation costs and lead times and 

increased customer satisfaction. 

To solve the problem on larger scales a memetic algorithm with a 

combinatorial local search method is applied to find near optimum 

solutions in large-scale problems. Some test problems from small to 

large sizes are also solved with LINGO and CPLEX optimization 

software. Comparing the results obtained by exact methods via those 

obtained by the memetic algorithm proved the algorithm’s accuracy, 

capability, and efficiency.  

The proposed future remarks are as below: 

- Other objective functions, such as responsiveness, tardiness, and 

robustness can be considered as other goals in designing the 

flexible logistics network design problem. 

- The uncertainty embedded in demand and recovery rates can be 

examined in a more analytical way to make the model closer to 

reality. 

- The proposed random path-based direct encoding approach and 

combinatorial local search method for the flexible closed-loop 

logistics network design problem can be applied in other 

metaheuristic algorithms such as cloud theory-based simulated.  
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