Systematic notes on Burdigalian Echinoids from the Qom Formation in the Bagher Abad area, Central Iran

Maryam Nouradini1*, Mehdi Yazdi2, Alireza Ashouri1
1 Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Iran
2 Department of Geology, Faculty of Science of Isfahan, Iran
*Corresponding author, e-mail: maryam.nouradini@gmail.com
(received: 18/05/2014 ; accepted: 08/12/2014)

Abstract
Echinoids fauna are common and distributed in the Lower Miocene deposits of the Bagher Abad area, northeast Isfahan, Central Iran. There are six Echinoid taxa belonging to the Echinoidea Class that can be described as: Clypeaster intermedius, Prinocidaris sp. and spines related to: Eucidaris zaemays, Stylocidaris Polyacantha, Spatangoid sp. and Prinocidaris sp. Bivalves, Foraminifers, Bryozoa, Brachiopods, scatter fragment of Crabs and Corals can obviously be seen in this section. The presence of Echinoids and Bivalves fauna indicated that, the shallow and warm water environment was dominated by them in Central Iran at the Lower Miocene (Burdigalian). From a palaeobiogeographic point of view, the fauna from the Qom Formation were similar to the West and Central parts of the Paratethys and confirmed that, the Bagher Abad area was located in the marginal seaways, which connected the West, Central Paratethys and Indo-pacific Ocean at that time (Lower Miocene).

Keywords: Central Iran, Echinoids, Lower Miocene, Qom Formation

Introduction
The Oligo-Miocene deposits consist of marine marls, limestone, gypsum and siliciclastic levels which are known as the Qom Formation. This formation is distributed in the Central part of Iran (Stöcklin and setudehnia, 1991; Reutner et al., 2007; Yazdi et al., 2012) (Fig. 1). The study section is located in the Isfahan-Sirjan basin. The creation of this basin (Isfahan- Sirjan basin) was accompanied by subduction and a final collision of the African/Arabian plate to the Iranian plate. The tectono stratigraphical events and collision of the African/Arabian plate to the Iranian plate started during the Late Cretaceous (Berberian and King, 1981; Coleman-Sadd, 1982; Rögl, 1998; Harzhauser and Piller, 2007). The most important effect of this collision was a closure of the Tethyan seaways and formation of the volcanic arc system during the Eocene (Fig. 1). This event led to a subdivision of the Qom basin into the back-arc basin (Qom Basin) and fore-arc basin (Isfahan-Sirjan basin) at the north-eastern margin of the Tethys seaway (Rögl, 1998; Harzhauser et al., 2002, 2007; Aubry et al., 2007; Reutner et al., 2007). The best description of the back-arc basin and fore-arc basin is given by Reutner et al., (2007).

Jalali and Feizi (2010) stated that the thickness of the Qom Formation has been mainly affected by plate collision. In other words, the paleo high-lands and depressions were the factors controlling the thickness of the Qom Formation at the time of deposition.

The Qom basin has been examined since 1934 because of economic interests (Abaie et al., 1964). Furrer and Soder (1955) divided the Qom basin into six members (a-f: a- basal limestone, b- sandy marls, c- alternating marls and limestones, d- evaporites, e- green marls, f- limestone).

Abaie et al., (1964) subdivided the Qom Formation into ten members in a type section, from the Chattian to Burdigalian time interval. Bozorgnia, (1966) identified ten members from Rupelian to Burdigalian. The age determination of the Qom Formation was assigned to the Middle Oligocene to Early Miocene time interval (e.g., Rahaghi, 1980; Chahida et al., 1977; Daneshian & Ramezani Dana, 2007; Reutner et al., 2007; Behforozi & Safari, 2011; Hasani & Vaziri, 2011).

A number of systematic studies have been published on corals (Toraby, 2003; Reutner et al., 2007; Yazdi et al., 2012) foraminifera (Bozorgnia, 1966; Rahaghi, 1980; Daneshian & Ramezani Dana, 2007, Behforozi & Safari, 2011) and molluscs (Hasani & Vaziri, 2011) from the Qom Formation, but from a systematic point of view, they have been poorly studied, the studies being particularly devoted to the echinoids of the Qom Formation. Khaksar and Maghfouri Moghaddam (2007) suggested shallow and warm water with
high energy for the Qom Formation in the Kashan area based on the Clypeaster and Scutella genera. Kroh et al., (2011) also provided a detailed investigation on the pectinid bivalves and echinoids of the Miocene deposits and concluded the shallow warm marine water existed for the Aquitanian to Middle Burdigalian sediments in the south of Iran (Mishan Formation). The main purpose of this research was to study the taxonomy of echinoderms from the Qom Formation (Burdigalian) in Central Iran (Bagher Abad area).

Materials and methods
The identified fossil echinoderms were collected from the distinctive sandy limestone associated with Bivalves (e.g., Oopecten persicus, Gloripallium sp., Ostrea sp., Crassostrea gryphoides and Spondylus decussatus). The paleontology materials were taken in the form of echinoderm tests and isolated skeletal ossicles. The following abbreviations were applied for description in the echinoderm tests: \(L_o = \) Length, \(L_a = \) width, \(h = \) height.

For microscopic studies, the isolated ossicles were in the form of bulk samples that were splinted into grain-size fractions (under 20 mm). The bulk samples were cleaned by washing. The collected samples from the levels were pressed and cleaned by diluting them in vinegar for 24 hours. The residue from these samples was picked under the binocular microscope. Subsequently, the samples were cleaned with an ultrasonic bath to remove small materials from the cavity (Pojeta and Balanc 1989). The SEM method was used to take photos of the picked samples. A camera was utilized for bigger isolated ossicles and echinoderm tests.

The specimens described and reported here were housed in the repository of the Isfahan University, Faculty of science under a type registration number. (EUIE, 101829).

Geological setting and lithostratigraphy details
The study section is situated in the Bagher Abad area, northeast of Isfahan (modified from Reu...
area, northeast of Isfahan city, Central Iran (Isfahan-Sirjan, fore-arc basin). The geography coordinates of the measured section are 32°57'42"N and 52°01'41.4"E (Fig 1).

The basal unit of the section consists of a medium to coarse alternation of limestone and marl, with 65 M thickness. The basal unit is dominated by Corals (Tarbellastraea sp., Leptoseris sp., Porites sp.) that increased in size toward the upper levels and disappeared in the beds at 10 m (Fig 2). The microfossils in this unit include: Nephrolepidina cf. morgani, Nephrolepidina morgana, Lepidocyclina (Eulepidina) sp., Lepidocyclina (N.) howchini, Amphistegina sp., Eulepidina dilatata, Quinqueloculina sp., Operculina sp., Lepidocyclina sp., Triloculina trigouenula, Operculina cf. complanta, Miogypsinoidea sp., Textularia sp., Amphistegina lessonii and Spirocythereus sp., which can be dated to the Upper Oligocene (Table 1).

This unit is overlain by 30 m of marl, which shows a vertical change in color from brown to green. This marl succession yielded abundant Foraminifers, Echinoids spines, Gastropods and scattered fragment of Crabs. The foraminifers are represented by: Nephrolepidina tournereri, Cyclocythereus sp., Quinqueloculina triangulata, Triloculina tricarinata, Operculina complanta, Nummulites willcoxii, Nummulites sp., Elphidium sp., Nummulites intermedius, Elphidium fitchianum, Heterostegina sp., Amphistegina lessonii, Miogypsina spp., Miogypsina globulina, Asterigerina rotula, Meandropsina sp., Rotalia viennottii, Amphistegina haueriina, Textularia mariae, Textularia mayori, Textularia agglutinans, Textularia sp., Triloculina gibba and Triloculina scapha. The symbiotic-bearing large foraminifera (Lepidocyclina) are associated with Brachiopods (Argyrotheca cordata, Terebratulina palmeri), Ostracods (Bairdopilata willisensis, Neonesidea sp., Aurelia sp., Grineoneis haidingeri, Grineoneis sp., Heliocystere sp., Maacrocypris sp) and Echinoids spines (Diadematidae sp., Spatangoidea sp., Eucidaria zeamays). The upper part of the section is followed by brown sandy limestone and marl units with 20 m thickness. This bed also represents abundant Echinoids (Clypeaster intermedius, Arbacia sp., Eucidaris zeamays, Stylocidaris polyacantha and Prionocidaris sp.) and bivalves (Spondylus decussatus, Oopecten persicus, Gloripallium sp., Amussiopecten sp., Ostrea lamellosa, Ostrea edulis and Ostrea gryphoides) (Fig. 2). On account of its typifying large fauna and lateral continuity, this bed can be considered as an excellent stratigraphical marker or key bed of the Lower Miocene (Burdigalian) stage.

Table 1. Biozonation of the Oligocene-Early Miocene sediments of the larger benthic foraminifera (Wynd, 1965; Laursen et al., 2009)

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Stage</th>
<th>Biozonation of Laursen et al. (2009)</th>
<th>Biozonation of Wynd (1965)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligocene</td>
<td>Chattian</td>
<td>Archaias hemani-Miogypsinoidea complanata</td>
<td>Assemblage zone (zone 58)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lepidocyclina-Operculina-Dittocoma</td>
<td>Nummulites intermedii Nummulites vacatus (zone 57)</td>
</tr>
<tr>
<td></td>
<td>Rupelian</td>
<td>Nummulites vacans Nummulites fichtei</td>
<td>Clyopenina spp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Osthocyclina coruscans Haustoria</td>
<td>Assemblage zone (zone 55)</td>
</tr>
</tbody>
</table>

Biostatigraphy of the Qom Formation in the Bagher Abad Area
The formal biozonation and biostratigraphy have not been proposed for the Qom Formation in Central Iran. Thus far, according to the considerable similarity and proximity of the larger benthic foraminifera between the Qom Formation and the Lower Asmari Formation (Zagros region in SW Iran), paleontologists (e.g., Toraby, 2003; Daneshian and Ramezani Dana 2007; Behforozi and Safari 2011; Rahiminejad et al., 2011; Yazdi et al., 2012) compared these two Formations.
The biozonations established for the Qom Formation were based on the biozonations of Wynd (1965) and Adams and Bourgeois (1967). The assemblage biozonation introduced by Laursen et al., (2009) could be applied for the biozonation of the Qom Formation (Rahiminejad et al., 2011; Yazdi et al., 2012). In the investigated section, two biozones can be determined in the lower and middle parts of the profile (Fig. 2). The lower part of the succession was defined based on the larger benthic foraminifers' assemblage. This assemblage corresponded with the “Lepidocyclina-Operculina-Ditrupa” assemblage zone of Laursen et al., (2009) or zone 56 of Wynd (1965), which was Rupelian-
Systematic notes on Burdigalian Echinoids from the Qom Formation in the Bagher…

Chattian in age.

The second biozone is correlated to the Nummulites intermedius-Nummulites va
cus assemblage zone of Wynd (1965), which can be
dated to the Aquitanian stage (Table 1), which is
supported by the associated planktonic foraminifera
such as: Globigerinoides trilobus, Globigerinoides
primordius, Globigerina ottnangensns, Globigerina
preabuloides (Bolli et al., 1987).

Biozonation and age dating of the upper part of
this section are not possible due to lack of
dominating foraminifera. Hence, age determination
has been made on the basis of a macrofossil
(Bivalves and Echinoids). Echinoids
lived in sand
about 20-25 cm below the surface or moved along
the surface with their tube feet in the infralittoral
zone (Kier, 1997). Based on the stratigraphical
position, this part of the section is not younger than
the Burdigalian and also not older than the
Aquitanian stage. The fauna (Echinoderms and
Bivalves) in the studied section, are similar to the
fauna reported from other parts of the world such
as: France (Sismonda, 1842; Pomel, 1883),
Portugal (Pomel, 1883), Greece (Tsparas et al.,
2007), India (Moore, 1966; Jain, 2002), Turkey
(Moore, 1966), Poland (Mwczmsk, 1996), Austria
(Kroh and Harzhauser,1999; Kroh, 2003), Czech
(Zágrošek et al., 2009) and Jamaica (Donovan et
al., 2005), which revealed that the path way
(shallow and warm water) was domi
nated from the
Paratethys to the Indo-Pacifi
Ocean during the
Burdigalian time (Early Miocene).

Conclusions

The Miocene echinoids of the Bagher Abad section
have low diversity, so this phenomenon is
significant with regard to the first taxonomy record
of the Miocene echinoids from the Qom Formation.
Echinoids that have been documented from the
Bagher Abad section consists of: Clypeaster
intermedius, Arbacina sp., Eucidaris zaemays,
Stylocidaris polyacantha, Prionocidaris sp. and
Spatangoid sp. Generally, the echinoid with a thick
margin is typical with high energy, light intensity
and found in warm water with coarse sediment
environments (Tsparas et al., 2007). Bivalves
(Ostrea and Pectinid) and symbiotic large benthic
foraminifera support this data and indicate that the
Upper part of the Qom Formation is not younger than
the Burdigalian. The similarity between the
Miocene echinoids of the Qom Formation and
those from the other parts of Paratethys and the
Indo-Pacific Ocean, also support the idea that the
Miocene echinoids belong to the fauna of the
province and are distributed from Western
Paratethys to the Indian Ocean.

Systematic palaeontology

Phylum Echinodermata Klein, 1734
Subphylum Echinozoa Haeckel in Zittel, 1895
Class Echinoidea Leske, 1778

The description of the echinoids corresponds
with the Treatise on Invertebrate Paleontology by

Order Cidaroida Claus, 1880
Family Cidaroidae Gray, 1825

Prionocidaris sp. (Pl. 2, figs. 4, 14–20)

Type species. Cidarites pistillaris Lamarck, 1816.

168, 169, fig. 1c (none).

2002 Prionocidaris Jain, pl. I, Figs. a-h, j, k, n.

2005 Prionocidaris sp. Danovan et al., pl. 1, Figs.
1-7; pl. 6, Figs. 1-3.

Occurrences. fourteen isolated ossicles were
collected from a distance of 95-110 m the top
profile (EUIE, 101896-101909)

Description. Many echinoid spines, mostly from
Order Cidaroida have been collected. The primary
spines are tapered with a coarse thorn arranged
along the length of the shaft. The thorns are
commonly elongated and globular toward the tip.
Some spicules are pronounced and appear in a
thorn like circle. The primary spines are long and
robust. The shaft is distally winded and thorny. The
acetabulum is depressed and circular. The
maximum length is 30 mm.

Distribution. The similarities in these spicules
were reported from Eocene (Indo-pacific),
Oligo-Miocene (Australia), Lower Miocene
(Jamaica) and Early-Middle Miocene (India).

Order Spatangoida Claus, 1876

Spatangoid sp. (pl. 1, figs.7-9)

2003 Spatangoid indet Kroh. pl. 4, Figs. 16.

2005 Spatangoid sp. Danovan et al., pl. 1, Figs.
1-7; pl. 6, Figs. 1-3.

Occurrences. six spines were collected from a
distance of 95-100 m of the top profile (EUIE,
Description. The incomplete preservation of these specimens makes this genus difficult to determine. The primary radioles are delicate and relatively fragile. The spine was ornamented with longitudinal striated ridges on the shaft. Test was thin, short, and cylindrical with a transversely straight-cup at the base. The milled ring was linear and smooth.

Distribution. Spatangoids are common in the Oligocene-Miocene deposits of the Central Paratethys.

Remark: Although we were not able find a large number of this genus in sediments and often the remains were broken and crushed, so the following detailed description was not possible.

Family Cidarinae Gray, 1825
Genus *Stylocidaris Polyacantha* (pl. 2, figs. 5-13)
1981 *Cidaris cf. belgica* Hamršmid, p. 105, tab. 11. 1984 *Cidaris* sp. Hamršmid, p. 43, tab. 7. 2005 *Stylocidaris Polyacantha* Kroh, pp. 2-4; pl.1, figs 11-19; pl.2, figs. 1, 2; pl.3, figs 1-6. 2009 *Stylocidaris Polyacantha* Zágoršek et al., p. 484, pl.12, figs. F-G.

Occurrences. Twenty spines were collected from a distance of 90-115 m of the top profile (EUIE, 101876-101895)

Description. Numerous *Stylocidaris Polyacantha* occur through the Upper parts of the profile. This genus is distinguished here by its primary spine. The primary spine comprises of a fine granules arranged in a regular longitudinal row on the shaft. The base of the primary spine is expressed by means of the tubercle of its plate, by means of a cup shaped depression. The top of the base is milled with a thick neck above it. The primary spine is usually thick, long and decreases in thickness toward the point and tapers to a point at the top.

Distribution. This genus refers to the period from the Eocene-Pliocene to Holocene (Central Paratethys), Early-Middle Miocene (Indo-Pacific).

Remark. *Stylocidaris Polyacantha* can be recognized by its tubercles arrangement. The tubercles are coarse, spherical and turn into very fine thorns at the tip. This genus compares well with the *Stylocidaris schwabenaui* reported by Zágoršek et al.,(2009) from Middle the Miocene of Central Paratethys.

Subfamily Cidarinae Gray, 1825
Genus *Euclidaris* Pomel, 1883

Euclidaris zeamays (Sismonda, 1842)
(1989 *Euclidaris zeamais* Philippe, 27; tab. 1. 1993 *Cyathocidaris aventonensis* Mwczymska, 106; pl. 1, figs. 3-4; pl. 6, fig. 1c. 1996 *Cidaris zeamais* Mwczymska, 40; pl. 1, fig. 1 1996 *Cyathocidaris aventonensis* Mwczymska, 40-41; pl. 1, figs. 2-3 1998 *Euclidaris zeamais* Philippe, 44-46; pl. 4, figs. 8-15)

Occurrences. Fifteen spines were collected from a distance of 95-110 m of the top profile (EUIE, 101859-101874)

Description. The collected spines related to the study section are restricted only to spines without any perfect species. Primary radioles have small arranged spines enlarged along the shaft. The size of the spines decreases toward the top, tapering to point. The acetabulum is compressed, circular and comprises about half the diameter of base. Some spines are pronounced and include thorn-like circlets. The primary spines can be identified with a long cylindrical collar below the long shaft. The interambulacral plates are in pentagonal form with distinct tubercles and bosses that, are surrounded by secondary tubercles.

Distribution. The *Euclidaris zeamays* spine is locally common in the Lower to the Upper Badenian of the Central Paratethys and Burdigalian to the Langhian of the Mediterranean Sea.

Remark. This genus is very close to the *Euclidaris tribuloides* or *Stylocidaris affinis* (Philippi) on the basis of the spines characteristics. This genus is distinguished from the other genera by its longitudinal arrangement of granules and change to a ribbed crown on the top.

Superorder Camarodonta Jackson, 1922
Order Temnopleuroida Mortensen, 1942
Family Temnopleuridae A. Agassiz, 1872
Genus *Arbacina* Pomel, 1869

Arbacina sp. (pl. 1, figs. 1-6)

Occurrences. Nine spines were collected from the top profile (EUIE, 101829-101837).

Description. The small size of the recovered echinoids is related to *Arbacina* spp. The *Arbacina* test is small and sub-hemispherical to hemispherical. The apical system is lacking in all
species. This genus is characterized by its interambulacral plates with non-crenulated marginal tubercles. The marginal tubercles are surrounded by small internal tubercles. The internal
tubercles are postulated on each side of the marginal tubercles. Each marginal tubercle has a distinct and sharp boss, with a globular areole around it. In all species reported here, the outer pores and inner pores are filled with fine-grained sediment. The peristome is situated in the center of the aboral pole; in both the circular, and sub-circular outline.

Distribution: Early-middle-Miocene (France, Poland, Egypt, Italy, Australia, Middle East), Lower Miocene (Greece).

Remark: The specific characters are well-described by Moore (1966) and Kroh and Harzhauser (1999). The present hemispherical test, ornamentation, interambulacral plates, ambulacral plates, circular tubercles and dense secondary tubercles distinguish this genus as well.

Suborder: Clypeasterina Agassiz 1872
Family: Clypeasteridae Agassiz 1835
Genus: Clypeaster Lamarck 1801

Clypeaster intermedius Desmoulins, 1837
(pl. 3, figs. 1–4)
1998 *Clypeaster intermedius* Philippe, p.302, pl. 11, fig. 4 pl 6, pl. 12, fig. 1-4.
2000 *Clypeaster intermedius* Marcopoulou-Diacantoni, p. 178, PI. Ill, fig. 1a, b, PI. V, fig. 3a, b, PI. VI, fig. 1.
2007 *Clypeaster intermedius* Tsaparas et al., p. 230, pl. 2, figs. F, c, G, c.

Occurrence. Ten spines were collected from a distance of 95-110 m of the top profile (EUIE, 101921-101930)

Description. Marginal contour sub-pentagonal with rounded angles. The apical disk is slightly in the center. The petal edges are not sharp and open at the extremity. The greatest width of the petal is in the middle. The ambulacral plates are moderately long and wide. The petals subequal in length. The pristome is small, circular and located at the center. The ornamentation of the ambulacrum and interambulacrum consists of very small military tubercles. The lateral sides are distinctly in-curved and the margins are thick and tumid (Table 2).

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Lo</th>
<th>h</th>
<th>Lo/h</th>
<th>La</th>
</tr>
</thead>
<tbody>
<tr>
<td>101922</td>
<td>85</td>
<td>100</td>
<td>0.85</td>
<td>20</td>
</tr>
<tr>
<td>101923</td>
<td>85</td>
<td>75</td>
<td>1.13</td>
<td>15</td>
</tr>
<tr>
<td>101924</td>
<td>65</td>
<td>85</td>
<td>0.75</td>
<td>15</td>
</tr>
<tr>
<td>101925</td>
<td>85</td>
<td>100</td>
<td>0.85</td>
<td>10</td>
</tr>
<tr>
<td>101926</td>
<td>95</td>
<td>110</td>
<td>0.86</td>
<td>10</td>
</tr>
<tr>
<td>101927</td>
<td>80</td>
<td>95</td>
<td>0.84</td>
<td>10</td>
</tr>
</tbody>
</table>

Distribution: Early-Neogene (France, Egypt, Italy, Australia, Middle East), Lower Miocene (Iran), Middle-Late Miocene (Greece).

Remark. This genus is from other Iranian *clypeaster* by the irregularly pentagonal outline. The petals are tumid, long and broad. Its bear’s five gonopores. This genus belongs to the *Clypeaster scillae* group (Tsaparas et al., 2007). *Clypeaster rogersi* is very similar to *Clypeaster intermedius*, but its lateral side has a very large bulge.

Undetermined echinoid ossicles (pl. 1, figs. 10-12)
There were several echinoid ossicles in the key bed. They could not be identified, but the author's believed that, these ossicles belonged to Echinoidea. Fifteen ossicles were collected from a distance of 95-115 m of the top profile (EUIE, 101910-101915)

Acknowledgement
The article is a part of a PhD study in the Ferdousi University of Mashad, Iran. We hereby wish to thank Professor Steve Donovan from the Department of Naturalis Biodiversity Center, Leiden, for the systematic determination of the Echinoid.

References
191.

Systematic notes on Burdigalian Echinoids from the Qom Formation in the Bagher...

