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Abstract
Estimation of the metal value in the metallic deposits is one of the important factors to evaluate the deposits in exploration studies and
mineral processing. Therefore, one accurate estimator is essential to obtain a fine insight into the accumulation of the ore body. There
are geostatistical methods for the estimation of the concentration of iron which performance of these models is complexity of analysis.
The support vector machine (SVM) is by far one of the most robust artificial intelligence techniques used successfully for predictions
and estimations of deposits because of its ability to generalize. Keeping this is view, the aim of this article is to use the SVM and back
propagation neural networks (BPNN) to estimate the concentration of the iron element in the Choghartdeposit, in Iran. Comparing the
obtained results with those of the validation process demonstrates that the SVM method is faster than the BPNN method and is more
precise for the estimation of the iron concentration in the Choghartmine. The results of this study show that artificial intelligence–
based models can evaluate the iron concentration with an acceptable accuracy.
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Introduction
Artificial neural network (ANN) techniques have
been applied in the past to grade and resource
estimation, with some success, for example Wu and
Zhou (1993), Clarici et al. (1993) and Burnett
(1995). ANNs require example inputs and outputs
to discover this relationship. The input data
normally comes in the form of samples at known
locations in three-dimensional (3D) space and the
output data is their grade at these locations. Most of
the neural network systems treat the unknown
parameter estimation as a problem of function
approximation in the data coordinate space
(Kapageridis & Denby, 1998; Kapageridis, 2005;
Badel et al., 2010). The error-back propagation
algorithm is the most popular learning algorithm
(Rumelhart et al., 1986; Fahlman, 1988).
Surprisingly, the most popular error-back
propagation algorithmcannot handle more complex
problems, while other more advanced algorithms
(Hagan & M. Menhaj, 1994; Wilamowski et al.,
2008) can. In recent times, the support vector
machine (SVM) techniques (Cortes & Vapnik,
1995) have often been used to replace neural
networks, because training is relatively easy, there
is good generalization in theory and estimation, it is
globally the best model, and there are no local

optima, unlike in neural networks.
These are some of the advantages of the SVM. In

recent years, artificial intelligence techniques have
attracted the attention of many researchers. These
networks rely on understanding the complexity of
the input and output of a system, which can provide
acceptable results. The support vector machine is
one of the most powerful methods of artificial
intelligence. In 1990, Vladimir Vepnayk has
presented and proved their ability to anticipate
problems of nonlinear systems (Behzad et al.,
2009). The results show that this method has a high
power for extending and dealing with noise and
lack of data (Cristianini & Shawe-Taylor, 2000;
Wang, 2005; Martinez-Ramon, Cristodoulou, 2006;
Steinwart, 2008). In this study, the iron
concentration values in the Choghartmine were
studied by both the BPNN- and SVM-based
models. It was observed that the SVM method was
more precise and could evaluate the iron
concentration with an acceptable accuracy.

Case study description
The Choghart deposit, and accumulation with a
northwest–southwest orientation, is approximately
600m long and 200m wide. It can be seen on the
ground surface and its thickness varies between 400
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and 700m. A considerable diversity of various
rocks like intrusive and metamorphous rocks pieces
are seen around the deposit. The composition,
which is formed by deposit host rocks has two
completely different and distinct appearances: 1.
Rocks with a high percentage of Quartz and
Feldspar, named by geologists as Quartzite,
Porphyry, Quartz, and Granophyres and 2. Rocks
with a high percentage of Amphibolite, which are
of Actinolite, Tremolite, and Feldspartypes
(Albite), as well as, altered and amphibolitized alien
rock pieces called Amphibolite, Amphiblol, Pyroxenite,
Hornnblendite, and Metasmotite, with different
compositions. About 30 m of dark lime stone with many
Calcite-filled joints were found in the holes bored for
exploration in the northeast of Choghart (Moor and
Modabberi, 2003).

Back-propagation neural network
The goal of the Artificial Neural Network is to
develop a mathematical model of biological events,
to imitate the capability of biological neural
structures, for the purpose of designing an
intelligent information processing system.
Recurrent neural networks (RNNs) have been an
active research topic in recent years and they have
been proposed as efficient techniques for
implementing nonlinear adaptive filtering, due to

their promising ability to model nonlinear dynamic
systems (Narendra & Parthasarathy, 1990; Kolen,
2001). Numerous applications can be found in
various disciplines (see Haykin, 1999 and Plett,
2003 for some examples). The back-propagation
neural network (BPNN) is usually recognizedfor its
prediction capability and ability to generalizewell
on a wide variety of problems. Liang and Gupta
studied the stability of the dynamic back
propagation training algorithm, using the Lyapunov
method (Liang and Gupta, 1999; Maleki et al.,
2013).The back propagation model is a supervised
type of network, in other words, trained with both
inputs and target outputs. During training, the
network tries to match the outputs with the desired
target values. Learning starts with the assignment
of random weights. The output is then calculated
and the error is estimated. This error is used to
update the weights until the stopping criterion is
reached. It should be noted that the stopping criteria
is usually the average error of the epoch.

Support vector machine
The SVM has been employed for regression
estimation, the so-called support vector regression
(SVR), in which the real value functions are
estimated.

Figure 1. Geological map of the Choghartdeposit (Moor and Modabberi, 2003)
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In this case, the aim of learning process is to find
a function f(x), as an approximation of the value
y(x), with minimum risk, and based only on the
available independent and identically distributed
data, that is, (Scholkopf et al., 1998; Maleki et al.,
2013; Maleki et al., 2014a; Maleki et al., 2014b).
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In the SVR algorithm, the estimation function is
determined by a small subset of training samples
called the support vectors (SVs). Also, in this
algorithm, a specific loss function called ε-
insensitive loss is developed to create a sparseness
property for SVR. This function is described as
follows (Scholkopf et al., 1998; Maleki et al.,
2013; Maleki et al., 2014a; Maleki et al., 2014b).
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where f(x), which is computed by the SVR, is the
estimated value of y, and the corresponding errors
being less than the ε-boundary (ε-tube) are not
penalized (Fig. 2).

Figure 2. ε-Insensitive loss function (Liu et al., 2006)

For developing the regression algorithm, we
begin with the linear function estimation. It is clear
that every linear function of the input vector x has
the following representation (Quang-Anh et al.,
2005; Maleki et al., 2013; Maleki et al., 2014a;
Maleki et al., 2014b).

bxwxf  .)( Where , ,nw x X R b R   (3)

Note that the angle bracket ( . ) indicates the
inner product of two vectors in the Hilbert space
(i.e., a space in which the inner product of two
vectors has a real value, also called inner (or dot)
product space). With the ε-SVR, the aim is to find a
function f(x) that estimates the values of the output
variables, with deviations from the actual training
data. The ε-values control the complexity of the
approximating functions where small values tend to
penalize a large portion of the training data, leading
to tight approximating models, and large values
tend to free data from penalization, leading to loose
approximating models. Therefore, the proper
choice of an ε-value is critical for the generalization
of regression models.

For finding f(x), one should minimize the
regulated risk functional (Rreg) (instead of just the
empirical risk functional, which is used in
traditional learning algorithms, such as, ANN),
which is defined as follows (Al-Anazi and Gates,
2010; Maleki et al., 2014a; Malekiet al., 2014b).
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Remp is the empirical error over training data,
which is defined in the ε-insensitive loss function
framework. The regularization coefficient C in Eq.
(4) is an indicator of the complexity of function f
and penalizes the error by setting the trade-off
between training error minimization and model
complexity. Briefly, the minimization of Rreg

illustrates the principle idea of the structural risk
minimization theory, which states that for achieving
the minimum risk, the simultaneous control of the
complexity of the model and the error owing to the
training data is essential. This idea improves the
generalization of the SVR.

It has been proven that minimizing Eq. (4) is
equivalent to the following convex constrained
quadratic optimization problem (Lia et al., 2007;
Maleki et al., 2013; Maleki et al., 2014a; Malekiet
al., 2014b).
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where ξi and i  are slack variables, introduced to

satisfy the constraints on the function. Therefore,
SVR fits a function to the given data by not only
minimizing the training error, but also by
penalizing complex fitting functions. The first term
of Eq. (5) is the Vapnik–Chervonenkis (VC)
confidence interval, whereas, the second one is the
empirical risk. Both terms limit the upper bound of
the generalization error rather than limiting the
training error. This means that SVR strikes a
balance between the empirical error and VC-
confidence interval, which leads to an improved
generalization performance, better than the neural

network models (Peng et al., 2004). In Eq. (5) C
tries to ensure that the margin ε is maximized and
the error of classification  is minimized.
According to Eq. (5), any error smaller than ε does
not require a nonzero ξi or i  , and does not enter

the objective function (Scholkopf et al., 1998;
Maleki et al., 2013; Maleki et al., 2014a; Maleki et
al., 2014b). By introducing Lagrange multipliers (α
and α') and allowing C >0, and ε >0 chosen apriori,
the equation of an optimum hyper plane is achieved
by maximizing of the following relations.
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where xi only appears inside an inner product. To
get a potentially better representation of the data in
a nonlinear case, the data points can be mapped
into an alternative space, generally called feature
space (a pre-Hilbert or inner product space) through
a replacement.
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The functional form of the mapping φ(xi) does
not need to be known, as it is implicitly defined by
the choice of the kernel: k(xi,xj) = φ(xi).φ(xj) or
inner product in the Hilbert space. With a suitable

choice of a kernel the data can become separable in
the feature space, while the original input space is
still nonlinear. Thus, while the problem of the data
for n-parity or the two spirals is non-separable by a
hyper plane, in the input space, it can be separated
in the feature space by proper kernels (Walczack
and Massart, 1996; Chih-Hung et al., 2009). Table
1 gives some of the common kernels.

Subsequently, the nonlinear regression estimate
takes the following form (Maleki et al., 2013;
Maleki et al., 2014a; Maleki et al., 2014b):
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where b is computed using the fact that the
constraints of equation (5) become ξi= 0 if 0<αi<C,
and i  = 0 if 0 < i< C.

There are a quite a number of algorithms for
SVM training, and Sequential Minimum
Optimization (SMO) is an efficient one for this
purpose (John, 1998). It is a simple algorithm that
can quickly solve the SVM quadratic programming
problem without any extra matrix storage and is
exempt from using any numerical quadratic
programming optimization steps. SMO decomposes
the overall quadratic programming problem into
sub-problems of quadratic programming by using
the Osuna’s theorem to ensure convergence. There
are two specific components in the structure of an

SMO: An analytic method for solving the two
Lagrange multipliers and a heuristic one for
choosing multipliers in the optimization step
(Khandelwal et al., 2010).

The advantage of an SMO lies in the fact that solving
two Lagrange multipliers can be done analytically. Hence,
numerical quadratic programming optimization can be
avoided completely (Khandelwal et al., 2010). In addition,
an SMO requires no extra matrix storage. Thus, very
large SVM training problems can fit inside the
memory of an ordinary personal computer or
workstation. In this study, an SMO algorithm is
used for both optimizing the structure of the SVM
and helping to predict the permeability, in
reasonable running time.
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Dataset
For the present study, datasets that included iron
concentrations were collected from four benches at
the mine site (Figs. 3 to 6 show the location map of
the data on the four benches). For each bench
10000 data points were gathered, and then the

outlier and censored data were eliminated for all
the benches (to show outlier and censored data we
have used boxplots that are shown in Figs. 7a to
7d).The data used in this study is from 1000data
samples for each bench, the other data set has
outlier values.

Table 1. Polynomial, normalized polynomial, Radial Basis Function (Gaussian), and Pearson Universal (PUK) Kernels (Wang, 2005)
Type of ClassifierKernel Function

Complete polynomial of degree ( , ) ( 1)i j i jK x x x x  

Normalized polynomial kernel of degree 
( 1)

( , )
( ) ( )

i j
i j T T

i j i j

x x
K x x

x x y y

 




Gaussian (RBF) with parameters  (sigma) control the
half-width of the curve fitting peak 22

2/exp),( jiji xxxxK 

Pearson VII Universal Kernel (PUK) with two parameters
of  (sigma) and ω (omega), which control the Pearson

width and the tailing factor of the curve-fitting peak













































 




2

/12
122

1

1
),(

ji

ji

xx

xxK

Figure 3. Shows location map of data for bench 1 in this study

Figure 4. Shows location map of data for bench 2 in this study
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Figure 5. Shows location map of data for bench 3 in this study

Figure 6. Shows location map of data for bench 4 in this study

Generally, datasets of the three benches were
used to predict the iron concentration at the fourth
bench. Therefore, the database of the first three
benches was used for training in the SVM and the
database of the fourth bench was used for testing,
by using the MATLAB multipurpose software, in
order to implement the automated Bayesian
regularization. This type of regularization could
significantly reduce a large amount of error called
over-fitting. The very popular MATLAB Neural
Network Toolbox (Matrix Laboratory (MATLAB)
Neural Network Toolbox [Online]) was not able to
handle the arbitrarily connected back-propagation
neural network (BPNN) and SVM methods.
Therefore, codes were prepared and implemented
in the MATLAB, without using the Toolbox. To
begin with, using these codes, three data points in
the vicinity were selected, and finally they had been
used in the estimation phase. In view of the
requirements of the networks computation
algorithms, the data of the input and output
variables were normalized. In addition, for
increasing the model strength for recognizing the
relationship between the inputs and the
corresponding outputs, it is necessary that the data

be normalized (Boser, 1992; Amini et al., 2011).
Therefore, the initial data were normalized using
the Cox and Box method, as follows (Howarth and
Earle, 1979):

0),0(
1




 x
x

z 




(10)

where X is the normalized value, λ is the actual
value, and Z is the transformation value.
Subsequently, the previous datasets were
normalized between range (-1, 1) in the standard
data, as (Govett, 1983; Amini et al., 2011):
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where X is the normalized value and Xi is the actual
value in the columns, Xmax and Xmin are the
maximum and minimum values of each related
column (Figs. 8a to 8d shows the Histogram of raw
data and the normalized data of the four benches).
In addition, the cross-validation of the whole
training set was used for adjusting the associated
parameters of the networks (Liu et al., 2009).
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a b

c d

Figure 7. Shows the Boxplot of data the four benches in this study for identifying the outlier data. Figure 7a to 7d shows Boxplot
bench 1 to 4, respectively

a

b
c d

Figure 8. Frequency distribution chart and statistical parameters of Fe and histogram of the transferred data into a standard normal
distribution among the benches of this study, Figs.8a to 8d shows a histogram of raw data and normalized data for benches 1 to 4,
respectively.
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Results
Estimation of iron concentration by the Support
Vector Machine
As mentioned, the performance of the SVM
depended mostly on the choice of the kernel
function, which was in a sense equivalent to the
choice of the BPNN structure. In this regard,
despite the obtained results of the previous research
studies (Dibike et al., 2001; Han and Cluckie,
2004) indicating the Gaussian radial basis function
as a superior kernel, the form of the Gaussian
kernel was as follows:

2 2/ 2
( , ) i jx x

i jk x x e
 


(12)

where  is a constant parameter of the kernel,
which can either control the amplitude of the
Gaussian function or the generalization ability of
SVM. We have to optimize  and find the optimal
one. Moreover, for implementation of the SVM, the
appropriate values of the optimal parameter C
(trade-off parameter),  , and ω (parameters of

Pearson Universal kernel) need to be determined
prior to building the model. For managing this
issue, among all model selection tools, the cross-

validation techniques can be rigorous for adjusting
the associated parameters of SVM, because they
make no biased assumptions about the data and
noise distribution. The Leave One Out (LOO) is a
cross-validation procedure consisting of removing
one example from the training set, constructing the
decision function only on the basis of the remaining
training data, and then testing on the removed
example (Liu et al., 2009).In this fashion one tests
all examples of the training data and measures the
fraction of errors over the total number of training
examples. The root mean square error (RMSE) was
used as an error function to evaluate the quality of
the model. To obtain the optimal value of  , the
SVM with different s was trained, the  varying
from 0.05 to 0.22, every 0.01. At last, the optimal
 was found to be 0.13. To find an optimal and
ω, the RMSEs on different s and ωs were
calculated. The optimal and ω were found to be
0.09 and 0.215, respectively. Figure 9 shows the
LOO cross-validation step used for selecting the
best values of  , , and ω. Similarly, with other
multivariate statistical models, the performances of
SVM for regression depended on a combination of
several parameters.

Figure 9. RMSE error versus  (a), versus  (b), and versus ω (c) in the LOO cross-validation step
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Figure 10. Performance of SVM in the estimation of the concentration of iron for the test data set

They are capacity parameter C,  of the  -
insensitive loss function, and the kernel type K and
its corresponding parameters. C is a regularization
parameter that controls the trade-off between
maximizing the margin and minimizing the training
error. If C is too small then insufficient stress will
be placed on fitting the training data. If C is too
large then the algorithm will over-fit the training
data. However, it was indicated that the prediction
error was scarcely influenced by C (Wang et al.,
2003; Malekiet al., 2014a; Malekiet al., 2014b). To
make the learning process stable, a large value
should be set up for C (e.g., C = 2100).

Figure 10 presents the estimation performance of
SVM for concentration iron based on the test step.

Estimation of iron concentration by BPNN
To check the accuracy of SVM in the estimation of
the concentration of iron, the results obtained by
the SVM were compared with those of the back
propagation neural network (BPNN). In this
manner, to optimize the best network topology
(e.g., number of hidden layers and corresponding
neurons) a trial and error process was usually
utilized. The structure of the BPNN model includes
one input layer consisting of four neurons, two
hidden layers of the8-4 neurons, and an output
layer containing only one neuron (Fig. 11).
Multiple layers of neurons with nonlinear transfer
functions allowed the network to study nonlinear
and linear relationships between the input and
output vectors.

Figure 11. Block diagram of the optimum external BPNN Structure



210 Maleki et al. Geopersia, 4 (2), 2014

The model performance for the estimation of the
concentration of iron is done by calculating the
mean square error (MSE) and coefficient
correlation (R). The results, based on the

normalized values obtained by the neural network
code (m-file) in the MATLAB workspace, are
demonstrated in Figure 12.

Figure 12. Performance of BPNN in the estimation of the concentration of iron for the test data set

Discussion
In this study, the performance of the SVM
algorithm was demonstrated in the estimation of
iron concentration. In this regard, two MATLAB
software codes were developed and utilized for
evaluating and analogy the performance of SVM
with the best performed work of the BPNN model.

When we compared the obtained results of SVM
with those of the BPNN model, the SVM presented
an overall better performance over the BPNN
approach, in both the training and testing processes.
Figure 13 shows the scatter plot estimation of the
iron concentration of each method in the test data
set.

Figure 13. Relationship between the measured and estimated concentration of iron by the two artificial methodsconsidered for a test
dataset

The plots indicate that an acceptable estimation
(i.e., R=0.951) was obtained through SVM
modeling. In addition, the SVM calculation had
taken considerably less time for estimation
compared to that of the BPNN. The performance

parameters of both models are shown in Table 2.
All of these expressions introduced the SVM as a
suitable algorithm for the estimation of iron
concentration.

Table 2. Performance parameters for evaluating the models
Model RMSE Rtest

BPNN algorithm 0.455 0.905
SVM algorithm 0.235 0.951
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Conclusion
In this study, we have shown the application of the
SVM model compared to the BPNN model for the
estimation of iron concentration of four benches at
the Choghartmine of Iran, based on the borehole
data. According to the results obtained at the end of
the prediction, it seems that the SVM method
(R=0.95 and RMSE=0.23) is a better and more
accurate method for the estimation of the
concentration of iron. However, the prediction

performance of the BPNN method (R=0.9 and
RMSE=0.45) is some what less than that of the
SVM model and can not be considered as an
alternative method for deposit mining
characterization. Applying them ethodologies
presented in this article, it appears that it will be
possible to characterize deposit mining, using the
available data point from the exploration borehole
or extraction wells.
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